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Abstract

The robustness of the LM tests for spatial error dependence of Burridge (1980)

for the linear regression model and Anselin (1988) for the panel regression model are

examined. While both tests are asymptotically robust against distributional misspecifi-

cation, their finite sample behavior can be sensitive to the spatial layout. To overcome

this shortcoming, standardized LM tests are suggested. Monte Carlo results show that

the new tests possess good finite sample properties. An important observation made

throughout this study is that the LM tests for spatial dependence need to be both mean-

and variance-adjusted for good finite sample performance to be achieved. The former

is, however, often neglected in the literature.

KeyWords: Distributional misspecification; Group interaction; LM test; Moran’s

I Test; Robustness; Spatial panel models.

JEL Classification: C23, C5

1 Introduction.

The LM tests for spatial error correlation of Burridge (1980) for the linear regression

model and Anselin (1988) for the panel regression model are both developed under the as-

sumption that the model errors are normally distributed. This leads to a natural question

on how robust these tests are against misspecification of the error distribution. While these

tests are robust asymptotically against distributional misspecification, as can be inferred

1Zhenlin Yang gratefully acknowledges the support from a research grant (Grant number:

C208/MS63E046) from Singapore Management University.



from the results of Kelejian and Prucha (2001) for the Moran’s I test in the linear regres-

sion model, and proved in this article for the panel regression model, their finite sample

behavior can be sensitive to the spatial layout. The main reason, as shown in this paper,

is the lack of standardization of these tests, i.e., subtracting the mean and dividing by the

standard deviation.2 In particular, when each spatial unit has many neighbors (the number

of neighbors grows with the number of spatial units), the mean of these tests can be far

below zero even when the sample size is fairly large (for e.g., 1000), causing severe size

distortion of the test.

Standardized LM (SLM) tests are recommended, which correct both the mean and

variance of the existing LM tests under more relaxed assumptions on the error distributions.

It is shown that these LM tests are not only robust against distributional misspecification,

but are also quite robust against changes in the spatial layout. Monte Carlo simulations

show that the SLM tests have excellent finite sample properties and significantly outperform

their non-standardized counterparts. The Monte Carlo simulations also show that once size-

adjusted, all the tests considered have similar power.

It is well known in the statistics and econometrics literature that standardizing an LM

test improves its performance especially if asymptotic critical values are used. Moulton

and Randolph (1989) emphasized this for the panel data regression model with random

individual effects. See also Honda (1991) and Baltagi, Chang and Li (1992). Koenker

(1981) showed that the standardization (or studentization in his terminology) leads to a

robustified LM test for heteroscedasticity. This point, however, is not emphasized in the

spatial econometrics literature, except for Anselin (2001), Kelejian and Prucha (2001), and

Florax and de Graaff (2004), where the authors mainly stressed the variance correction

but not the mean correction. Recently, Robinson (2008) proposed a general chi-square test

for non-spherical disturbances, including spatial error dependence, in a linear regression

model. He pointed out the test has an LM interpretation and may not provide a satisfactory

approximation in smallish samples as well. He then introduced a couple of modifications

directly on the chi-square statistic. Our approach of standardization is more in line with

that of Koenker (1981). It works on the ‘standard normal’ version of an LM test, and thus

is simpler. More importantly, our approach allows the errors to be nonnormal and is not

restricted to linear regression models of non-spherical disturbances.

Our Monte Carlo simulation shows that the mean-correction as well as variance cor-

rection are both important to attain good size and power. Section 2 deals with the tests

2Honda (1985) shows that the LM test for random individual effects in the panel data regression model is

uniformly most powerful and is robust against non-normality. Moulton and Randolph (1989) show that this

test can perform poorly when the number of regressors is large or the interclass correlation of some of the

regressors is high. They suggest a standardized LM test by centering and scaling Honda’s LM test. They

show that the standardized LM test performs better in small samples when asymptotic critical values from

the normal distribution are used.
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for spatial error dependence in a linear regression model, Section 3 deals with the tests for

spatial error dependence in a panel data regression model, while Section 4 presents Monte

Carlos results. Section 5 concludes the paper.

2 Tests for Spatial Error Dependence in a Linear Regression

Model

2.1 Moran’s I and Burridge’s LM tests

The original form of Moran’s I test (Moran, 1950) is based a sample of observations

Y = {Y1, Y2, · · · , Yn} on a variable of interest Y , which takes the form

I =
i j wij(Yi − Ȳ )(Yj − Ȳ )

i(Yi − Ȳ )2
, (1)

where wij ’s are the elements of an N × N spatial weight matrix W with wii = 0 and
N
j=1wij = 1, i = 1, · · · , N , and Ȳ is the average of the Yi’s. If the observations are normal,

then the null distribution of Moran’s I test statistic is shown to be asymptotic normal. Cliff

and Ord (1972) extended Moran’s I test to the case of a spatial linear regression model:

Y = Xβ + u (2)

where Y is an N × 1 vector of observations on the response variable, X is an N × k matrix
containing the values of explanatory (exogenous) variables, and u is an n × 1 vector of
disturbances of mean zero and variance σ2u. The extended Moran’s I test takes the form

I =
ũ Wũ

ũ ũ
, (3)

where ũ is a vector of OLS residuals when regressing Y on X. If u is normal, then the

distribution of I under the null hypothesis of no spatial error dependence is asymptotically

normal distributed with mean and variance given by:

E(I) =
1

N − k tr(MW ),

Var(I) =
tr(MWMW ) + tr((MW )2)− 2

N−k [tr(MW )]
2

(N − k)(N − k + 2) .

Here M = IN −X(X X)−1X and IN is an N -dimensional identity matrix. In real appli-

cations, the test should be carried out based on I∗ = (I − EI)/Var 12 (I), and referred to
the standard normal distribution (Anselin and Bera, 1998). However, most of the literature

suggested or hinted at the use of Io = I/Var
1
2 (I); see, e.g., Anselin (2001), Kelejian and

Prucha (2001) and Florax and de Graaff (2004). The reason may be that the mean correc-

tion is asymptotically negligible or may be that Io = I/Var
1
2 (I) corresponds directly to the

Burridge (1980) LM test described below.
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Let us consider the case where u follows either a spatial autoregressive (SAR) process

u = λWu + ε or a spatial moving average (SMA) process u = λWε + ε, where W is

defined above, λ is the spatial parameter, and ε is a vector of independent and identically

distributed (iid) normal innovations with mean zero and variance σ2ε . The hypothesis of no

spatial error correlation can be expressed explicitly as H0 : λ = 0 vs Ha : λ = 0. For this

model specification, Burridge (1980) derived an LM test for H0:

LMB =
N√
S0

ũ Wũ

ũ ũ
, (4)

where S0 = tr(W W + W 2). Under the null hypothesis of no spatial error correlation,

LMB
D−→ N(0, 1). LMB resembles I

o except for a scale factor. Our Monte Carlo simulations

show that it is important to standardize it if one is using asymptotic critical values, especially

for certain spatial layouts. Some discussion on this is given after Theorem 1.

2.2 The standardized LM test

The three test statistics (I∗, Io and LMB) are derived under the assumption that the

errors are normally distributed. Theorem 1, given below, shows that all three tests behave

well asymptotically under non-normality. But how do they behave under finite samples?

We first present a modified version of these tests allowing the error distributions to be non-

normal, and then give some discussion answering why the finite sample performance of Io

and LMB can be poor. The following basic regularity conditions are necessary for studying

the asymptotic behavior of these test statistics.

Assumption A1: The innovations {εi} are iid with mean zero, variance σ2ε , and excess
kurtosis κε. Also, the moment E|εi|4+η exists for some η > 0.

Assumption A2: The elements {wij} of W are at most of order h−1N uniformly for all

i, j, with the rate sequence {hN}, bounded or divergent, satisfying hN/N → 0 as N goes to

infinity. The N × N matrices {W} are uniformly bounded in both row and column sums
with wii = 0 and j wij = 1 for all i.

Assumption A3: The elements of the N × k matrix X are uniformly bounded for all

N , and limN→∞ 1
NX X exists and is nonsingular.

Assumption A1 is taken from Kelejian and Prucha (2001) and is required for their central

limit theorem of linear-quadratic forms. Assumption A2 is taken from Lee (2004a) and it

identifies the different types of spatial dependence considered. Typically, one type of spatial

dependence corresponds to the case where each unit has a fixed number of neighbors, which

in turn means that hN is bounded. The other type of spatial dependence corresponds to

the case where the number of neighbors of each spatial unit grows as N goes to infinity,
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and in this case hN is divergent. To limit the spatial dependence to a manageable degree,

it is thus required that hN/N → 0 as N →∞.

Theorem 1: Under Assumptions A1-A3, the standardized LM test for testing H0 : λ =

0 vs Ha : λ = 0 (or λ < 0, or λ > 0) takes the form

LM∗B =
ũ Wũ/ũ ũ− S1
N−1(κ̃εS2 + S3)

1
2

, (5)

where S1 =
1

N−k tr(WM), S2 =
N
i=1 a

2
ii, and S3 = tr(AA + A2), A = MWM − S1M ,

aii are the diagonal elements of A, and κ̃ε is the excess sample kurtosis of ũ. Under H0,

we have (i) LM∗B
D−→ N(0, 1); and (ii) the four test statistics, I∗, I0, LMB and LM

∗
B are

asymptotically equivalent.

The formal proof of Theorem 1 is given in the Appendix. To help understanding the

theory, we outline the key steps leading to the standardization given in (5). First note

that ũ Wũ, the key quantity appeared in the numerators of (3)-(5), is not centered because

E(ũ Wũ) = σ2εtr(WM) = 0. This motivates us to consider ũ Wũ − σ2εtr(WM), or its

feasible version ũ Wũ− 1
n−k (ũ ũ)tr(WM) = u Au. Upon finding the variance of u Au and

replacing σ2ε in the variance expression by its MLE, we obtain (5). Some remarks follow.

Standardization of Moran’s I given earlier works on ũ Wũ/ũ ũ, with its mean and vari-

ance derived under the assumption that u ∼ N(0,σ2εIN ). Robinson’s (2010) approach works
on LM2

B or (ũ Wũ/ũ ũ)
2. Again, the derivations of the mean and variance depend on the

normality assumption. Our approach works on the quadratic form u Au with its mean

and variance readily available as long as the first four moments of the elements of u exist.

Thus, our approach is simpler which does not depend on the normality assumption and is

applicable to other models of more complicated structure.

Although both Moran’s I and the LMB test statistics are derived under the assumption

that the innovations are normally distributed, Theorem 1 shows that they are asymptotically

equivalent to the SLM test derived under relaxed conditions on the error distribution.3

This means that all the four tests are robust against distributional misspecification when

the sample size is large. But will the four tests behave similarly under finite sample? The

following discussion points out that their finite sample performance may be different.

The major difference between LMB and LM
∗
B lies in the mean correction of the statistic

ũ Wũ/ũ ũ. This correction may quickly become negligible as the sample size increases under

certain spatial layouts, but not necessarily under other spatial layouts. From (A-1) in the

3That the LM test is asymptotically robust against the distributional misspecification is due to the special

spatial structure built in the model and the fact that W has zero diagonal elements. However, if the spatial

structure is changed, e.g., there are two error terms in the model and one is possibly spatially correlated,

the regular LM test is no long robust, see Yang (2010).
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appendix, we see that this mean correction factor is of the magnitude

NS1

(κ̃εS2 + S3)
1
2

= Op((hN/N)
1
2 ),

which shows that the magnitude of mean correction depends on the ratio (hN/N)
1
2 . For

example, when hN = N0.8, (hN/N)
1
2 = N−0.1. Thus, if N = 20, 100, and 1000, N−0.1 =

0.74, 0.63, and 0.50. This shows that the means of LMB and I
o can differ from the means

of LM∗B and I
∗ by 0.74 when N = 20, 0.63 when N = 200 and 0.50 when N = 1000. Note

that situations leading to hN = N0.8 may be the spatial layouts constructed under large

group interactions, where the group sizes are large and the number of groups is small.4 Our

results show that in this situation, the non-standardized LM test or Moran’s I test without

the mean correction may be misleading. Monte Carlo simulations presented in Section 5

confirm these findings.

3 Tests for Spatial Error Dependence in a Panel Linear Re-

gression Model

When repeated observations are made on the same set of N spatial units over time,

Model (2) becomes

Yt = Xtβ + ut, t = 1, · · · , T, (6)

resulting in a panel data regression model, where {Yt, Xt} denote the data collected at the
tth time period. A defining feature of a panel data model is that the error vector ut is

allowed to possess a general structure of the form

uit = μi + εit, i = 1, · · · , N, t = 1, · · · , T, (7)

where μi denotes the unobservable space-specific effect, due to aspects of regional structure,

firm’s specific feature, etc. Spatial units may be dependent. To allow for such a possibility,

Anselin (1988) introduced a SAR process into the disturbance vector εt = {ε1t, · · · , εNt} ,

εt = λWεt + vt, t = 1, · · · , T, (8)

where the spatial weight matrix W is defined similarly to that in Model (2), and vt is an

N × 1 vector of iid remainder disturbances with mean zero and variance σ2v .
We are interested in testing the hypothesis H0 : λ = 0. We consider the scenario where

the time dimension T is small and the ‘space’ dimension N is large. This is the typical

4See Lee (2007) for a detailed discussion on spatial models with group interactions.
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feature for many micro-level panel data sets. Let B = IN − λW . Stacking the vectors

(Yt, ut, vt) and the matrix Xt, the model can be written in matrix form:

Y = Xβ + u, u = (ιT ⊗ IN )μ+ (IT ⊗B−1)v, (9)

where ιm represents an m× 1 vector of ones, Im represents an m×m identity matrix.

Assuming (i) the elements of μ are iid with mean zero and variance σ2μ, (ii) the elements

of v are iid with mean zero and variance σ2v , and (iii) μ and v are independent. The

log-likelihood function, assuming μ and v are both normally distributed, is given by:

(β,σ2v ,σ
2
μ,λ) = −

NT

2
log(2πσ2v)−

1

2
log |Σ|− 1

2σ2v
u Σ−1u, (10)

where Σ = 1
σ2v
E(uu ) = φ(JT ⊗ IN ) + IT ⊗ (B B)−1, Σ−1 = J̄T ⊗ (TφIN + (B B)−1)−1 +

ET ⊗ (B B), φ = σ2μ/σ
2
v , JT = ιT ιT , J̄T =

1
T JT , and ET = IT − J̄T . See Anselin (1988)

for details. Maximizing (10) gives the maximum likelihood estimator (MLE) of the model

parameters if the error components are normally distributed, otherwise it gives a quasi-

maximum likelihood estimator (QMLE).

Anselin (1988, p. 155) presents an LM test of H0 : λ = 0 for Model (9), which can be

written in the form

LMA =
ũ [ρ̃2(J̄T ⊗W ) +ET ⊗W ]ũ

σ̃2v [(T − 1 + ρ̃2)S0]
1
2

, (11)

where S0 = tr(W W ) +W 2), ρ̃ is the constrained QMLE under H0 of ρ = σ2v/(Tσ
2
μ + σ2v),

and σ̃2v the constrained QMLE of σ
2
v , and ũ is the vector of constrained QMLE residuals.

5

A nice feature of the LM test is that it requires only the estimates of the model under

H0. However, even under H0, the constrained QMLE of ρ (or φ) does not posses an explicit

expression, meaning that ρ̃ has to be obtained via numerical optimization. In fact, under

H0, the partially maximized log-likelihood (with respect to β and σ
2
v) is given by:

max(ρ) = constant− NT
2
log σ̃2v(ρ) +

N

2
log ρ, (12)

where σ̃2v(ρ) =
1
NT ũ (ρ)Σ

−1ũ(ρ), ũ(ρ) = Y − Xβ̃(ρ), β̃(ρ) = (X Σ−1X)−1X Σ−1Y , and
Σ−1 = ρJ̄T⊗IN+ET⊗IN . Maximizing (12) gives the constrained QMLE (under H0) ρ̃ of ρ,
which in turn gives the constrained QMLEs β̃ = β̃(ρ̃), σ̃2v = σ̃2v(ρ̃), Σ̃

−1 = ρ̃J̄T⊗IN+ET⊗IN ,
and ũ = ũ(ρ̃), for β, σ2v ,Σ

−1 and u(ρ), respectively.
5Baltagi, et al.(2003) considered the joint, marginal and conditional LM tests for λ and/or σ2μ, which

includes (11) as a special case, and presented Monte Carlo results under spatial layouts with a fixed number

of neighbors. Apparently, the LM test given in (11) does not fit into the framework of Robinson (2008), but

it does if the test concerns H0 : λ = 0, ρ = 0. We note that our approach is applicable to all scenarios similar

to (11), i.e., testing spatial effect allowing other type of effects (such as random effects, heteroscedasticity,

etc.) to exist in the model.
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Similar to the LM test in the linear regression model, the numerator of LMA given in (11)

is again a quadratic form in the disturbance vector u, but now u contains two independent

components. The large sample mean of this quadratic form is zero, but its finite sample

mean is not necessarily zero. This may distort the finite sample distribution of the test

statistic, in particular the tail probability. We now present a standardized version of the

LMA test, which corrects both the mean and the variance and has a better finite sample

performance in the situation where each spatial unit has ‘many’ neighbors. Lemma 3 given

in the Appendix is essential in deriving the modified test statistics. Some basic regularity

conditions are listed below.

Assumption B1: The random effects {μi} are iid with mean zero, variance σ2μ, and
excess kurtosis κμ. The idiosyncratic errors {vit} are iid with mean zero, variance σ2v, and
excess kurtosis κv. Also, the moments E|μi|4+η1 and E|vit|4+η2 exist for some η1, η2 > 0.

Assumption B2: The elements {wij} of W are at most of order h−1N uniformly for all

i, j, with the rate sequence {hN}, bounded or divergent, satisfying hN/N → 0 as N goes to

infinity. The N × N matrices {W} are uniformly bounded in both row and column sums
with wii = 0 and j wij = 1 for all i.

Assumption B3: The elements of the NT × k matrix X are uniformly bounded for all

N and limN→∞ 1
NX X exists and is nonsingular.

Now, define A(ρ) = ρ2(J̄T ⊗W ) + ET ⊗W , M(ρ̃) = INT −X(X Σ̃−1X)−1X Σ̃−1, and
C(ρ) =M (ρ)A(ρ)M(ρ). Let diagv(A) be a column vector formed by the diagonal elements

of a square matrix A. We have the following theorem.

Theorem 2: Assume that the constrained QMLE ρ̃ under H0 is a consistent estimator

of ρ.6 Under Assumptions B1-B3, for testing H0;λ = 0, the standardized LM test which

corrects both the mean and variance takes the form:

LM∗A =
ũ Ãũ/σ̃2v − tr(Σ̃C̃)

[φ̃2κ̃μã1ã1 + κ̃vã2ã2 + tr(Σ̃(C̃ + C̃)Σ̃C̃)]
1
2

, (13)

where Ã = A(ρ̃), C̃ = C(ρ̃), κ̃μ is the sample excess kurtosis of μ̃ = (J̄T ⊗ IN )ũ, κ̃v is
the sample excess kurtosis of ṽ = ũ − (ι ⊗ IN )μ̃, ã1 = diagv[(ιT ⊗ IN )C̃(ιT ⊗ IN )], and
ã2 = diagv(C̃). Under H0, we have (i) LM

∗
A

D−→ N(0, 1), and (ii) the two LM tests (11)

and (13) are asymptotically equivalent.

The proof of the theorem is again given in the Appendix. Similar to the results of The-

orem 1, the results of Theorem 2 show that the mean correction factor for the standardized

LM test is also of the order Op((hN/N)
1
2 ). Thus, the LMA test can have large mean bias

when hN is large.

6This condition may be relaxed to allow ρ̃ to be an arbitrary consistent estimator of ρ.
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4 Monte Carlo Results

The finite sample performance of the test statistics introduced in this paper are evaluated

based on a series of Monte Carlo experiments. These experiments involve a number of

different error distributions and a number of different spatial layouts. Comparisons are

made between the standardized tests and their non-standardized counterparts to see the

effects of the error distributions and the spatial layouts.

4.1 Spatial layouts and error distributions

Three general spatial layouts are considered in the Monte Carlo experiments and they

are applied to all the test statistics involved in the experiments. The first is based on the

Rook contiguity, the second is based on Queen contiguity and the third is based on the

notion of group or social interactions with the number of groups G = N δ where 0 < δ < 1.

In the first two cases, the number of neighbors for each spatial unit stays the same (2-4 for

Rook and 3-8 for Queen) and does not change when sample size N increases, whereas in

the last case, the number of neighbors for each spatial unit increases with the increase of

sample size but at a slower rate, and changes from group to group.

The details for generating the W matrix under Rook contiguity is as follows: (i) index

the N spatial units by {1, 2, · · · , N}, randomly permute these indices and then allocate
them into a lattice of r×m(≥ N) squares, (ii) letWij = 1 if the index j is in a square which

is on the immediate left, or right, or above, or below the square which contains the index

i, otherwise Wij = 0, and (iii) divide each element of W by its row sum. The W matrix

under Queen contiguity is generated in a similar way, but with additional neighbors which

share a common vertex with the unit of interest.

To generate the W matrix according to the group interaction scheme, (i) calculate the

number of groups according to G = Round(N δ), and the approximate average group size

m = N/G, (ii) generate the group sizes (n1, n2, · · · , nG) according to a discrete uniform
distribution from m/2 to 3m/2, (iii) adjust the group sizes so that G

i=1 ni = N , and (iv)

define W = diag{Wi/(ni − 1), i = 1, · · · , G}, a matrix formed by placing the submatrices
Wi along the diagonal direction, whereWi is an ni×ni matrix with ones on the off-diagonal
positions and zeros on the diagonal positions. In our Monte Carlo experiments, we choose

δ = 0.2, 0.5, and 0.8, representing respectively the situations where (i) there are few groups

and many spatial units in a group, (ii) the number of groups and the sizes of the groups are

of the same magnitude, and (iii) there are many groups with few elements in each. Clearly,

under Rook or Queen contiguity, hN defined in the theorems is bounded, whereas under

group interaction hN is divergent with rate N
1−δ.7

7Clearly, this spatial layout covers the scenario considered in Case (1991). Lee (2007) shows that the

group size variation plays an important role in the identification and estimation of econometric models with
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The reported Monte Carlo results correspond to the following three error distributions:

(i) standard normal, (ii) mixture normal, standardized to have mean zero and variance 1,

and (iii) log-normal, also standardized to have mean zero and variance one. The standard-

ized normal-mixture variates are generated according to

ui = ((1− ξi)Zi + ξiτZi)/(1− p+ p ∗ τ2)0.5,

where ξ is a Bernoulli random variable with probability of success p and Zi is standard

normal independent of ξ. The parameter p in this case also represents the proportion of

mixing the two normal populations. In our experiments, we choose p = 0.05, meaning

that 95% of the random variates are from standard normal and the remaining 5% are from

another normal population with standard deviation τ . We choose τ = 10 to simulate the

situation where there are gross errors in the data. The standardized lognormal random

variates are generated according to

ui = [exp(Zi)− exp(0.5)]/[exp(2)− exp(1)]0.5.

This gives an error distribution that is both skewed and leptokurtic. The normal mixture

gives an error distribution that is still symmetric like normal but leptokurtic. Other non-

normal distributions, such as normal-gamma mixture and chi-squared, are also considered

and the results are available from the author upon request. All the Monte Carlo experiments

are based on 10,000 replications.

4.2 Performance of the tests for the linear regression model

The performance of the standardized LM test statistic (LM∗B) introduced in Section 2 is
compared with the standardized Moran’s I (I∗), the Moran’s I with only variance correction
(I0) and the LM statistics of Burridge (1980) (LMB). The Monte Carlo experiments are

carried out based on the following data generating process:

Yi = β0 +X1iβ1 +X2iβ2 + ui

where X1i’s are drawn from 10U(0, 1) and X2i’s are drawn from 5N(0, 1) + 5. Both are

treated as fixed in the experiments. The parameters β = {5, 1, 0.5} and σ = 0.1. Five

different sample sizes are considered, i.e., N = 50, 100, 200, 500, and 1000.

Size of the tests. The results in Table 1 show that LMB and I
0 are undersized even in

the normal case and things get worse for the normal mixture and lognormal distributions. In

contrast, their standardized versions LM∗B and I
∗ have size close to 5% for all experiments

considered. The table also reports the empirical mean and standard deviation (SD) of these

group interactions, contextual factors and fixed effects. Yang (2010) shows that it also plays an important

role in the robustness of the LM test of spatial error components.
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statistics. It is clear that LMB and I
0 have a downward mean shift, which can be sizable

when N is not large, but decreases towards zero as N increases. Besides the mean shift,

LMB also has a downward SD shift, which can be sizable as well when N is not large,

but goes zero as N increases. In contrast, LM∗B and I
∗ have mean close to zero and SD

close to 1 which explain why they have better size in all experiments. Recalling that LMB

corrects neither mean nor SD and that I0 corrects only for SD, it is clear now why I0

is undersized, and why LMB is more severely undersized than I
0. Thus, the LM tests of

spatial dependence need to be both mean- and variance-adjusted for good finite sample

performance.

The results in Table 1 show that one of the major factors affecting the null distribution of

LMB and I
0 is the spatial layout, or rather the degree of spatial dependence. In situations

of a large group interaction, e.g., G = Round(N0.2) as in the first part of Table 1, the

number of groups ranges from 2 to 4 for N ranging from 50 to 1000. Thus, there are only

a few groups, each containing many spatial units which are all neighbors of each other.

This ‘heavy’ spatial dependence distorts severely the null distributions of LMB and I
0. In

contrast, in situations of small group interaction, e.g., G = Round(N0.8) as in the third part

of Table 1, the number of groups ranges from 23 to 251 for N ranging from 50 to 1000. In

this case, there are many groups each having only 2 to 4 units, giving a spatial layout with

very week spatial dependence. As a result, the null distributions of LMB and I
0 are much

closer to N(0, 1) though still not as close as those of the null distributions of LM∗B and I
∗.

These observations are consistent with the discussion following Theorem 1.

Power of the tests. Empirical frequencies of rejection of the four tests are plotted in

Figure 1 against the values of λ (horizontal line). Simulated critical values for each test are

used, which means that the reported powers of the tests are size-adjusted. In each plot of

Figure 1, each line we see is in fact the overlap of four lines corresponding to the four tests.

This means that once size-adjusted, the four tests have almost identical power. This is not

surprising as all four tests share the same term ũ Wũ/ũ ũ. The four tests differ mainly in

their locations and scales, and thus have different sizes or null behaviors in general when

referred to the standard normal. If, however, the exact critical values are used, they become

essentially the same test. However, in real applications, one does not know the exact critical

values and the asymptotic critical values are often used. In this case, it is important as we

show to do the mean and variance correction to the test statistics so that the asymptotic

critical values give a better approximation.

Figure 1 further reveals that the spatial layout and the sample size are the two important

factors affecting the power of these tests. With less neighbors (plots on the right) or

with a larger sample, the tests become more powerful. It is interesting to note that when

the spatial dependence is strong, it is harder to detect the spatial dependence when the

spatial parameter is negative than when it is positive (see the plots on the left). The error

11



distribution also affect the power of the tests, but to a lesser degree.

4.3 Performance of the tests for the panel data regression model

The LM and SLM tests (LMA and LM∗A) introduced in Section 3 are compared by
Monte Carlo simulation based the following DGP

Yt = β0 +X1tβ1 +X2tβ2 + ut, with ut = μ+ εt, t = 1, · · · , T,

where the error components μ and εt can be drawn from any of the three distributions used

in the previous two subsections, or the combination of any two distributions. For example,

μ and εt can both be drawn from the normal mixture, or μ from the normal mixture but εt

from the normal or log-normal distribution. The beta parameters are set at the same values

as before, σ2μ = 1.0 and σ
2
v = 5. For sample sizes, T = 3, 10; and N = 20, 50, 100, 200, 500.

The same spatial layouts are used as described above.

Size of the tests. The results presented in Table 2 correspond to cases where both

μ and vt are normal, both are normal mixture, and both are log-normal. Essentially, the

same conclusions hold as in the case of the spatial linear regression model . The SLM

test outperforms its LM counterpart in all the experiments considered. Another interesting

phenomenon is that the null behavior of LMA also depends on the relative magnitude of the

variance components σ2μ and σ
2
v . The larger the ratio σ

2
v/σ

2
μ, the worse is the performance

of the LMA test. In contrast, the performance of LM
∗
A is very robust.

Power of the tests. Empirical frequencies of rejection, based on the simulated critical

values, of the two tests are plotted in Figure 2 against the values of λ (horizontal line). Now

each line we see from each plot of Figure 2 is in fact an overlap of two lines, one for LMA

and the other for LM∗A. Similar to the case of the linear regression model, the two tests
have almost identical power once they are size-adjusted. The power of the tests depend

heavily on the degree of spatial dependence and on the sample size. It also depends on the

error distributions, though to a lesser degree.

Some interesting details are as follows. The two plots in the first row of Figure 2 show

that the two tests possess very low power and that the power does not seem to increase as

N increase from 20 to 50 (with T fixed at 3). This is because the underlying spatial layout

generates very strong spatial dependence. When N is increased from 20 to 50, the number

of groups stays at G = Round(N0.2) = 2. This means that under this spatial layout, the

degree of spatial dependence at N = 50 is bigger than that at N = 20. As a result, the

power does not go up, and might even go down slightly.

12



5 Conclusions

This paper recommends standardized LM tests of spatial error dependence for the linear

as well as the panel regression model. We showed that when standardizing the LM tests for

spatial effects it is important to adjust for both the mean and variance of the LM statistics.

The mean adjustment is, however, often neglected in the literature. One important reason

for the mean adjustment of the LM tests for spatial effects is that the degree of spatial

dependence may grow with the sample size. This slows down the convergence speed of the

maximum likelihood estimators (Lee, 2004a), making the concentrated score function (the

key element of the LM test) more biased.

There are other LM tests for other spatial models that are derived under normal as-

sumptions such as Baltagi, et al. (2003), and the LM test for spatial lag effect in the spatial

autoregressive models (Anselin, 1988), which can be studied in a similar manner. This pa-

per recommends the standardized version of these LM tests because it offers improvements

in their finite sample performance, in addition to preserving the simplicity of the original

LM tests so that they can be easily adopted by applied researchers.

In modifying the LM tests for robustness or for better finite sample performance, one

is tempted to think of the bootstrap method. Unfortunately, the bootstrap method does

not offer an easy and ready-to-use solution to the testing problems. The main difficulty is

the generation of bootstrap data reflecting the null hypothesis. This is in a great contrast

to problems of point estimation and confidence interval construction where the bootstrap

method offer solutions to many complicated problem. This indicates that developing boot-

strap LM tests for spatial effects is a very interesting topic of future research.

13



Appendix: Proofs of the Theorems

To prove the theorems, we need the following lemmas.

Lemma 1 (Lee, 2004a): Let v be an N × 1 random vector of iid elements with mean

zero, variance σ2, and finite excess kurtosis κ. Let A be an N dimensional square matrix.

Then E(v Av) = σ2tr(A) and Var(v Av) = σ4κ N
i=1 a

2
ii + σ4tr(AA +A2).

Lemma 2 (Lemma A.9, Lee, 2004b): Suppose that A represents a sequence of N ×N
matrices that are uniformly bounded in both row and column sums. Elements of the N × k
matrix X are uniformly bounded; and limn→∞ 1

NX X exists and is nonsingular. Let M =

IN −X(X X)−1X . Then

(i) tr(MA) = tr(A) +O(1)

(ii) tr(AMA) = tr(A A) +O(1)

(iii) tr[(MA)2] = tr(A2) +O(1), and

(iv) tr[(AMA)2] = tr[(MA A)2] = tr[A A)2] +O(1)

Furthermore, if Aij = O(h
−1
N ) for all i and j, then

(vi) tr2(MA) = tr2(A) +O( NhN ), and

(vii) N
i=1[(MA)ii]

2 = N
i=1(aii)

2 +O(h−1N ),

where (MA)ii are the diagonal elements of MA, and aii are the diagonal elements of A.

Lemma 3: Let u = G1μ+G2v, where u and v are two independent random vectors not

necessarily of the same length containing, respectively, iid elements of means zero, variances

σ2μ and σ
2
v, skewness αμ and αv, and excess kurtosis κμ and κv; and G1 and G2 are two

conformable non-stochastic matrices. Let A be a confirmable square matrix. Then,

(i) E(u Au) = σ2vtr(ΣA),

(ii) Var(u Au) = σ4μκμa1a1 + σ4vκva2a2 + σ4vtr[Σ(A +A)ΣA],

where Σ = σ−2v E(uu ) =
σ2μ
σ2v
G1G1 +G2G2, a1 = diagv(G1AG1), and a2 = diagv(G2AG2).

Proof: The result (i) is trivial. For ii), we have,

u Au = μ G1AG1μ+ v G2AG2v + μ G1(A+A )G2v.

It is easy to see that the three terms are uncorrelated. Thus,

Var(u Au) = Var(μ G1AG1μ) + Var(v G2AG2v) + Var[μ G1(A +A)G2v].

From Lemma 1, we obtain Var(μ G1AG1μ) = σ4μκμa1a1 + σ4μtr[AG1G1(A + A)G1G1],

and Var(v G2AG2v) = σ4vκva2a2 + σ4vtr[AG2G2(A + A)G2G2]. It is easy to show that

Var(μ G1(A +A)G2v) = σ2μσ
2
vtr[(A +A)G2G2(A +A)G1G1]. Putting these three expres-

sions together leads to (ii). Q.E.D.
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Proof of Theorem 1: First, we note that

ũ Wũ− S1ũ ũ = ũ (W − S1IN )ũ = u M(W − S1IN )Mu = u Au.

Under H0 and Assumption A1, Lemma 1 is applicable to u Au, which gives Eu Au =

σ2εtrA = 0 and Var(u Au) = σ4εκε
n
i=1 a

2
ii+σ

4
ε [tr(AA )+tr(A

2)]. Letting W ∗ =W −S1IN ,
we have A = MW ∗M . By Lemma 2(i) and Assumption A2, tr(WM) = O(1) which gives
S1 = O(N

−1). Hence, the elements of W ∗ are of uniform order O(h−1N ). Under Assumption
A3, M is uniformly bounded in both row and column sums (Lee, 2004a, Appendix A). It

follows that the elements of A are of uniform order O(1/hN ), and that the row and column

sums of the matrix A are uniformly bounded. Thus, the generalized central limit theorem

for linear-quadratic forms of Lee (2004a, Appendix A) is applicable,8 which shows that u Au

is asymptotically normal, or equivalently,

u Au

σ2ε(κεS2 + S3)
1
2

=
ũ Wũ− S1ũ ũ
σ2ε(κεS2 + S3)

1
2

D−→ N(0, 1).

Now, it is easy to show that under H0 σ̃
2
ε ≡ ũ ũ/N p−→ σ2ε and κ̃ε ≡ 1

nσ̃4ε

n
i=1 ũ

4
i − 3

p−→ κε

(see Yang (2010) for the proof of a similar result). The result (i) thus follows from Slutsky’s

theorem by replacing σε by σ̃ε and κε by κ̃ε.

To prove the asymptotic equivalence of LMB and LM
∗
B, we note that

LM∗B =
S0

κ̃εS2 + S3

1
2

LMB − NS1

(κ̃εS2 + S3)
1
2

. (A-1)

Thus, it is sufficient to show that the factor in front of LMB is Op(1) and the second term

is op(1). As the elements {w∗ij} of W ∗ are uniformly O(h−1N ), Lemma 2(vi) and Assumption
A2 (wii = 0) lead to S2 =

n
i=1 a

2
ii =

N
i=1(w

∗
ii)
2+O(h−1N ) = O(h

−1
N ). Lemma 2(ii) and (iii)

lead to S3 = S0 +O(1). Since the elements of W are uniformly O(h−1N ) and the row sums
of W are uniformly bounded, it follows that the elements of WW and W 2 are uniformly

O(h−1N ). Hence, S0 is O(N/hN ), and so is S3. Furthermore, κ̃ε = Op(1). These lead

to (S0/(κ̃εS2 + S3))
1
2 = Op(1) and NS1/(κ̃εS2 + S3)

1
2 = Op((hN/N)

1
2 ) = op(1), showing

LMB ∼ LM∗B. Similarly, one can show that Var(I) ∼ S0, and hence LMB ∼ I∗. Finally, it
is evident that Io ∼ I∗ Q.E.D.

Proof of Theorem 2: We have ũ = Y −Xβ̃ = Y −X(X Σ̃−1X)−1X Σ̃−1Y ≡M(ρ̃)Y .
The numerator of LMA becomes ũ A(ρ̃)ũ = Y M (ρ̃)A(ρ̃)M(ρ̃)Y = u M (ρ̃)A(ρ̃)M(ρ̃)u =

u C(ρ̃)u. By the mean value theorem,

u C(ρ̃)u = u C(ρ)u+ u Ċ(ρ̄)u (ρ̃− ρ),
8Lee (2004a) generalized the results of Kelejian and Prucha (2001) to cover the case where hN is un-

bounded. Lee’s results require the matrix A to be symmetric. If it is not, it can be replaced by 1
2
(A+A ).
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where ρ̄ lies between ρ̃ and ρ, Ċ(ρ) = d
dρC(ρ) =M (ρ)[2ρ(J̄T⊗W )−2(J̄T⊗IN )P (ρ)A(ρ)]M(ρ),

and P (ρ) = X(X Σ−1X)−1X . It is easy to see the elements of C(ρ) are of uniform order

O(1/hN ) uniformly in ρ, and so are the elements of Ċ(ρ̄). As ρ̃ is a consistent estimator of

ρ, it follows that u C(ρ̃)u ∼ u C(ρ)u. Now, u C(ρ)u can be decomposed into the following
three terms,

μ (ιT ⊗ IN )C(ρ)(ιT ⊗ IN )μ+ v C(ρ)v + μ (ιT ⊗ IN )C(ρ)v,
which are either independent or asymptotically independent. Thus, the asymptotic nor-

mality of the first two terms on the right hand side of the above equation follow from the

generalized central limit theorem for linear-quadratic forms of Lee (2004a, Appendix A).

This generalizes the results of Kelejian and Prucha (2001). The asymptotic normality of

the last term follows from the fact that the two random vectors involved are independent.

The mean and variance of u C(ρ)u can be easily obtained from Lemma 3 in the Appendix.

In fact, E(u C(ρ)u) = σ2vtr(ΣC(ρ)), and

Var(u C(ρ)u) = σ4v{φ2κμa1a1 + κva2a2 + tr[Σ(C(ρ) + C(ρ))ΣC(ρ)]}.
Thus the result in (i) follows and LM∗A

D−→ N(0, 1).

To prove the result in (ii), letX(ρ) = Σ−1/2X andM∗(ρ) = INT−X(ρ)[X (ρ)X(ρ)]−1X (ρ).

Assumption 3 and the structure of Σ−1/2 guarantee that the elements of X(ρ) are bounded
uniformly in both N and ρ. Thus, Lemma 2 in the Appendix is applicable on M∗(ρ) for
each ρ. We have C(ρ) =M (ρ)A(ρ)M(ρ) = Σ1/2M∗(ρ)A(ρ)M∗(ρ)Σ−1/2. Thus,

tr[ΣC(ρ)] = tr[M∗(ρ)A(ρ)M∗(ρ)Σ]

= tr[A(ρ)M∗(ρ)Σ] +O(1) (by Lemma 2, Appendix)

= tr[M∗(ρ)ΣA(ρ)] +O(1)

= tr[ΣA(ρ)] +O(1) (by Lemma 2, Appendix)

= O(1).

Similarly, by successively applying Lemma 2, one shows that

tr[Σ(C(ρ) + C(ρ))ΣC(ρ)] = tr[M∗(ρ)(A(ρ) +A(ρ))M∗(ρ)ΣM∗(ρ)A(ρ)M∗(ρ)Σ]

= tr[(A(ρ) +A(ρ))ΣA(ρ)Σ] +O(1)

= (T − 1 + ρ2)S0 +O(1).

Under Assumption B2, the elements of W 2 and WW are of uniform order O(1/hN ). It

follows that S0 = O(N/hN ). Hence,

tr[Σ(C(ρ) + C(ρ))ΣC(ρ)] ∼ (T − 1 + ρ2)S0 = O(N/hN ).

Finally, Lemma 2(vii) in the Appendix leads to a1a1 = O(1/hN ) and a2a2 = O(1/hN ). The

result in (ii) thus follows and the two LM tests given in (11) and (13) are asymptotically

equivalent. Q.E.D.
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Table 1. Empirical Means, SDs and Tail Probabilities at 5% Level: Linear Regression

Normal Normal Mixture Log-normal

N Test Mean SD Prob Mean SD Prob Mean SD Prob

Spatial Layout: Large Group Interaction with G = N0.2

50 LMB -0.4925 0.7296 0.0161 -0.5003 0.5967 0.0051 -0.4977 0.6449 0.0099

I0 -0.6894 1.0213 0.0310 -0.7003 0.8352 0.0151 -0.6967 0.9027 0.0206

I∗ 0.0099 1.0213 0.0542 -0.0011 0.8352 0.0348 0.0025 0.9027 0.0443

LM∗B 0.0103 1.0642 0.0582 -0.0011 0.8639 0.0380 0.0026 0.9360 0.0479

100 LMB -0.3736 0.8496 0.0250 -0.3983 0.7184 0.0100 -0.3884 0.7759 0.0163

I0 -0.4479 1.0188 0.0370 -0.4776 0.8614 0.0181 -0.4658 0.9303 0.0258

I∗ 0.0224 1.0188 0.0557 -0.0073 0.8614 0.0344 0.0045 0.9303 0.0435

LM∗B 0.0228 1.0396 0.0580 -0.0074 0.8783 0.0356 0.0046 0.9489 0.0453

200 LMB -0.4177 0.8048 0.0196 -0.4134 0.7433 0.0108 -0.4109 0.7566 0.0150

I0 -0.5121 0.9868 0.0291 -0.5068 0.9113 0.0188 -0.5037 0.9276 0.0257

I∗ -0.0093 0.9868 0.0503 -0.0040 0.9113 0.0403 -0.0009 0.9276 0.0428

LM∗B -0.0094 0.9968 0.0514 -0.0040 0.9189 0.0407 -0.0009 0.9358 0.0436

500 LMB -0.4129 0.8112 0.0181 -0.3968 0.7862 0.0169 -0.4105 0.7984 0.0178

I0 -0.5049 0.9920 0.0313 -0.4852 0.9614 0.0272 -0.5020 0.9764 0.0285

I∗ -0.0067 0.9920 0.0521 0.0130 0.9614 0.0481 -0.0039 0.9764 0.0474

LM∗B -0.0067 0.9960 0.0524 0.0130 0.9651 0.0483 -0.0039 0.9801 0.0477

1000 LMB -0.3480 0.8710 0.0243 -0.3573 0.8474 0.0212 -0.3505 0.8620 0.0209

I0 -0.4022 1.0065 0.0329 -0.4129 0.9793 0.0279 -0.4050 0.9962 0.0307

I∗ 0.0076 1.0065 0.0507 -0.0031 0.9793 0.0462 0.0048 0.9962 0.0496

LM∗B 0.0076 1.0085 0.0509 -0.0031 0.9812 0.0463 0.0048 0.9981 0.0498

Spatial Layout: Group Interaction with G = N0.5

50 LMB -0.2831 0.9286 0.0257 -0.2566 0.7907 0.0177 -0.2599 0.8425 0.0182

I0 -0.3031 0.9939 0.0384 -0.2747 0.8463 0.0252 -0.2781 0.9017 0.0248

I∗ -0.0247 0.9939 0.0450 0.0036 0.8463 0.0287 0.0002 0.9017 0.0310

LM∗B -0.0258 1.0356 0.0510 0.0037 0.8752 0.0323 0.0002 0.9348 0.0359

100 LMB -0.2261 0.9534 0.0303 -0.2305 0.8353 0.0222 -0.2240 0.8845 0.0239

I0 -0.2382 1.0045 0.0388 -0.2429 0.8801 0.0286 -0.2360 0.9319 0.0295

I∗ 0.0007 1.0045 0.0464 -0.0040 0.8801 0.0303 0.0029 0.9319 0.0359

LM∗B 0.0007 1.0251 0.0500 -0.0040 0.8940 0.0319 0.0030 0.9484 0.0384

200 LMB -0.1616 0.9694 0.0328 -0.1810 0.8798 0.0282 -0.1798 0.9158 0.0264

I0 -0.1670 1.0015 0.0388 -0.1870 0.9089 0.0329 -0.1858 0.9461 0.0301

I∗ 0.0164 1.0015 0.0434 -0.0036 0.9089 0.0344 -0.0024 0.9461 0.0342

LM∗B 0.0166 1.0116 0.0451 -0.0037 0.9170 0.0354 -0.0024 0.9549 0.0362

500 LMB -0.1522 0.9765 0.0402 -0.1290 0.9439 0.0364 -0.1287 0.9460 0.0336

I0 -0.1554 0.9971 0.0444 -0.1317 0.9637 0.0406 -0.1314 0.9659 0.0367

I∗ -0.0096 0.9971 0.0442 0.0140 0.9637 0.0420 0.0144 0.9659 0.0410

LM∗B -0.0096 1.0011 0.0451 0.0141 0.9674 0.0425 0.0144 0.9696 0.0417

1000 LMB -0.1094 0.9865 0.0435 -0.1270 0.9662 0.0409 -0.1040 0.9645 0.0402

I0 -0.1111 1.0018 0.0467 -0.1290 0.9811 0.0445 -0.1056 0.9795 0.0432

I∗ 0.0140 1.0018 0.0466 -0.0039 0.9811 0.0439 0.0195 0.9795 0.0430

LM∗B 0.0140 1.0038 0.0470 -0.0039 0.9830 0.0445 0.0196 0.9814 0.0433
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Table 1. Cont’d

Normal Normal Mixture Log-normal

N Test Mean SD Prob Mean SD Prob Mean SD Prob

Spatial Layout: Small Group Interaction with G = N0.8

50 LMB -0.1136 0.9836 0.0441 -0.1171 0.8330 0.0295 -0.1269 0.8776 0.0294

I0 -0.1154 0.9999 0.0471 -0.1191 0.8468 0.0311 -0.1290 0.8922 0.0321

I∗ 0.0027 0.9999 0.0462 -0.0009 0.8468 0.0307 -0.0109 0.8922 0.0341

LM∗B 0.0028 1.0419 0.0575 -0.0010 0.8752 0.0345 -0.0113 0.9247 0.0395

100 LMB -0.1064 0.9851 0.0469 -0.0956 0.8594 0.0328 -0.1029 0.9124 0.0343

I0 -0.1075 0.9957 0.0494 -0.0967 0.8687 0.0335 -0.1040 0.9223 0.0350

I∗ -0.0085 0.9957 0.0477 0.0023 0.8687 0.0327 -0.0050 0.9223 0.0386

LM∗B -0.0087 1.0161 0.0540 0.0024 0.8827 0.0346 -0.0051 0.9387 0.0408

200 LMB -0.0890 0.9999 0.0503 -0.0708 0.9044 0.0390 -0.0800 0.9333 0.0372

I0 -0.0894 1.0042 0.0514 -0.0711 0.9083 0.0395 -0.0803 0.9374 0.0384

I∗ -0.0146 1.0042 0.0531 0.0037 0.9083 0.0391 -0.0055 0.9374 0.0404

LM∗B -0.0148 1.0144 0.0554 0.0037 0.9164 0.0401 -0.0056 0.9461 0.0416

500 LMB -0.0313 0.9938 0.0499 -0.0528 0.9696 0.0484 -0.0426 0.9516 0.0382

I0 -0.0314 0.9960 0.0502 -0.0529 0.9717 0.0489 -0.0427 0.9537 0.0385

I∗ 0.0149 0.9960 0.0496 -0.0066 0.9717 0.0477 0.0036 0.9537 0.0395

LM∗B 0.0150 1.0000 0.0506 -0.0066 0.9754 0.0487 0.0036 0.9573 0.0400

1000 LMB -0.0491 0.9912 0.0468 -0.0366 0.9699 0.0505 -0.0254 0.9655 0.0411

I0 -0.0491 0.9927 0.0472 -0.0367 0.9713 0.0505 -0.0254 0.9669 0.0412

I∗ -0.0112 0.9927 0.0476 0.0013 0.9713 0.0510 0.0126 0.9669 0.0416

LM∗B -0.0112 0.9946 0.0480 0.0013 0.9732 0.0514 0.0126 0.9687 0.0418

Spatial Layout: Queen’s Contiguity

50 LMB -0.2412 0.9375 0.0374 -0.2267 0.7980 0.0189 -0.2379 0.8462 0.0231

I0 -0.2570 0.9991 0.0528 -0.2416 0.8504 0.0286 -0.2535 0.9018 0.0314

I∗ -0.0052 0.9991 0.0508 0.0103 0.8504 0.0258 -0.0017 0.9018 0.0332

LM∗B -0.0054 1.0410 0.0596 0.0106 0.8792 0.0311 -0.0018 0.9348 0.0376

100 LMB -0.1661 0.9735 0.0447 -0.1538 0.8363 0.0267 -0.1462 0.9071 0.0307

I0 -0.1709 1.0015 0.0508 -0.1582 0.8604 0.0321 -0.1504 0.9333 0.0351

I∗ -0.0083 1.0015 0.0497 0.0043 0.8604 0.0300 0.0122 0.9333 0.0380

LM∗B -0.0085 1.0220 0.0546 0.0044 0.8754 0.0325 0.0124 0.9506 0.0409

200 LMB -0.1259 0.9769 0.0457 -0.1077 0.9145 0.0395 -0.1238 0.9281 0.0344

I0 -0.1281 0.9938 0.0486 -0.1096 0.9303 0.0427 -0.1260 0.9441 0.0373

I∗ -0.0028 0.9938 0.0489 0.0157 0.9303 0.0413 -0.0007 0.9441 0.0385

LM∗B -0.0028 1.0038 0.0510 0.0158 0.9380 0.0429 -0.0007 0.9525 0.0397

500 LMB -0.0727 0.9986 0.0510 -0.0813 0.9665 0.0484 -0.0752 0.9707 0.0416

I0 -0.0732 1.0052 0.0525 -0.0819 0.9729 0.0498 -0.0757 0.9771 0.0428

I∗ -0.0076 1.0052 0.0527 -0.0010 0.9729 0.0504 0.0052 0.9771 0.0429

LM∗B 0.0077 1.0093 0.0532 -0.0010 0.9765 0.0508 0.0052 0.9807 0.0434

1000 LMB -0.0426 0.9972 0.0486 -0.0546 0.9901 0.0498 -0.0484 0.9801 0.0444

I0 -0.0427 1.0007 0.0492 -0.0548 0.9936 0.0508 -0.0485 0.9836 0.0452

I∗ 0.0152 1.0007 0.0502 0.0031 0.9936 0.0503 0.0093 0.9836 0.0459

LM∗B 0.0152 1.0027 0.0506 0.0031 0.9955 0.0509 0.0093 0.9855 0.0462
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Figure 1. Size-Adjusted Empirical Powers of the Four Tests
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Table 2. Empirical Means, SDs and Tail Probabilities at 5% Level: Panel Regression

T = 3 Normal Normal Mixture Log-normal

N Mean SD Prob Mean SD Prob Mean SD Prob

Spatial Layout: Large Group Interaction, G = N0.2

20 -0.2527 0.9195 0.0240 -0.2573 0.7854 0.0180 -0.2645 0.8462 0.0203

0.0056 1.0295 0.0514 -0.0038 0.8704 0.0334 -0.0097 0.9419 0.0374

50 -0.2601 0.9168 0.0251 -0.2525 0.8416 0.0159 -0.2625 0.8490 0.0201

0.0108 1.0090 0.0476 0.0171 0.9182 0.0336 0.0068 0.9291 0.0381

100 -0.2391 0.9411 0.0251 -0.2038 0.9009 0.0293 -0.2069 0.9168 0.0249

-0.0275 0.9944 0.0401 0.0079 0.9487 0.0397 0.0051 0.9663 0.0390

200 -0.2066 0.9565 0.0332 -0.2129 0.9337 0.0304 -0.1953 0.9305 0.0268

0.0069 1.0067 0.0468 -0.0005 0.9811 0.0440 0.0180 0.9774 0.0416

500 -0.2055 0.9511 0.0307 -0.2048 0.9359 0.0271 -0.2011 0.9433 0.0273

0.0132 1.0014 0.0454 0.0132 0.9845 0.0419 0.0174 0.9926 0.0433

Spatial Layout: Group Interaction, G = N0.5

20 -0.2071 0.9515 0.0321 -0.2161 0.8339 0.0235 -0.2016 0.8747 0.0251

-0.0079 1.0253 0.0490 -0.0204 0.8929 0.0324 -0.0035 0.9383 0.0368

50 -0.0984 0.9813 0.0420 -0.1134 0.8948 0.0332 -0.1112 0.9227 0.0325

0.0156 1.0085 0.0474 -0.0011 0.9175 0.0379 0.0014 0.9466 0.0406

100 -0.1024 0.9846 0.0448 -0.1057 0.9256 0.0336 -0.1280 0.9386 0.0352

0.0093 1.0039 0.0484 0.0053 0.9430 0.0389 -0.0172 0.9563 0.0401

200 -0.0943 0.9830 0.0461 -0.0813 0.9535 0.0388 -0.0929 0.9555 0.0382

-0.0008 0.9951 0.0479 0.0121 0.9649 0.0413 0.0002 0.9668 0.0417

500 -0.0737 0.9878 0.0466 -0.0635 0.9837 0.0451 -0.0661 0.9808 0.0429

0.0045 0.9954 0.0482 0.0147 0.9910 0.0465 0.0121 0.9880 0.0449

Spatial Layout: Small Group Interaction, G = N0.8

20 -0.0648 0.9981 0.0493 -0.0647 0.8497 0.0294 -0.0541 0.9146 0.0372

0.0140 1.0402 0.0596 0.0127 0.8838 0.0329 0.0246 0.9520 0.0469

50 -0.0235 0.9918 0.0473 -0.0463 0.8969 0.0383 -0.0214 0.9259 0.0352

0.0182 1.0099 0.0526 -0.0056 0.9121 0.0394 0.0200 0.9421 0.0381

100 -0.0621 0.9885 0.0490 -0.0543 0.9385 0.0425 -0.0595 0.9506 0.0389

-0.0074 0.9977 0.0518 0.0000 0.9470 0.0430 -0.0051 0.9592 0.0418

200 -0.0486 0.9969 0.0486 -0.0418 0.9721 0.0493 -0.0547 0.9600 0.0382

-0.0108 1.0016 0.0496 -0.0042 0.9766 0.0496 -0.0170 0.9644 0.0396

500 -0.0117 0.9957 0.0489 -0.0162 0.9916 0.0542 -0.0238 0.9738 0.0408

0.0137 0.9977 0.0502 0.0091 0.9936 0.0542 0.0016 0.9757 0.0421

Spatial Layout: Queen’s Contiguity

20 -0.1518 0.9654 0.0416 -0.1556 0.8194 0.0252 -0.1595 0.8858 0.0290

0.0159 1.0602 0.0634 0.0081 0.8946 0.0352 0.0058 0.9696 0.0454

50 -0.1122 0.9824 0.0479 -0.1311 0.8859 0.0342 -0.1252 0.9200 0.0333

0.0097 1.0334 0.0580 -0.0110 0.9298 0.0434 -0.0047 0.9664 0.0407

100 -0.0862 0.9837 0.0462 -0.0926 0.9385 0.0438 -0.0943 0.9456 0.0389

0.0068 1.0148 0.0529 -0.0007 0.9674 0.0491 -0.0022 0.9748 0.0455

200 -0.0580 0.9948 0.0483 -0.0760 0.9593 0.0443 -0.0555 0.9730 0.0433

0.0131 1.0167 0.0541 -0.0057 0.9801 0.0470 0.0153 0.9941 0.0485

500 -0.0321 0.9880 0.0422 -0.0469 0.9860 0.0495 -0.0540 0.9801 0.0447

0.0116 1.0033 0.0465 -0.0035 1.0012 0.0526 -0.0108 0.9953 0.0490

Note: under each N , the first row corresponds to LMA and the second corresponds to LM
∗
A.
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Table 2. Cont’d

T = 10 Normal Normal Mixture Log-normal

N Mean SD Prob Mean SD Prob Mean SD Prob

Spatial Layout: Large Group Interaction, G = N0.2

20 -0.1280 0.9754 0.0389 -0.1096 0.9059 0.0340 -0.1280 0.9130 0.0308

-0.0111 0.9997 0.0427 0.0079 0.9262 0.0378 -0.0110 0.9345 0.0367

50 -0.1080 0.9877 0.0430 -0.1222 0.9438 0.0336 -0.1118 0.9528 0.0340

0.0084 1.0051 0.0490 -0.0056 0.9599 0.0358 0.0052 0.9697 0.0405

100 -0.1043 1.0048 0.0465 -0.0876 0.9775 0.0416 -0.0895 0.9619 0.0382

-0.0099 1.0160 0.0491 0.0078 0.9883 0.0448 0.0067 0.9727 0.0421

200 -0.1044 0.9838 0.0458 -0.0977 0.9712 0.0370 -0.0966 0.9735 0.0398

-0.0089 0.9942 0.0482 -0.0013 0.9814 0.0403 -0.0001 0.9835 0.0444

500 -0.0978 0.9915 0.0412 -0.1199 0.9738 0.0385 -0.0682 0.9867 0.0455

-0.0035 1.0009 0.0440 -0.0256 0.9831 0.0406 0.0271 0.9961 0.0496

Spatial Layout: Group Interaction, G = N0.5

20 -0.0806 0.9945 0.0484 -0.0723 0.9163 0.0392 -0.0928 0.9287 0.0356

0.0001 1.0105 0.0493 0.0092 0.9298 0.0413 -0.0114 0.9434 0.0383

50 -0.0472 0.9886 0.0460 -0.0467 0.9451 0.0451 -0.0617 0.9679 0.0407

0.0108 0.9958 0.0477 0.0118 0.9519 0.0462 -0.0027 0.9750 0.0418

100 -0.0422 1.0053 0.0481 -0.0511 0.9679 0.0447 -0.0434 0.9743 0.0442

0.0062 1.0097 0.0491 -0.0024 0.9721 0.0458 0.0055 0.9783 0.0455

200 -0.0412 0.9846 0.0448 -0.0318 0.9814 0.0436 -0.0413 0.9863 0.0455

0.0023 0.9876 0.0458 0.0121 0.9843 0.0443 0.0027 0.9893 0.0472

500 -0.0202 1.0025 0.0497 -0.0467 1.0034 0.0506 -0.0460 0.9914 0.0471

0.0143 1.0041 0.0504 -0.0122 1.0050 0.0505 -0.0113 0.9929 0.0484

Spatial Layout: Small Group Interaction, G = N0.8

20 -0.0252 0.9851 0.0456 -0.0402 0.9183 0.0401 -0.0320 0.9316 0.0359

0.0131 0.9964 0.0481 -0.0017 0.9279 0.0410 0.0065 0.9417 0.0383

50 -0.0171 0.9969 0.0497 -0.0251 0.9639 0.0494 -0.0298 0.9714 0.0421

0.0092 1.0021 0.0507 0.0014 0.9687 0.0497 -0.0033 0.9764 0.0438

100 -0.0162 1.0136 0.0524 -0.0257 0.9775 0.0490 0.0014 0.9863 0.0445

0.0053 1.0162 0.0530 -0.0040 0.9799 0.0489 0.0232 0.9888 0.0454

200 -0.0218 0.9911 0.0492 -0.0075 0.9977 0.0529 -0.0034 1.0046 0.0474

-0.0065 0.9923 0.0499 0.0079 0.9990 0.0533 0.0121 1.0058 0.0475

500 0.0034 1.0119 0.0534 -0.0137 0.9946 0.0531 -0.0148 0.9957 0.0485

0.0147 1.0125 0.0540 -0.0024 0.9952 0.0531 -0.0034 0.9962 0.0490

Spatial Layout: Queen’s Contiguity

20 -0.0660 0.9845 0.0472 -0.0797 0.8990 0.0406 -0.0682 0.9333 0.0366

0.0142 1.0317 0.0567 0.0010 0.9410 0.0467 0.0131 0.9774 0.0452

50 -0.0550 0.9933 0.0465 -0.0673 0.9547 0.0447 -0.0499 0.9585 0.0406

0.0000 1.0204 0.0539 -0.0121 0.9805 0.0493 0.0061 0.9846 0.0452

100 -0.0458 0.9936 0.0480 -0.0258 0.9812 0.0470 -0.0433 0.9741 0.0444

-0.0049 1.0129 0.0523 0.0158 1.0002 0.0509 -0.0017 0.9928 0.0496

200 -0.0268 1.0011 0.0532 -0.0232 0.9901 0.0514 -0.0185 0.9760 0.0442

0.0026 1.0167 0.0562 0.0065 1.0054 0.0552 0.0114 0.9911 0.0471

500 -0.0304 0.9954 0.0484 -0.0077 1.0024 0.0508 -0.0109 1.0002 0.0510

-0.0113 1.0083 0.0511 0.0118 1.0155 0.0542 0.0085 1.0132 0.0538

Note: under each N , the first row corresponds to LMA and the second corresponds to LM
∗
A.
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Figure 2. Size-Adjusted Empirical Powers of Panel LM and SLM Tests
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