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Abstract The Gaussian rank correlation equals the usual correlation coefficient
computed from the normal scores of the data. Although its influence function is
unbounded, it still has attractive robustness properties. In particular, its break-
down point is above 12%. Moreover, the estimator is consistent and asymptotically
efficient at the normal distribution. The correlation matrix based on the Gaussian
rank correlation is always positive semidefinite, and very easy to compute, also
in high dimensions. A simulation study confirms the good efficiency and robust-
ness properties of the proposed estimator with respect to the popular Kendall and
Spearman correlation measures. In the empirical application, we show how it can
be used for multivariate outlier detection based on robust principal component
analysis.
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1 Introduction

It is well known that the value of the classical Pearson correlation estimator can
be highly affected by the presence of only a small amount of outliers. To overcome
this sensitivity to outliers, estimators based on ranks, such as the Spearman and
Kendall correlation, can be used (see e.g. Croux and Dehon (2010) for a recent
review). Correlation matrices constructed from the Spearman or Kendall correla-
tion are robust and very fast to compute, also in high dimensions. They have been
applied in robust principal component analysis (Van Aelst et al., 2010), robust
data mining (Alqallaf et al., 2002), and robust least angle regression (Khan et al.,
2007), among others. However, to obtain consistency at the normal distribution,
one needs to apply a transformation, and the resulting correlation matrix is no
longer guaranteed to be positive semidefinite.

We propose a positive semidefinite correlation estimator based on ranks that
is consistent and asymptotically efficient at the normal distribution. Moreover, it
has a quite high robustness to outliers at finite samples. We call this estimator
the Gaussian rank correlation. For a bivariate sample {(x1, y1), . . . , (xn, yn)}, it is
constructed by first computing the ranks of each observation. Denote by R(xi) and
R(yi) the rank of xi and yi respectively, for 1 ≤ i ≤ n. Next, the corresponding
Gaussian (or normal) scores are obtained by plugging these ranks in the quantile
function Φ−1 of the standard normal distribution. The Gaussian rank correlation
(GRCor) is then the conventional correlation computed from these scores:

GRCor =

∑n
i=1 Φ

−1(R(xi)
n+1 )Φ−1(R(yi)

n+1 )
√

∑n
i=1 Φ

−1(R(xi)
n+1 )2

∑n
i=1 Φ

−1(R(yi)
n+1 )2

. (1.1)

Note that the value of the denominator only depends on the sample size n and not
on the data. The transformation of data to the Gaussian scores, also called the Van
Der Waerden scores or the normal scores, to obtain correlation estimators is not
new in the statistical literature (see e.g. Hájek and Sidak (1967)). However, a study
of the properties of the correlation estimator (1.1) from a robustness perspective
has been lacking in the literature, up to the knowledge of the authors.

The robustness of the GRCor follows from the use of ranks. Although the esti-
mator has an unbounded influence function, its breakdown point is above 12.4 %.
An important advantage of the proposed estimator is that at the normal distribu-
tion, it is asymptotically as efficient as the sample correlation coefficient. Moreover,
no transformation is needed to obtain consistency for the correlation coefficient of
a bivariate normal distribution. By consequence, we can construct an estimate for
the correlation matrix of a multivariate normal distribution by estimating each
element of this matrix by the GRCor. The resulting matrix estimate is ensured
to be positive semidefinite, since the GRCor matrix is the standard correlation
matrix computed on the data transformed into the Van Der Waerden scores.

In Sections 2 and 3 we investigate the robustness properties of the GRCor,
by computing its breakdown point, sensitivity curve and influence function. Sub-
sequently, the performance of the Gaussian rank estimator is compared with the
Kendall and Spearman correlation estimators in a simulation study. The usefulness
of the GRCor on real data is illustrated in Section 5, where outliers are detected
using principal component analysis of the GRCor correlation matrix. The last
section summarizes our main findings.
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2 Breakdown point

The breakdown point of an estimator is the smallest fraction of data contamina-
tion that can make the estimator uninformative. For correlation estimates, it is
especially interesting to study the contamination needed to invert the sign of the
correlation estimate. More formally, for a sample Zn = {(x1, y1), . . . , (xn, yn)} and
a correlation estimator ρ̂, we define the finite sample breakdown point towards
zero as

εn(ρ̂;Zn) = min
k

{
k

n
: inf
Zk

n

ρ̂(Zk
n) ρ̂(Zn) ≤ 0},

where Zk
n is obtained by replacing any k observations of Zn by arbitrary val-

ues. This finite sample breakpoint strongly depends on the sample configura-
tion. We focus on a sample Sn with identical component observations, namely
Sn = {(x1, x1), . . . , (xn, xn)}. We assume, and this holds for all estimators we con-
sider, that ρ̂(Sn) = 1. The finite sample breakdown point of a correlation estimator
ρ̂ is then defined as

εn(ρ̂) := εn(ρ̂;Sn) = min
k

{
k

n
: inf
Sk
n

ρ̂(Sk
n) ≤ 0}. (2.1)

It equals the smallest number of observations one needs to replace from a perfectly
correlated bivariate sample, to make the correlation coefficient become negative.
A similar definition of breakdown point was used by Capéraà and Guillem (1997)
in the context of testing for no correlation, and by Grize (1978). Note that there
is no canonical definition of breakdown point for correlation estimators (see the
discussion and rejoinder in Davies and Gather (2005)).

Proposition 1 describes the type of outliers that induces the largest downward
bias in the GRCor estimate at the sample Sn. It is a reformulation of Proposition
2.3 of Capéraà and Guillem (1997), where the proof can be found.

Proposition 1 Consider the sample Sn where the component observations are iden-

tical. Assume without loss of generality that x1 < . . . < xn. For every 1 ≤ k ≤ n, and

for every 0 ≤ r ≤ k, denote by Sk,r
n the sample where k elements of Sn are replaced as

follows:

{

(y1, . . . , yk−r) by (y′1, . . . , y
′
k−r) with y′1 > . . . > y′k−r > maxi yi (if k > r)

(yn−r+1, . . . , yn) by (y′n−r+1, . . . , y
′
n) with y′n < . . . < y′n−r+1 < mini yi (if r > 0).

Let Sk
n be any sample where k elements of Sn are replaced. Then it holds that

inf
0≤r≤k

ρ̂(Sk,r
n ) ≤ inf

Sk
n

ρ̂(Sk
n).

For computing the breakdown point (2.1) of the GRCor estimator, we proceed
as follows. For a given sample size n, and for 0 < k < n, we compute the value r∗

yielding the minimal ρ̂(Sk,r
n ), with 0 ≤ r ≤ k. Denote Sk∗

n = Sk,r∗

n . It turns out, as
we verified numerically for sample sizes up to n = 10000, that r∗ = ⌊k/2⌋, yielding
the expression

ρ̂(Sk∗
n ) = cn

{

∑n−k/2
i=1+k/2

z2i − 2
∑k/2

i=1 z
2
i if k is even

∑n−⌊k/2⌋
i=2+⌊k/2⌋

zizi−1 − 2
∑⌊k/2⌋

i=1 z2i − z2⌊k/2⌋+1 if k is odd,
(2.2)
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Fig. 1: Value of ρ̂(Sk∗

n ) versus the percentage of contamination k/n, with n = 20.

with zi = Φ−1(i/(n + 1)) and cn = 1/
∑n

i=1 z
2
i . Figure 1 plots ρ̂(Sk∗

n ) versus the
percentage of outliers k/n for n = 20. We observe that the GRCor decreases as the
percentage of outliers increases, as expected. The finite sample breakdown point
for this value of n is the smallest value of k/n yielding a non-positive correlation.
As can be seen from Figure 1, this occurs if k/n is close to 15%.

In Figure 2, we present the finite sample breakdown point εn(ρ̂) of the GRCov
as a function of the sample size. We observe that the breakdown point for finite
samples remains above 12%. For very small sample sizes, below n = 20, the finite
sample breakdown point is even considerably higher. In the next proposition we
give the asymptotic value of εn(ρ̂) (the derivation is in Appendix).

Proposition 2 Let ε∗ = limn→∞ εn(ρ̂). For the GRCor estimator it holds that ε∗ is

the unique solution of the equation

ε/2− Φ−1(ε/2)φ(Φ−1(ε/2)) =
1

4
, (2.3)

with 0 < ε < 1.

Solving the equation (2.3) numerically yields an asymptotic breakdown point
of ε∗ = 0.124 for the Gaussian rank correlation. The finite sample breakdown
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Fig. 2: Finite sample breakdown points of the GRCor as a function of the sample
size. The dashed line corresponds to the asymptotic breakdown point of 12.4%

point of the standard Pearson correlation is only 1/n, resulting in ε∗ = 0. For
the Spearman correlation, one has ε∗ = 0.206, and for the Kendall correlation
ε∗ = 0.293 (e.g. Grize (1978), and Davies and Gather (2005)), showing that they
are more robust to large amounts of outliers than the Gaussian rank correlation.

3 Sensitivity curve

The sensitivity curve measures the robustness of an estimator to small amounts
of contamination. For a bivariate sample Zn−1 = {(x1, y1), . . . , (xn−1, yn−1)} it is
defined by

SCn(x, y) = n[ρ̂(Zn−1 ∪ {(x, y)})− ρ̂(Zn−1)]. (3.1)

It measures the change in the estimator caused by adding (x, y) to the clean sample,
standardized by the amount of contamination. Figure 3 pictures the sensitivity
curve of the GRCor estimator for n = 200, averaged over 100 random samples of
199 observations from a bivariate normal distribution with correlation ρ = 0.8. We
see that the bias induced by adding one outlying couple (x, y) is the largest when
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Fig. 3: Sensitivity curve averaged over 100 samples of 199 observations from a
standard bivariate normal distribution with correlation 0.8.

that observation is outlying both with respect to the correlation structure as well
as to the marginal distributions, i.e. for a large positive x and a large negative y,
or for a large negative x and a large positive y.

Figure 4 shows the sensitivity curve SCn(x,−x) as a function of x, for the
GRCor and classical Pearson correlation. Both are decreasing functions of |x|, but
the lower bound for the GRCor is much smaller than for the Pearson correlation,
due to the use of ranks. Although these sensitivity curves are bounded for finite
n, this no longer holds when n tends to infinity.

To focus ideas, consider Zn−1 = Sn−1 and denote

γ∗n = sup
x,y

|SCn(x, y)|,

where the sensitivity curve SCn is computed at Sn−1. The limit quantity
γ∗ = limn→∞ γ∗n measures the gross-error sensitivity of the estimator. For the
Pearson correlation estimator, one has that γ∗n = 2n, and the gross-error sensitiv-
ity is infinite. The next proposition (proof in Appendix) shows that the Gaussian
rank correlation is much more robust with respect to single outliers.
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Fig. 4: Sensitivity curve SCn(x,−x) as a function of x, averaged over 100 samples
of 199 observations observations from a standard bivariate normal distribution
with correlation 0.8.

Proposition 3 The gross error sensitivity of the GRCor is infinite but the divergence

to infinity is only at a logarithmic rate:

γ∗n ∼ 2 log(n).

An alternative way to quantify the effect of a small amount of contamination
on the GRCor, is the influence function (e.g. Maronna et al. (2006)). To compute
it, we need a definition of the GRCor at the population level. Assume that the
bivariate random variable (X,Y ) follows a distribution H. The influence function
(IF) of a statistical functional T at a distribution H is defined as

IF((x0, y0), T,H) = lim
ε↓0

T ((1− ε)H + ε∆(x0,y0))− T (H)

ε
(3.2)

where ∆(x0,y0) is a Dirac measure putting all its mass at (x0, y0). It can be in-
terpreted as the effect that an infinitesimal amount of contamination placed at
(x0, y0) has on T , for data coming from the distribution H. Note that the influ-
ence function is defined at the population level, and that the IF of an estimator
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refers to the IF of the associated functional representation of the estimator. For
the sample (X,Y ) coming from the arbitrary distribution H, with marginal dis-
tribution F and G, the statistical functional associated with the GRCor is given
by

GRCor(H) =

∫

Φ−1(F (x)) Φ−1(G(y)) dH(x, y). (3.3)

Given this functional representation of the GRCor, we now present the influence
function at the bivariate normal distribution. A proof is provided in the Appendix.

Proposition 4 The influence function of the GRCor at the bivariate normal distribu-

tion Φρ, having correlation coefficient ρ, is given by

IF((x0, y0),GRCor, Φρ) = x0y0 − ρ(
x2
0 + y20
2

). (3.4)

The IF is thus unbounded, and is exactly the same as the IF of the Pearson
correlation (Devlin et al., 1975). However, this result is somehow misleading, since
it is based on the asymptotic representation of the estimator. At finite samples,
the GRCor is much less sensitivity to outliers than the Pearson correlation, as we
showed in Proposition 3. This finding will be confirmed in the simulation study
presented in the next section.

4 Simulation study

By means of a simulation study, we compare the finite sample performance of
several correlation estimators, both in the absence and presence of outliers. Apart
from the GRCor, we consider the Pearson, Spearman, Kendall correlation esti-
mators and the correlation estimator associated with the Minimum Covariance
Determinant (MCD). First, we focus on the bivariate case, where we assess the
performance of the different estimators in terms of mean squared error. Second, we
study the multivariate case, where we also investigate the positive semidefiniteness
of the correlation matrix estimates.

Competing correlation estimators: For a bivariate sample {(x1, y1), . . . , (xn, yn)} the
classical Pearson’s estimator of correlation is given by

RP =

∑n
i=1(xi − x)(yi − y)

√

∑n
i=1(xi − x)2

∑n
i=1(yi − y)

,

where x and y are the sample means. The most popular alternative for the Pear-
son correlation estimator is the Spearman’s rank correlation rS (Spearman, 1904),
defined as the Pearson correlation between the ranks of the observations. A consis-
tent version of this estimator for the population correlation ρ of a bivariate normal
distribution is obtained by the transformation

RS = 2 sin(
1

6
π rS).

Another nonparametric correlationmeasure is Kendall’s correlation (Kendall, 1938),
defined as

rK =
2

n(n− 1)

∑

i<j

sign((xi − xj)(yi − yj)).
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To obtain a consistent version at the normal distribution, we apply the transfor-
mation

RK = sin(
1

2
π rK).

Recall that no transformation is needed for the Pearson and GRCor correlation
estimators. Finally, we compare with the Minimum Covariance Determinant es-
timator (MCD, Rousseeuw and Van Driessen (1999)) with 50% breakdown point
and additional reweighting step, and compute the associated correlation matrix.
In the bivariate case we get

RMCD =
Ĉ12

√

Ĉ11Ĉ22

,

with Ĉ the MCD covariance matrix estimator. We use the R-command covMcd
from the robustbase package, with default options, for computing the MCD (Rousseeuw
et al., 2009). The computation of the MCD is much more time consuming than
for the GRCor correlation.

Bivariate simulation design: We generate m = 1000 samples of size n = 50, 100,200
from a bivariate normal with correlation coefficient ρ = 0.2 or ρ = 0.8 (simulations
for other values of ρ result in similar conclusions). We introduce outliers in the
data by replacing a percentage ε of the observations by the the point (5,−5), where
the sensitivity curve of the GRCor is close to its most extreme value, see Figure
3. For each sample j, the correlation coefficient is estimated by ρ̂j , and the Mean
Squared Error (MSE) is computed as

MSE =
1

m

m
∑

j=1

(ρ̂j − ρ)2. (4.1)

Table 1 reports the MSE for the different estimators considered. Standard errors
around the reported results are about 2% of the respective results.

In the absence of outliers, we find that the Pearson correlation has the high-
est precision, as expected. The GRCor comes out second, followed by Kendall
and Spearman correlation. The correlation estimates associated with the MCD
covariance estimator are clearly less precise regardless of the sample size or the
correlation coefficient. For all estimators, we find that the precision is higher in
case the true correlation coefficient ρ is closer to one. At the bottom of Table 1
we report the asymptotic variance of the respective estimators, as documented in
Croux and Dehon (2010). The asymptotic variance of the Gaussian rank correla-
tion is equal to that of the Pearson correlation.

In the presence of outliers, we notice that even in case of a small percentage of
outliers the Pearson correlation becomes very unprecise. Focussing on the robust
correlation estimators, we observe a different behavior for mild contamination,
i.e. ε = 1%, and more pronounced contamination, i.e. ε = 10%. In case of mild
contamination, the most precise estimator is most often the Kendall correlation.
For ε = 10%, the MCD estimator becomes by a wide margin the estimator with the
smallest MSE. The GRCor is the least precise of all considered robust estimators in
case of outliers, but still far more precise than the Pearson correlation. Moreover,
in higher dimensions the GRCor has the advantage of being positive definite, in
contrast to estimates based on RS and RK , while keeping its robustness.
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Table 1: Simulated MSE (multiplied by the sample size) of several correlation estimators
at a bivariate standard normal distribution with ρ = 0.2 and ρ = 0.8, for sample sizes n =
50, 100, 200 and a fraction ε of outliers at position (5,-5).

ρ = 0.2 ρ = 0.8
n*MSE ε = 0% ε = 1% ε = 5% ε = 10% ε = 0% ε = 1% ε = 5% ε = 10%

n = 50
Pearson 0.95 9.07 26.89 37.56 0.14 19.81 60.44 84.46

Spearman 1.04 1.24 3.04 6.40 0.20 0.83 4.92 12.28
Kendall 1.06 1.28 2.96 6.12 0.18 0.44 2.37 6.49
GRCor 0.95 1.59 4.57 8.30 0.18 2.08 9.50 18.32
MCD 2.92 2.78 2.57 2.31 0.54 0.49 0.45 0.40

n = 100
Pearson 0.93 6.68 45.54 74.22 0.14 13.93 102.30 167.14

Spearman 1.03 1.13 4.05 12.00 0.18 0.50 6.72 23.99
Kendall 1.04 1.15 3.83 11.16 0.17 0.29 3.03 12.41
GRCor 0.93 1.39 6.98 15.96 0.16 1.49 14.92 36.32
MCD 2.70 2.62 2.33 2.03 0.44 0.42 0.35 0.32

n = 200
Pearson 0.92 12.47 90.00 147.76 0.13 26.81 202.07 332.83

Spearman 1.01 1.27 7.15 23.38 0.17 0.75 13.01 47.48
Kendall 1.02 1.26 6.58 21.49 0.15 0.37 5.71 24.36
GRCor 0.92 2.03 13.37 31.35 0.14 2.94 29.91 72.31
MCD 2.50 2.49 2.20 1.95 0.35 0.36 0.33 0.28

For ρ = 0.2 (0.8), the asymptotic variance of Pearson, Spearman, Kendall, GRCor and MCD
is 0.92 (0.13), 1.02 (0.16), 1.01 (0.15), 0.92 (0.13) and 2.26 (0.32) respectively.

Multivariate simulation design: We now generate 1000 samples from a 10 dimen-
sional multivariate normal distribution with mean zero. Denote by Σ the corre-
sponding covariance matrix, for which all diagonal elements are equal to 1 and
all off-diagonal elements equal to ρ. As in Branco et al. (2005), we consider both
symmetric and asymmetric contamination. In case of symmetric contamination, a
fraction ε of the sample follows a multivariate normal distribution with covariance
matrix 5 ∗ Σ. In case of asymmetric contamination, a fraction ε of the sample
equals (5,−5,5,−5, . . .)t.

In Table 2, we report the average element-wise MSE for the correlation ma-
trix, multiplied by the sample size. The standard errors of the reported results are
between 1% and 2% of the respective results. In the case of symmetric contami-
nation, the loss in precision for most estimators due to outliers is relatively small.
The MSE of the classical Pearson correlation under 10% contamination is about
60% higher than without outliers. The increase in MSE under contamination is
obviously smaller for the other estimators, with the GRCor being the most pre-
cise in case of mild contamination (i.e. 1%) and Kendall correlation when higher
percentages of the sample are contaminated. In case of asymmetric contamination
the results are somewhat different. The precision of the Pearson correlation is now
severely affected in the presence of outliers. In case of mild contamination (1%),
Kendall has the smallest MSE, closely followed by Spearman. However, for larger
percentages of contamination, the MCD correlation estimator has the smallest
MSE. The GRCor correlation matrix estimator has larger MSEs under asymmet-
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Table 2: Simulated MSE (multiplied by the sample size) of correlation matrix estimators,
based on 1000 samples of sizes n = 50, 100, 200 from a 10 dimensional multivariate normal
distribution with corresponding covariance matrix Σ. All diagonal elements of Σ are equal to
1, all off-diagonal elements equal to 0.5. In the case of symmetric contamination, a fraction
ε of the sample follows a multivariate normal distribution with covariance matrix 5 ∗ Σ. For
asymmetric contamination, a fraction ε of the sample equals (5,−5, 5,−5, . . .)t.

Symmetric contamination Asymmetric contamination
n*MSE ε = 0% ε = 1% ε = 5% ε = 10% ε = 1% ε = 5% ε = 10%

Pearson 0.58 0.72 0.87 0.92 8.37 25.35 35.64
Spearman 0.66 0.71 0.73 0.75 0.89 2.62 5.80

n = 50 Kendall 0.67 0.71 0.73 0.75 0.85 2.20 4.83
GRCor 0.60 0.66 0.73 0.76 1.26 4.23 7.86
MCD 1.27 1.32 1.28 1.29 1.31 1.30 1.31

Pearson 0.57 0.65 0.85 0.95 6.08 42.88 70.51
Spearman 0.67 0.67 0.71 0.75 0.76 3.47 11.00

n = 100 Kendall 0.66 0.66 0.70 0.74 0.73 2.81 8.90
GRCor 0.59 0.61 0.70 0.77 1.05 6.46 15.24
MCD 1.06 1.02 1.04 1.07 1.01 1.03 0.97

Pearson 0.56 0.65 0.85 0.99 11.64 84.86 139.52
Spearman 0.65 0.66 0.71 0.76 0.90 6.28 21.25

n = 200 Kendall 0.64 0.65 0.69 0.73 0.82 4.89 16.90
GRCor 0.57 0.61 0.71 0.81 1.68 12.58 29.80
MCD 0.81 0.80 0.84 0.84 0.82 0.79 0.81

ric contamination than the other robust estimators we considered, but remains
much more robust than the classical estimator.

Positive semidefiniteness: The consistent versions of the Spearman and Kendall
correlation matrix estimates are not ensured to be positive semidefinite. We in-
vestigate here the severity of this lack of positive definiteness for various levels of
outlier contamination and sample sizes. We generate 1000 samples form a multi-
variate normal distribution where all bivariate correlation coefficients are constant
and equal to ρ. As a reference case, we take ρ = 0.5, the sample size n = 60 and
the dimension d = 40. Figure 5 plots the percentage of positive semidefinite matri-
ces as estimated by the Spearman (dotted gray) and Kendall (black) correlation
estimators for varying values of n and ρ. An important first note is that in case
the difference between n and d becomes large (e.g. in case d = 40 and n > 100)
we find that all matrices become positive semidefinite, irrespective of the value of
ρ. However, as illustrated on the left graph in Figure 5, for d = 40, as the ratio
n/d becomes close to 1, the number of positive semidefinite correlation matrix
estimates decreases dramatically. Interestingly, this problem is more more severe
for Kendall correlation than for Spearman. On the right graph in Figure 5, the
percentage of positive semidefinite estimates is plotted against the true bivariate
correlation coefficient ρ. This percentage turns out to be quite low for ρ close to
zero and increases as ρ approaches 1 for both estimators. Again, we confirm that
Kendall correlation yields less positive semidefinite estimates.

Figure 6 plots the percentage of positive semidefinite estimates as a function of
the percentage of outliers, for both asymmetric and symmetric contamination. The
fraction of outliers barely affects the percentage of positive semidefinite estimates
of the Spearman correlation. However, the Kendall correlation suffers substantially
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Fig. 5: Percentage of positive semidefinite correlation matrix estimates by Spear-
man (dotted gray) and Kendall (black) as a function of the ratio n/d (left figure)
and as a function of the the correlation coefficient ρ (right figure). The percentages
are based on 1000 random samples from a multivariate normal distribution. For
the left panel we keep d = 40 and ρ = 0.5 constant, for the right panel d = 40 and
n = 60.

of a loss in positive semidefinite correlation matrix estimates, as the fraction of
outliers increases. In case of asymmetric contamination, 5% of contamination suf-
fices to have that none of the estimated correlation matrices based on the Kendall
correlation are positive semidefinite.

5 Application: Robust principal component analysis

The goal of Robust Principal Component Analysis (PCA) is twofold. First, it tries
to explain the correlation structure of the data by means of a small number of
linear combinations of the original variables, even if there are outliers. Secondly,
it allows to flag outliers and to determine of which type they are. We focus on
the second application. As shown by Croux and Haesbroeck (2000), among others,
robust principal component analysis is easily performed by computing the eigen-
values and eigenvectors of a robust estimator of the correlation matrix. Here, we
consider the use of the GRCor in PCA as an alternative to the Pearson corre-
lation. Since we focus solely on the correlation matrix, our analysis starts with
robustly standardizing the data using the median and the median absolute devi-
ation (MAD)1 as measures of location and scale. In what follows, xi thus denotes
the standardized observation, for 1 ≤ i ≤ n.

1 The MAD of a sequence of observations y1, . . . , yn is defined as 1.486mediani|yi −
mediankyk|, where 1.486 is a correction factor such that the MAD is a consistent scale es-
timator at the normal distribution.
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Fig. 6: Percentage of positive semidefinite correlation matrix estimates by Spear-
man (dotted gray) and Kendall (black) as a function of the percentage of outliers,
based on 1000 random samples from a contaminated multivariate normal distribu-
tion. We consider random samples with dimension d = 40, the sample size n = 60
and the bivariate correlation coefficient ρ = 0.5. In the left and right panel we
consider respectively symmetric and asymmetric outliers.

We consider a dataset containing 8 measurements on 86 containers of milk
(Daudin et al., 1988).2 The eight measurements are: (1) density, (2) fat content,
(3) protein content, (4) casein content, (5) cheese dry substance measured in the
factory, (6) cheese dry substance measured in the laboratory, (7) milk dry sub-
stance and (8) cheese produced, with variables 2-8 measured in grams/liter. Al-
though there are eight measurements, they clearly can be expected to come in
groups, making the true dimension probably less. Moreover, previous studies indi-
cated (see e.g. Atkinson et al. (2004)) that this dataset contains several outliers.
We investigate whether principal component analysis of the correlation estimator
reveals outliers.

To achieve this goal, we use the PCA outlier diagnostic plots of Hubert et al.
(2005). They plot the orthogonal distance of each observations versus its score
distance. Denote by ti = P t

kxi the score of the i-th observation, with k the num-
ber of principal components that is retained and Pk the matrix containing the k

eigenvectors corresponding to the k largest eigenvalues in its columns. The score
distance of an observation xi measures the outlyingness of the score vector ti and
is defined as

SDi =

√

√

√

√

k
∑

j=1

t2ij
lj

,

where lj are the sorted eigenvalues. The orthogonal distance of xi measures how
far xi lies from the PCA subspace and is defined as

ODi = ||xi − Pkti||.

2 The dataset is available in the R-package robustbase (Rousseeuw et al., 2009) under the
name “milk”.
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Fig. 7: Diagnostic plot of the contaminated milk dataset based on the Pearson
correlation (left) and the GRCor (right).

In Figure 7 the diagnostic plots are shown for the PCA based on the Pearson
correlation estimate on the left graph and the GRCor on the right graph. They are
based on k = 4 retained principal components, since they explain more than 90% of
the total variability in both cases. The vertical and horizontal dashed lines indicate
the cut-off points for the score and orthogonal distance, which are calculated as in
Hubert et al. (2005). Observations that cross one of these lines can be considered
as statistical outliers. In the PCA context, three types of outliers can typically be
distinguished: (1) bad leverage points correspond to the observations in the upper
right quadrant, (2) orthogonal outliers are located in the upper left quadrant and
(3) good leverage points in the lower right quadrant.

For PCA based on the Pearson correlation, 10 outliers are detected either as
good leverage points or orthogonal outliers. But it is known that outlier detection
based on non-robust procedures suffers from the masking effect. Using outlier de-
tection methods based on the forward search algorithm and high breakdown point
covariance estimates, Atkinson et al. (2004) found that observation 70 is an ex-
tremely pronounced multivariate outlier. The relatively small orthogonal distance
of this observation with respect to the Pearson PCA subspace, indicates that it at-
tracted the estimated principal component. In contrast, the orthogonal distance of
observation 70 with respect to the GRCor PCA subspace is large, and is correctly
flagged as a bad leverage point. The GRCor detects in total 15 outliers, which is
in line with the results in Atkinson et al. (2004).

6 Conclusion

In this paper we study the Gaussian rank correlation estimator, which is the usual
correlation estimator computed from the normal scores of the data. This type
of estimator is known in the literature on rank-based tests, see Hájek and Sidak
(1967) for an early reference, and it was already included in the simulation study
of Devlin et al. (1975). We propose the GRCor as a valuable robust estimator
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for the correlation matrix. It combines several nice properties: (i) it is extremely
fast to compute, also in high dimensions (ii) it is always positive semidefinite
(iii) it is consistent at multivariate normal distributions (iv) it is quite robust
to outliers (v) in absence of outliers, it has 100% asymptotic efficiency at the
normal distribution (vi) its definition is very simple. We don’t know of any other
robust correlation matrix estimator combining these properties. For instance, the
OGK-estimator of Maronna and Zamar (2002) lacks properties (v) and (vi). The
correlation matrix based on the transformed Spearman or Kendall correlation does
not has properties (ii) and (v), and the simulation study in Section 4 showed that
non positive semidefinite matrices are frequently obtained, in particular if the
number of observations is small with respect to the dimension.

Obviously, the GRCor estimator is not affine equivariant, in contrast to high
breakdown covariance matrix estimators as the MCD. In high dimensions, this lack
of affine equivariance may become an advantage. If a large number of observations
in the data matrix are having aberrant components for only a few variables, then
an affine equivariant estimator breaks down, i.e. loses its robustness (see Alqallaf
et al. (2009)). The GRCor is much more robust with respect to such “elementwise”
contamination in a data matrix.

Although the influence function of the Pearson correlation and the GRCor are
the same, their robustness at finite samples is very different. First of all, their
sensitivity curves are very different (see Figure 4); the maximum of the sensitivity
curve for the Pearson correlation converges at the rate n to infinity, but for the
GRCor only at the rate logn. Moreover, the breakdown point as defined in Section
2 is zero for the Pearson correlation, but above 12% for the GRCor. The gain
in robustness with respect to the usual correlation matrix estimator has been
clearly showed, both theoretically and in the simulation study. There is, however,
still room for further improvement on the robustness side, in particular if the
percentage of outliers is large.
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A Proofs

Proof of Proposition 2. Here, we focus on the situation where k is even, an analogous proof
can be given for odd k. Using symmetry, we can rewrite (2.2) as

ρ̂(Sk∗

n ) = −4
1
n

∑k/2
i=1 z

2
i

1
n

∑n
i=1 z

2
i

+ 1, (A.1)

with n the sample size and k the (even) number of contaminated elements.
Write k = εn, with 0 < ε < 1. We need to find the smallest ε such that the correlation

estimate (A.1) becomes negative. For n tending to infinity, the condition that (A.1) is negative
becomes

−4

∫ Φ−1(ε/2)

−∞

z2φ(z)dz + 1 ≤ 0. (A.2)

The asymptotic breakdown point ε∗ is the smallest ε such that (A.2) holds. Note that the left
hand side of (A.2) is strictly decreasing in ε, equals −1 for ε = 1 and 1 for ε = 0. So ε∗ is the
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unique solution of
∫ Φ−1(ε/2)

−∞

z2φ(z)dz =
1

4
. (A.3)

Finally, note that (A.3) can be rewritten as (2.3) using partial integration.

Proof of Proposition 3. Recall that Sn−1 = {(x1, x1), . . . , (xn−1, xn−1)}. It follows from
Proposition 1, with k = 1, that the bias induced by adding one observation is maximal when
adding the couple (x, y) for which x < mini xi and y < maxi yi for i = 1, . . . , n − 1. From
Equation (2.2), with k = 1, it then follows that the maximum of the sensitivity curve, as
defined in (3.1), is given by

γ∗

n = |n ∗ (cn

n
∑

i=2

(zizi−1 − z21)− 1)|,

with cn = 1/
∑n

i=1 z
2
i and zi = Φ−1( i

n+1
). For n → ∞, (ncn)

p
→ 1

E[Z2]
= 1 and

1
n

∑n
i=2 zizi−1

p
→ E[Z2] = 1, with Z ∼ N(0, 1). We therefore have that,

γ∗

n ∼ n− n(1−
z21
n
) = z21 = Φ−1(

1

n+ 1
)2.

Proposition 21 of Dominici (2003) states that

Φ−1(x) ∼ −

√

LW (
1

2πx2
), x → 0, (A.4)

where LW (x) is the Lambert W function, defined by the implicit equation
LW (x) exp(LW (x)) = x, having asymptotic behavior LW (x) ∼ ln(x) − ln(ln(x)), for x → ∞.
We conclude that

γ∗ ∼ LW (
(n+ 1)2

2π
) ∼ 2 log(n),

for n → ∞.

Proof of Proposition 4. Define Hε = (1 − ε)H + ε∆(x0,y0), where H is a bivariate normal
distribution with correlation ρ. It follows from (3.3) that

GRCor(Hε) = εh(Fε(x0))h(Gε(y0)) + (1− ε)

∫

h(Fε(x))h(Gε(y))dH(x, y), (A.5)

with Fε(x) = (1 − ε)F (x) + εI(x ≥ x0), Gε(x) = (1− ε)G(x) + εI(x ≥ x0), and h = Φ−1. At
the model distribution H = Φρ, we have that F = G = Φ. Computing the derivative of (A.5)
and evaluating at ε = 0 yields the influence function

IF((x0, y0),GRCor,H)

= h(Φ(x0))h(Φ(y0))− ρ

+

∫

h′(Fε(x))
δ

δε
Fε(x)|ε=0 y dH(x, y) +

∫

h′(Gε(y))
δ

δε
Gε(y)|ε=0 xdH(x, y)

= x0y0 − ρ (A.6)

+ E[h′(Φ(X)){−Φ(X) + I(X ≥ xo)}Y ] + E[h′(Φ(Y )){−Φ(X) + I(Y ≥ yo)}X],

where the expectation is with respect to H. Note the similarity in the last two terms of (A.6).

Due to bivariate normality, we may write write Y = ρX +
√

1− ρ2 ε with ε independent of
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X. The third term of (A.6) then becomes

E[h′(Φ(X)){−Φ(X) + I(X ≥ xo)}Y ]

= ρE[
X

φ(X)
{I(X ≥ x0)− Φ(X)}]

= ρ

∫

x

φ(x)
{I(x ≥ x0)− Φ(x)}φ(x)dx

= ρ lim
M1,M2→∞

∫ M2

−M1

x{I(x ≥ x0)− Φ(x)}dx

= ρ lim
M1,M2→∞

∫ M2

x0

xdx−

∫ M2

−M1

xΦ(x)dx

= ρ lim
M1,M2→∞

{
M2

2

2
−

x2
0

2
−

x2

2
Φ(x) |M2

−M1
+

∫ M2

−M1

x2

2
dΦ(x)}

= ρ[
−x2

0

2
+

∫

∞

−∞

x2

2
dΦ(x) + lim

M1,M2→∞

{
−M2

1

2
Φ(−M1) +

M2
2

2
(1− Φ(M2))}]

= ρ[
−x2

0

2
+

1

2
]. (A.7)

The last term of (A.6) can be simplified in a similar way and (A.6) then simplifies to

IF((x0, y0),GRCor, Φρ) = x0y0 − ρ+ ρ(
−x2

0 + 1

2
) + ρ(

−y20 + 1

2
), (A.8)

resulting in (3.4).
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