
Unified Patterns to transform business rules into
an event coordination mechanism

Willem De Roover and Jan Vanthienen

Department of Decision Sciences & Information Management,
Katholieke Universiteit Leuven, Belgium

(willem.deroover;jan.vanthienen)@econ.kuleuven.be

Summary. Business rules define and constrain various aspects of the
business, such as vocabulary, behavior and organizational issues. En-
forcing the rules of the business in information systems is however
not straightforward, because different mechanisms exist for the (semi-
)automatic transformation of various business constraints and rules. In
this paper, we examine if and how business rules, not only data rules,
but also process rules, timing rules, authorization rules, etc., can be ex-
pressed in SBVR and translated using patterns into a more uniform event
mechanism, such that the event handling could provide an integrated en-
forcement of business rules of many kinds.

Keywords: business rules, event coordination, business processes, SBVR,
declarative process modeling

1 Introduction

Enforcing the various rules of the business in information systems is not straight-
forward, because different mechanisms exist for the transformation of business
constraints, process rules, timing rules, access control rules, or other rules into
model driven implementations, leading to partial solutions for process manage-
ment, data constraints, audit constraints, etc.

In this paper, we examine if and how business rules can be translated into a
more uniform event mechanism, such that the event handling could provide an
integrated enforcement of business rules of many kinds. To this end, we provide a
pattern mechanism to transform SBVR (Semantics of Business Vocabulary and
Business Rules) [1] integrity constraints and derivation rules into event-driven
enforcement rules. We also use an extension of SBVR to declaratively model
business processes [2] and use similar patterns to transform the process rules
into event driven process enactments. The result is a set of event rules, enabling
an integrated enforcement of business rules of many kinds.

The paper is structured as follows. In section 2 we describe the use of SBVR
for vocabulary constraints and process constraints. The different types of busi-
ness rules are identified in section 3. In section 4 we examine some example
transformation patterns. Finally, in section 5 we relate the approach to the rel-
evant literature.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6341236?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Willem De Roover, Jan Vanthienen

2 The need for a unified framework

Business rules should be on the one hand comprehensible so that they can be
understood by business people and on the other hand formal so that they can
be enforced by information systems. The Semantics of Business Vocabulary and
Business Rules (SBVR) is a language for business modeling that has such prop-
erty [1], as long as it is extended with a vocabulary for expressing process-related
concepts.

2.1 SBVR for vocabulary constraints

The Semantics of Business Vocabulary and Business Rules (SBVR) is a new
standard for business modeling within the Object Management Group (OMG).
SBVR provides a vocabulary called the ‘Logical Formulation of Semantics Vo-
cabulary’ to describe the structure and the meaning of vocabulary and business
rules in terms of formalized statements about the meaning. In addition to funda-
mental vocabularies, the SBVR provides a discussion of its semantics in terms of
existing, well-established formal logics such as First-Order logic, Deontic Logic
and Higher-Order logic. The SBVR specification defines a structured, English
vocabulary for describing vocabularies and verbalizing rules, called SBVR Struc-
tured English [1]. One of the techniques used by SBVR structured English are
font styles to designate statements with formal meaning. In particular,

– the term font (green) is used to designate a noun concept.
– the name font (green) designates an individual concept.
– the verb font (blue) is used for designation for a verb concept.
– the keyword font (red) is used for linguistic particles that are used to construct

statements.

The definitions and examples in the remainder of the text use these SBVR
Structured English font styles.

2.2 Procedural versus Declarative Process Modeling

A business process model is called procedural when it contains explicit informa-
tion about how processes should proceed, but only implicitly keeps track of why
these design choices have been made, the underlying business rules. Procedural
process models are modeled with procedural languages such as the Business
Process Modeling Notation (BPMN) and UML Activity Diagrams. These lan-
guages predominantly focus on the control-flow perspective of business processes.
In such process languages it might be possible to enforce business rules us-
ing a control-flow-based modeling construct. For instance, the enforcement of
a derivation or integrity constraint can be directly modeled as a calculation or
input validation step, but the disadvantage of procedural process modeling is
that business rules cannot be formulated independently from the process models
in which they are to be enforced.

Unified Patterns to transform business rules 3

The counterpart of a procedural process model is a declarative one. Pro-
cess modeling is said to have a declarative nature, when it explicitly takes
into account the business concerns that govern business processes and leaves as
much freedom as is permissible at execution time for determining a valid and
suitable execution scenario. Examples of declarative languages are: the case han-
dling paradigm [3], the constraint specification framework of Sadiq et al. [4], the
ConDec language [5] and the PENELOPE language [6]. An overview is given in
[7]. Declarative process modeling separates business rule modeling from business
rule enforcement. In particular, it does not make use of control flow to indicate
when and how business rules are to be enforced [8]. Instead, it is left to the exe-
cution semantics of the declarative process models to define an execution model
in which different business rule types are automatically enforced.

Procedural process models depict communication logic in a procedural man-
ner, because they specify how and when business events are communicated and
information is transmitted. Declarative process models are only concerned with
the ability of business agents to perceive business events and business concepts.
When an agent can perceive a particular event, the event becomes non-repudiable
to the agent, irrespective of how the agent is notified of the event. The execution
semantics of a declarative process model determines how events are communi-
cated. In particular, events can be communicated as messages that are sent by
the producer (push model), retrieved by the consumer (pull model) or via a
publish-subscribe mechanism. This declarative modeling style enhances design-
time flexibility, as it allows to model business processes irrespective of the used
communication channels.

2.3 SBVR for process constraints

SBVR is a suitable base language for defining process-aware rules, but it does
not contain a vocabulary with process related concepts such as agents, activities,
process states and events. In [2, 9] we defined an SBVR vocabulary for express-
ing process-related concepts, called the EM-BrA2CE Vocabulary. EM-BrA2CE
stands for ‘Enterprise Modeling using Business Rules, Agents, Activities, Con-
cepts and Events’. The vocabulary thinks of a business process instance as a
trajectory in a state space that consists of the possible sub-activities, events and
business concepts. Activities are performed by agents and have a particular du-
ration whereas events occur instantaneously and represent a state change in the
world. Changes to the life cycle of an activity are reflected by means of activity
events. Each activity in a process instance can undergo a number of distinct state
transitions. Business rules determine whether or not a particular state transition
can occur.

The following state transitions are e.g. considered: create, assign, updatefact,
complete. In [2] a total of twelve generic state transitions have been identified
and a generic execution model has been defined in terms of Colored Petri Nets.
Figure 1 illustrates a number of state transitions that occur to a given place order
activity a1. Notice that each state transition results in a new set of concepts and

4 Willem De Roover, Jan Vanthienen

ground facts, and thus a new state, that are partially represented in the columns
of the figure.

time

assign(a1,agent1,...)
 complete(a1,agent1)

has(order1,line1)
 has(order1,line1)

agent1
 agent1
 agent1

a1
 a1
 a1
 a1

e1,e2
 e1,e2,e3
 e1,e2,e3,e4,e5
 e1,e2,e3,e4,e5,e6

…,(e2,scheduled)
 …,(e3,assigned)
 …,(e5,factAdded)
 …,(e6,completed)

(a1,agent1)
 (a1,agent1)
 (a1,agent1)

business facts

agent

activity

event

has type

has performer

...

addFact(a1,[...],...)
schedule(a1,duedate1,….)

Fig. 1. An illustration of the state transitions for a place order activity a1

In the vocabulary, the state of an activity (or service instance) includes the
history of events related to the activity or its sub-activities. Unlike many on-
tologies for business modeling, such as for instance the UFO [10], a distinction
is made between activities and events. Activities are performed by agents and
have a particular duration whereas events occur instantaneously and represent a
state change in the world. Changes to the life cycle of an activity are reflected by
means of activity events. Activity events allow process modelers to distinguish
between the activity state transitions that occur when, among others, creating,
scheduling, assigning, starting and completing an activity.

3 Business Rule Types

Given the SBVR vocabulary for process-related concepts, each business process
can be modeled by describing its state space and the set of business rules that
constrain the possible transitions in this state space. For instance, the state space
of an order-to-cash process is described by the following concepts:

– composite activity types: coordinate sales order
– atomic activity types: place order, accept order, reject order, pay, ship
– activity event types: created, assigned, started, completed
– business concepts: order, order line
– business fact types: order has order line, order is critical ,...

Business rules come in different forms (structural/definitional rules, deriva-
tion rules, behavioral rules, permissions and obligations), and refer to different
aspects (data, behavior, organization). In [2] a total of sixteen business rule types
are identified that can constrain specific activity state transitions, as indicated
in Table 1. They refer to one of the three aspects of business process modeling
that are generally considered [11]: control-flow, data and organizational aspects.

Unified Patterns to transform business rules 5

For reasons of brevity, only a number of these business rule types are included
in this text.

Table 1. Business rule types

aspect business rule type related work

control flow Temporal deontic rule [12],[6]
Activity precondition [13]
Activity postcondition [13],[3]
Dynamic integrity [14]
Activity cardinality [5]
Serial activity constraint [4]
Activity order [4],[5]
Activity exclusion [4],[5]
Activity inclusion [4],[5]
Reaction rule [12]

data Static integrity [14]
Derivation rule [14]

organization Activity authorization [15]
Activity allocation rule
Visibility constraint [15]
Event subscription [15]

Control-flow Aspects. Business policy and regulations contain a lot of con-
straints (partial order, timing, exists, activity pre- and postconditions). In a
trade community, for instance, different business protocols lay down the obliga-
tions of business partners and can be expressed in the form of temporal deontic
rules [6].

Data aspects. The performer of an activity can perform particular manipula-
tions (addition, removal or update) of business facts. These state transitions can
be constrained by integrity constraints and derivation rules.

Organizational aspects. Organizational aspects relate to the visibility of busi-
ness concepts and events and the authorization to perform particular activities.

4 Example patterns for transforming business rules into
event rules

We examine how various business rules can be translated into more uniform event
rules, such that the event handling could provide an integrated enforcement
of business rules of many kinds, not only process rules, but also data rules,
timing rules, authorization rules and others. To this end, we provide a pattern
mechanism to transform SBVR (Semantics of Business Vocabulary and Business

6 Willem De Roover, Jan Vanthienen

Rules) integrity constraints, derivation rules and process rules into event-driven
enforcement rules and notifications.

4.1 Data constraints and derivations

Example patters for integrity constraints and derivations are shown in figures 2,
3 and 4.

Vocabulary Rule: Integrity constraint

Business Rule Template:

 General integrity constraint:

<Concept1> must be {less/larger/earlier/…} than <Concept2>

The general integrity constraint can be specialized into several integrity constraints:

 A possible specialized integrity constraint:

<Concept1> must be less than <Concept2>

Business Rule Example:

#1: The Totalprice specified by each Order of a Customer must be less than the

Creditlimit specified by the Customer.

Translation to Event Rules:

 On IsCreated (<Concept1/2>) :

if <Concept1> is no less than <Concept2> then notify (Rule #)
 On IsModified (<Concept1/2>) :

if <Concept1> is no less than <Concept2>then notify (Rule #)

notify signals the systems that a violation of a Business rule is about to occur. It is the
responsibility of the systems to refuse the action that caused the violation or if decided
otherwise to handle it in a specific way.

Translation to Event Rules
Example:

 On IsCreated (Totalprice) : if Totalprice is no less than Creditlimit then notify (#1)
 On IsCreated (Creditlimit) : if Totalprice is no less than Creditlimit then notify (#1)
 On IsModified (Totalprice) : if Totalprice is no less than Creditlimit then notify (#1)
 On IsModified (Creditlimit) : if Totalprice is no less than Creditlimit then notify (#1)

Fig. 2. Integrity Constraint

For each type of business rule we have defined a general template. The use
of templates limits the ways in which rules can be formulated, but in this way
it will be easy to extract the necessary information from a business rule. This
information includes the type of the business rule and the concepts used in the
rule. We use this information in event based rules and notifications. For each

Unified Patterns to transform business rules 7

type of business rule we have defined corresponding Event-Condition-Action
(ECA) rules. The extracted concepts from the business rule are filled in into the
corresponding ECA rule. The sets of ECA rules are equivalent to the business
rules that they express. However ECA rules have the advantage that they make
clear when they have to be checked. The condition of a ECA rule checks whether
the business rule is violated and in case of a violation the system will be notified
of this violation.

Some business rules will also generate events. This is the case when a business
rule changes the value of some concept. Derivation rules e.g. calculate the value
of a concept based on other concepts. These rules will generate an event that
signals that the value of the calculated concept has changed.

4.2 An example

The following rule stated in [16] explains our case: The total value of a customers
unpaid orders must not exceed his credit limit. This rule will have to be checked
at several points in the execution of some processes as indicated in [16]:

– When a customer submits an new order
– When a customer changes an existing order (adds items,changes quantities,

substitutes products)
– When a customers credit limit is changed
– When product prices are changed (unless prices are frozen at order time)
– and for any other relevant events the system recognizes.

In figure 5 three business rules are presented with their corresponding event
rules and notifications. As the three rules are closely related to each other,
changes that occur due to one rule can be propagated to other rules. For ex-
ample, if the LinePrice of an OrderLine is recalculated due to changes in Pro-
ductPrice or Amount then this results in an event that signals that the LinePrice
has changed. This event is handled by an ECA-rule generated from rule #b and
leads to the recalculation of the TotalPrice. The change of TotalPrice will be
signaled to the system by means of a new event. This will trigger all event
rules that act on changes to TotalPrice including an ECA rule generated from
rule #a. This rule will check if the new TotalPrice is no less than the specified
CreditLimit. If this is the case, the system will notify this violation.

4.3 Control flow

The approach is not limited to data rules. It is possible to develop patterns for
control flow and organization rules, as already indicated in [17, 18, 19, 20]. As
SBVR does not provide process related concepts, we used the concepts provided
by the EM-BA2CE framework. For the sake of simplicity we present these con-
cepts as simple SBVR fact types in our patterns. Figures 6 and 7 present two
patterns for transforming control flow and organizational rules into event-driven
enforcement rules and notifications.

8 Willem De Roover, Jan Vanthienen

Vocabulary Rule: Derivation rule
Business Rule Template:

• General derivation rule:

<Concept1> must be computed as <calculation>

The general derivation rule can be specialized into several derivation rules.

• A specialized derivation rule:

 <Concept1> must be computed as <Concept2> {plus /minus/ times /divided
by} <Concept3>

This derivation rule is used to explain the mechanism for converting derivation rules
into event rules and events.

Business Rule Example:

#2: The LinePrice specified by each Orderline must be computed as the

ProductPrice specified by the Product of the Orderline times the Amount
specified by the Orderline

Translation to Event Rules:

• Create the following rules:
o On IsCreated (<Concept1>) : compute (<Concept1>)
o On IsModified (<Concept2>) : compute (<Concept1>)
o On IsModified (<Concept3>) : compute (<Concept1>)

• Signal the following event:
o On compute (<Concept1>) : signal IsModified (<Concept1>)

compute will calculate the value of Concept1 based on the given business rule.

Translation to Event Rules
Example:

• Create the following rules:

o On IsCreated (LinePrice) : compute (LinePrice)
o On IsModified (ProductPrice) : compute (LinePrice)
o On IsModified (Amount) : compute (LinePrice)

• Signal the following event:
o On compute (LinePrice) : signal IsModified (LinePrice)

Fig. 3. Derivation Rule

Unified Patterns to transform business rules 9

Vocabulary Rule: Derivation rule (dynamic)
Business Rule Template:

• General derivation rule:

<Concept1> must be computed as <calculation>

The general derivation rule can be specialized into several derivation rules.

• A specialized derivation rule:

<Concept1> must be computed as the sum of <Concept2> contained in the
<Concept3>

Business Rule Example:

#3: The TotalPrice specified by each Order must be computed as the sum of the

LinePrices specified by each OrderLine contained in the Order

Translation to Event Rules:

• Create the following rules:
o On IsCreated (<Concept1>) : compute (<Concept1>)
o On IsModified (<Concept2>) : compute (<Concept1>)
o On IsAdded (<Concept2>) : compute (<Concept1>)
o On IsRemoved (<Concept2>) : compute (<Concept1>)

• Signal the following event:
o On compute (<Concept1>) : signal IsModified (<Concept1>)

Translation to Event Rules
Example:

• Create the following rules:

o On IsCreated (TotalPrice) : compute (TotalPrice)
o On IsModified (LinePrice) : compute (TotalPrice)
o On IsAdded (OrderLine) : compute (TotalPrice)
o On IsRemoved (OrderLine) : compute (TotalPrice)

• Signal the following event:
o On compute (TotalPrice) : signal IsModified (TotalPrice)

Fig. 4. Derivation Rule (dynamic)

5 Evaluation

Languages for declarative process modeling often do not cover the many real-life
business concerns that exist in reality. Some only allow to express business rules
about sequence and timing constraints, i.e. the control-flow perspective, others
include the organizational and data model aspects, but do not provide a tempo-
ral logic to express temporal relationships between concepts such as activities or
events. Moreover, these languages make use of very different knowledge repre-
sentation paradigms. These heterogeneous knowledge representation paradigms

10 Willem De Roover, Jan Vanthienen

The CrediLimit example

#a: The Totalprice specified by each Order of a Customer must be less than the Creditlimit
specified by the Customer.

#b: The TotalPrice specified by each Order must be computed as the sum of the LinePrices
specified by each OrderLine contained in the Order

#c: The LinePrice specified by each Orderline must be computed as the ProductPrice
specified by the Product of the Orderline times the Amount specified by the Orderline

 Create the following rules for #a :
o On IsCreated (Totalprice): if Totalprice is no less than Creditlimit then notify (#a)
o On IsCreated (Creditlimit): if Totalprice is no less than Creditlimit then notify (#a)
o On IsModified (Totalprice): if Totalprice is no less than Creditlimit then notify (#a)
o On IsModified (Creditlimit): if Totalprice is no less than Creditlimit then notify (#a)

 Create the following rules for #b :
o On IsCreated (TotalPrice) : compute (TotalPrice)
o On IsModified (LinePrice) : compute (TotalPrice)
o On IsAdded (OrderLine) : compute (TotalPrice)
o On IsRemoved (OrderLine) : compute (TotalPrice)

 Signal the following event for #b:
o On compute (TotalPrice) : signal IsModified (TotalPrice)

 Create the following rules for #c:
o On IsCreated (LinePrice) : compute (LinePrice)
o On IsModified (ProductPrice) : compute (LinePrice)
o On IsModified (Amount) : compute (LinePrice)

 Signal the following event for #c:
o On compute (LinePrice) : signal IsModified (LinePrice)

Fig. 5. Credit Limit example

raise the question how to reason about such heterogeneously expressed knowl-
edge.

Moreover, not all these languages have an explicit execution model or they
have an execution model that explicitly assumes either human or machine-
mediated service enactment. The EM-BrA2CE framework with its formal ex-
ecution model [2] makes abstraction of the differences between humans and
machines. Coordination work such as creating, scheduling, assigning, skipping,
aborting or redoing an activity can then be performed by humans, machines or
both.

6 Conclusion

In this paper, we have examined if and how business rules in SBVR, not only
data rules, but also process rules, timing rules, authorization rules, etc., can
be translated using patterns into a more uniform event mechanism, such that
the event handling could provide an integrated enforcement of business rules of
many kinds. Future work consists of developing a tool that uses these templates
to transform SBVR rules into ECA rules and creates an execution model that
is compliant with these rules.

Unified Patterns to transform business rules 11

Behavior Rule: Timed precedence of activities
Business Rule Template:

<Activity2> may ... only <time constraint> after <Activity1>

Business Rule Example:

• Activities:
o Activity1: Trainee applies for license
o Activity2: Trainee takes practical car examination

• Business Rule:
#5: A trainee may take a practical car examination only within 1 year after that

trainee has applied for a license

Remarks:

Activity2 can only be performed (a limited time) after Activity1 has been
performed. However performing Activity1 does not imply that Activity2 will be
performed.

Visual Representation:

The representation makes clear that this rule only puts a constraint on the
execution of Activity2.

Translation to Event Rules:

• On start (<Activity2>) : if not ended(<Activity1>) or (<Activity2> expired)
then notify (Rule #)

• Add the following events to the event list:
o on <time constraint> : signal that <Activity2> is expired.
o on <time constraint * [notice factor]> : signal that <Activity2> will expire.

The event list keeps track of events that will have to happen in the future. Every
event in the event list will have a timer. If the timer expires that event will be
triggered.

Translation to Event Rules
Example:

• On start (trainee takes a practical car examination) : if not end(trainee applies for

license) then notify (#5)
• Add the following events to the event list:

o On 1 year : signal that trainee takes practical car examination is expired.
o On 0.9 year : signal that trainee takes practical car examination will expire.

 Fig. 6. Control flow: timed precedence

12 Willem De Roover, Jan Vanthienen

Management Rule: Authorization
Business Rule Template:

<Concept1> that <verb phrase><Concept2> must be different from <Concept3>
that <verb phrase><Concept4>

Business Rule Example:

#6: The Person1 that applies for a Loan must be different from the Person2 that
approves the Loan

Translation to Event Rules:

• On IsCreated (<Concept1> <verb phrase> <Concept2>):
if <Concept1> is equal to <Concept3> then notify (Rule #)

• On IsCreated (<Concept3><verb phrase> <Concept4>) :
if <Concept1> is equal to <Concept3> then notify (Rule #)

• On IsModified (<Concept1>) :
if <Concept1> is equal to <Concept3> then notify (Rule #)

• On IsModified (<Concept3>) :
if <Concept1> is equal to <Concept3> then notify ((Rule #)

Translation to Event Rules
Example:

• On IsCreated (Person2 approves Loan) :

if Person1 is equal to Person2 then notify (#6)

Remarks:

• There is no need to check any other event rules in the example.
o Applying for a loan always happens before the loan is approved, this can be

enforced by a behavioural rule, therefore it is not necessary to check the rule
when a person applies for a loan.

o Approving a loan happens at one point in time. In this example we only keep
track of the actual approver, not any planned approver. Therefore it is not
necessary to keep track of the changes before the actual approval.

Fig. 7. Authorization rule

References

1. Object Management Group: Semantics of Business Vocabulary and Business Rules
(SBVR) – Interim Specification. OMG Document – dtc/06-03-02 (2006)

2. Goedertier, S., Haesen, R., Vanthienen, J.: EM-BrA2CE v0.1: A vocabulary and
execution model for declarative business process modeling. FETEW Research
Report KBI 0728, K.U.Leuven (2007)

3. van der Aalst, W.M.P., Weske, M., Grünbauer, D.: Case handling: a new paradigm
for business process support. Data & Knowledge Engineering 53(2) (2005) 129–162

4. Sadiq, S.W., Orlowska, M.E., Sadiq, W.: Specification and validation of process
constraints for flexible workflows. Information Systems 30(5) (2005) 349–378

Unified Patterns to transform business rules 13

5. Pesic, M., van der Aalst, W.M.P.: A declarative approach for flexible business
processes management. In: Business Process Management Workshops. (2006) 169–
180

6. Goedertier, S., Vanthienen, J.: Designing compliant business processes with obliga-
tions and permissions. In Eder, J., Dustdar, S., eds.: Business Process Management
Workshops. Volume 4103 of Lecture Notes in Computer Science., Springer (2006)
5–14

7. Goedertier, S., Vanthienen, J.: An overview of declarative process modeling prin-
ciples and languages. Communications of SWIN 6 (April 2009) 51–58

8. Morgan, T.: Business Rules and Information Systems: Aligning IT with Business
Goals. Addison-Wesley Professional (2002)

9. Goedertier, S., Mues, C., Vanthienen, J.: Specifying process-aware access control
rules in SBVR. In Paschke, A., Biletskiy, Y., eds.: Proceedings of the International
Symposium Advances in Rule Interchange and Applications (RuleML 2007). Vol-
ume 4824 of Lecture Notes in Computer Science., Springer (2007) 39–52 (Best
Paper Award).

10. Guizzardi, G., Wagner, G.: in: Ontologies and Business Systems Analysis, ed. M.
Rosemann and P. Green. In: Some Applications of a Unified Foundational Ontology
in Business Modeling. IDEA Publisher (2005) 345–367

11. Jablonski, S., Bussler, C.: Workflow Management. Modeling Concepts, Architec-
ture and Implementation. International Thomson Computer Press, London (1996)

12. Paschke, A., Bichler, M., Dietrich, J.: Contractlog: An approach to rule based
monitoring and execution of service level agreements. In Adi, A., Stoutenburg, S.,
Tabet, S., eds.: First International Symposium Advances in Rule Interchange and
Applications (RuleML 2005). Volume 3791 of Lecture Notes in Computer Science.,
Springer (2005) 209–217

13. Roman, D., Keller, U., Lausen, H., de Bruijn, J., Lara, R., Stollberg, M., Polleres,
A., Feier, C., Bussler, C., Fensel, D.: Web service modeling ontology. Applied
Ontology 1(1) (2005) 77–106

14. Wagner, G.: The agent-object-relationship metamodel: towards a unified view of
state and behavior. Information Systems 28(5) (2003) 475–504

15. Strembeck, M., Neumann, G.: An integrated approach to engineer and enforce
context constraints in RBAC environments. ACM Transactions on Information
System Security 7(3) (2004) 392–427

16. Ross, R.: Business Rule Concepts, Third Edition. Business Rule Solutions, LLC
(2009)

17. Pesic, M.: Constraint-based workflow management systems: Shifting control to
users. PhD thesis, Eindhoven University of Technology (2008)

18. van der Aalst, W.M.P., Pesic, M.: Decserflow: Towards a truly declarative ser-
vice flow language. In Leymann, F., Reisig, W., Thatte, S.R., van der Aalst,
W.M.P., eds.: The Role of Business Processes in Service Oriented Architectures.
Volume 06291 of Dagstuhl Seminar Proceedings., Internationales Begegnungs- und
Forschungszentrum fuer Informatik (IBFI), S chloss Dagstuhl, Germany (2006)

19. Wang, M., Wang, H.: From process logic to business logic–A cognitive approach to
business process management. Information & Management 43(2) (2006) 179–193

20. Ceponiene, L., Nemuraite, L., Vedrickas, G.: Separation of event and constraint
rules in uml & ocl models of service oriented information systems. Information
Technology and Control 38(1) (2009) 29–37

