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Abstract

We study incentives for quality provision in markets where providers are motivated (semi-

altruistic); prices are regulated and firms are funded by a combination of block grants and unit

prices; competition is based on quality, and demand adjusts sluggishly. Health or education are

sectors in which the mentioned features are the rule. We show that the presence of motivated

providers makes dynamic competition tougher, resulting in higher steady-state levels of quality in

the closed-loop solutions than in the benchmark open-loop solution, if the price is sufficiently high.

However, this result is reversed if the price is sufficiently low (and below unit costs). Sufficiently

low prices also imply that a reduction in demand sluggishness will lead to lower steady-state

quality. Prices below unit costs will nevertheless be welfare optimal if the providers are sufficiently

motivated.
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1 Introduction

In markets for health care or education, prices are often regulated and consumer choices are mainly

based on other criteria, such as travelling distance and quality. In both types of markets, competition

between publicly funded providers has become an increasingly topical policy issue in recent years,

as an increasing number of countries have introduced market-based reforms which give providers

(hospitals or schools) incentives to compete for consumers (patients or students).1 This has, in turn,

spurred a considerable body of theoretical literature studying the nature of quality competition in

regulated markets.2 However, with very few exceptions, this literature has ignored two arguably

important features of such markets, namely motivated providers and sluggish demand.

In the literature on health care supply, it has long been recognised that providers may exhibit

semi-altruistic preferences.3 For example, physicians are typically portrayed as ‘imperfect agents’

for their patients, trading off patient benefits against lower profits (see, e.g., McGuire, 2000). This

notion has in recent years been complemented by an emerging literature on motivated agents in the

broader public sector, where the assumption of ‘mission oriented’ workers (doctors, nurses, teachers)

implies that the agents (e.g., hospitals or schools) to some extent share the objectives of the principal

(government, in our examples).4 Despite the emphasis given in the literature to the importance of

motivated providers in the public sector in general, and in sectors like health care and education

in particular, this aspect is largely absent in the existing literature on quality competition between

publicly funded providers. A notable recent exception is Brekke, Siciliani and Straume (forthcoming),

who analyse hospital competition with regulated prices and show that the presence of provider

motivation can potentially reverse a previously established positive relationship between competition

and quality.5

1These reforms typically include the combination of free choice of provider and activity-based payments. In health
care, the original model for an activity-based payment system is the US Medicare and Medicaid programmes, where
every hospital is paid a Diagnosis Related Group (DRG) tariff for every patient treated. Different variants of DRG
pricing have now been introduced in a number of Western countries.

2See, e.g., Ma and Burgess (1993), Wolinsky (1997), Gravelle (1999), Lyon (1999), Del Rey (2001), Beitia (2003),
Brekke, Nuscheler and Straume (2006, 2007), Karlsson (2007) and Matsumura and Matsushima (2007).

3See, e.g., Ellis and McGuire (1986), Chalkley and Malcolmson (1998), Eggleston (2005), Heyes (2005), Jack (2005)
and Kaarbøe and Siciliani (2011).

4See, for example, Francois (2000), Murdock (2004), Glazer (2004), Besley and Ghatak (2005, 2006), Delfgaauw
and Dur (2007, 2008) and Prendergast (2007). See also Francois and Vlassopoulos (2008) for an extensive review of
the motivated agents literature.

5See Brekke, Siciliani and Straume (forthcoming) for a more extensive discussion of the assumption of motivated
providers, with further references to relevant literature (including experimental evidence).
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For both health care and education, quality is a key market variable. In health care, since

consumers are insured against medical expenditures, the quality of care is usually a much more

relevant variable than price for the patient’s choice of provider. Similarly, in education markets

tuition fees play a relatively minor role in most European countries (though they are on the rise in

several countries like England or Italy), and the quality of the institution is typically much more

important for the student’s choice of school or university. However, since quality is much less readily

observable than prices, it is also reasonable to assume that demand adjusts much more sluggishly

to quality changes than to price changes. This effect may be particularly strong in the context of

health care or education, due to consumer habits or trust in specific providers. If consumers have

sluggish beliefs about quality, demand will adjust sluggishly to quality changes, implying that it

takes some time before the potential demand increase due to an increase in quality is fully realised.

The implications of sluggish demand for quality competition in regulated markets are analysed by

Brekke et al. (forthcoming), using a differential-game framework where providers choose qualities

in each period and demand adjusts sluggishly over time.6 However, that paper follows the standard

assumption in the literature on quality competition in regulated markets by assuming that providers

are pure profit-maximisers.

In the present paper we combine the two above-mentioned features — motivated providers and

sluggish demand — in a differential-game framework where providers are funded by a combination of

block grants and unit prices, and compete on quality. We consider three different solution concepts:

the open-loop, the memoryless closed-loop and the feedback closed-loop solutions. The purpose

of our analysis is threefold. First, we compare the steady-state levels of quality in the different

solution concepts to see whether more intense competition (closed-loop rules) actually yields higher

quality levels in the steady-state solution of the game. Second, we investigate the effect on steady-

state quality of increasing the degree of competition, either through lower travelling costs (increased

substitutability) or less demand sluggishness. Third, we perform a welfare analysis where we derive

the first-best optimal quality, both in and off steady state, and show how the optimal solution can be

achieved by optimal price regulation, depending on the dynamic decision rules used by the providers.

Throughout the analysis, a main concern for us is to show how the degree of provider motivation

qualitatively affects our results.

6A more extensive discussion of the sluggish demand assumption is given in Brekke et al. (forthcoming).
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When comparing the open-loop and closed-loop solutions of the game, we show that the presence

of motivated providers changes the dynamic nature of quality competition and therefore makes a

substantial difference. Furthermore, we show that the design of the provider payment system, i.e.

the combination of block grants and unit prices, plays a crucial role in determining the outcome

of dynamic quality competition. This is of policy relevance since payment systems change across

countries and have changed over time. For example, hospitals in England used to be paid according

to a block grant (with effectively a zero unit price) but are now paid according to an activity-based

funding rule where the price varies for each type of procedure performed (similarly to the DRG —

Diagnosis Related Groups — payment system within Medicare in the US). Several European countries

like Italy and Spain have experimented with pricing rules where the unit price drops to 20-30% after a

certain volume of activity has been reached: given high demand levels many hospitals are effectively

operating at these lower unit prices. An interesting case is Norway where for several years prices

have been set at a level which ranges between 40% and 60% of the average cost: the price is set every

year by the government and has been set at either 40%, 55% or 60%.

In our differential game setting, the solution rules adopted by agents (i.e., the providers) capture

the intensity of competition. The open-loop solution concept, used as a benchmark, implies that

providers set their optimal plans at the beginning of the time considered, and then stick to them

forever: in such a framework, competition is less intense as compared to behaviour rules in which the

providers consider the interaction with their opponents at each point of time, like in the feedback-

rule solution concept or in the memoryless closed-loop solution. We find that steady-state quality

is higher when competition is more intense, if the price is sufficiently high. On the other hand, if

prices are sufficiently low, and below unit costs, this result is reversed, with steady-state quality

being higher in the open-loop benchmark case. Sufficiently low prices (below unit costs) also imply

that lower travelling costs or less sluggish demand will reduce steady-state quality. The scope for

such a negative relationship between competition intensity and steady-state quality is larger if the

providers use closed-loop decision rules.

In the welfare analysis, we show that the optimal price which implements first-best quality in

steady state is lower under open-loop behaviour than under closed-loop behaviour, unless providers

are highly motivated. We also show that, if providers are sufficiently motivated, they are optimally

funded by a combination of block grants and unit prices, where the price does not fully cover unit
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costs. Furthermore, the scope for the optimal price to be below unit costs is larger if the providers

use closed-loop decision rules.

The remainder of the paper is organised as follows. The model is presented in Section 2. This

model is then analysed for open-loop behaviour in Section 3 and closed-loop behaviour (feedback

and memoryless) in Section 4. Section 5 compares the steady-state outcomes of the three different

solution concepts, while the relationship between competition intensity and steady-state quality is

explored in Section 6. A welfare analysis is presented in Section 7, while Section 8 concludes the

paper.

2 Model

Consider a market with two providers which are located at either end of the unit line S = [0, 1].

Consumers are uniformly distributed on S with a total mass normalised to 1. We assume unit

demand, where each consumer demands one unit of the good from her most preferred provider. The

utility of a consumer who is located at x ∈ S and chooses Provider i, located at zi, is given by

u (x, zi) = v + kqi − τ |x− zi| , (1)

where v is the gross valuation of consumption, qi ≥ q is the quality offered by Provider i, k is the

marginal utility of quality and τ is the marginal disutility of travelling. We assume that v > τ in

order to ensure that the market is always fully covered. The lower bound q is the minimum quality

the providers are allowed to offer7 and is, for simplicity, set equal to 0. We also normalise by setting

k = 1, implying that τ measures the importance of travelling costs relative to quality.

The consumer who is indifferent between Provider i and Provider j is located at D̂, which is

implicitly given by

v − τD̂ + qi = v − τ
(
1− D̂

)
+ qj.

The potential demand of Provider i is then given by

D̂ =
1

2
+
qi − qj
2τ

. (2)

7We can interpret q as a minimum quality standard set by a regulator. If qi < q, Provider i might lose his license
to operate in the market. In the context of health care, qi < q can be interpreted as malpractice.
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As in Brekke et al. (forthcoming), we assume that demand adjusts sluggishly to quality changes.

Sluggish demand adjustments can be due to habitual behaviour or imperfect information about

quality among consumers, implying that it takes some time before changes in provider quality is

observed an acted upon in the market. Suppose that, at each point in time, only a fraction γ ∈ (0, 1)

of consumers become aware of changes in relative quality offered by the providers. This means that,

at each point in time, only a fraction γ of any changes in potential demand is realised. Defining D(t)

as the actual demand of Provider i at time t, the law of motion of actual demand is given by

dD(t)

dt
:=

.

D(t) = γ(D̂(t)−D(t)). (3)

The lower is γ, the more sluggish is demand. The parameter γ is therefore an inverse measure of

the degree of demand sluggishness in the market. Notice that, since total demand is inelastic, the

dynamics of the demand for Provider i automatically determines the demand for Provider j, so that

both providers face the same dynamic constraint, given by (3).8

Providers are partially motivated and maximise a weighted sum of consumers’ utility and profits.

The instantaneous objective function of Provider i is

Ωi (t) = T + pD(t)−C (D (t) , qi (t)) + αBi(qi(t),D(t)), (4)

where T is a lump-sum transfer from the regulator and p is a price per unit of output provided. The

cost of provision is given by a cost function C (D (t) , qi (t)), which for simplicity is assumed to take

the following linear-quadratic form:

C (D, qi) = cDi +
θ

2
q2i + F, (5)

where c > 0 is a constant unit cost of production, θ > 0 measures the cost of quality provision

8The law of motion of actual demand for Provider j is

d (1−D (t))

dt
= γ

((
1− D̂ (t)

)
− (1−D (t))

)

= γ
(
D (t)− D̂ (t)

)
,

which is the same as
dD (t)

dt
= γ

(
D̂ (t)−D (t)

)
.
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and F > 0 is fixed costs. In order to ensure that the second-order conditions are satisfied in all

optimisation problems considered throughout the analysis, we assume that the parameters θ and τ

take values such that θτ > 1. Provider motivation is captured by the last term in (4), where

Bi(qi, D) ≡
∫ D

0
(v + qi − τx)dx (6)

is the instantaneous aggregate gross surplus of consumers attending Provider i. The degree to which

providers are motivated is measured by α ∈ (0, 1).

We will compare different game-theoretic solution concepts: the open-loop solution on one side,

and the feedback and memoryless closed-loop solutions on the other side. The open-loop solution

concept assumes that each provider knows the initial state of the system but cannot observe quality

(and thus potential demand) in subsequent periods; thus, each provider computes his optimal plan at

the beginning of the game and then sticks to it forever. Under the closed-loop solution concepts, on

the other hand, each provider can observe, and therefore react to, the value of the state variable(s)

in each period of time.

Within the closed-loop concepts, we focus on two different rules: the feedback and the memoryless

closed-loop rules. According to the feedback rule, the optimal choice is derived from the Bellman

equation, and the choice variable of each provider at any time is related to the state variable at the

current date. The memoryless closed-loop rule is based on the Hamiltonian solution technique, but —

differently from the open-loop — takes explicitly into account the interaction between the rival’s choice

and the state variable(s) at any point in time. Both the feedback and the memoryless closed-loop

solutions are strongly time consistent.9

In order to ensure that steady-state quality is non-negative under all solution concepts considered,

we assume that the price is above a certain threshold level. More specifically, we assume that

p ≥ p := c− α
(
v + τ

(
1

2
+
ρ

γ

))
. (7)

9See Mehlman (1988) or Basar and Olsder (1995; Ch. 6) for details. See also Brekke et al. (forthcoming) or Cellini
and Lambertini (2004) for a comprehensive discussion of the mentioned solution concepts, with recent references to the
literature on differential games.
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3 Open-loop solution

Defining ρ as the preference discount rate, Provider i’s maximisation problem is given by

Maximise
qi

+∞∫

0

Ωi (t) e
−ρtdt, (8)

subject to
.

D(t) = γ(D̂(t)−D(t)), (9)

D(0) = D0 > 0, (10)

where qi is the control variable. Denoting the current-value co-state variable associated with the

state equation by µi(t), the current-value Hamiltonian is
10

Hi = T + (p− c)D −
θ

2
q2i − F + αBi(qi,D) + µiγ

(
1

2
+
qi − qj
2τ

−D
)
, (11)

where µi is the current-value co-state variable associated with the state equation. The solution is

given by

∂Hi
∂qi

= αD +
γ

2τ
µi − θqi = 0, (12)

.
µi = ρµi −

∂Hi
∂D

= µi (ρ+ γ)− (p− c+ α (v + qi − τD)) , (13)

.

D =
∂Hi
∂µi

= γ(
1

2
+
qi − qj
2τ

−D), (14)

and the transversality condition limt→+∞ e
−ρtµi(t)D(t) = 0. The second order conditions11 are

satisfied for θτ > 1. By totally differentiating (12), and substituting (13) and (14), we obtain

.
qi =

αγ

θ
(
1

2
+
qi − qj
2τ

−D)− γ

2τθ
(p− c+ α (v + qi − τD)) + (ρ+ γ)

(
qi −

α

θ
D
)
. (15)

An analogous condition is obtained for
.
qj .

Define as Q := qi − qj the difference in quality between the two providers. The dynamics of the

10For the remainder of the analysis, the indication of time (t) is omitted to ease notation.
11These are given by Hqiqi = −θ < 0, HDD = −ατ < 0 and HDDHqiqi − (HDqi)

2 = α (τθ − α) > 0.
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equilibrium is described by

.

Q =
1

θ

[
α (3γ + 2ρ)

(
1

2
−D

)
+
(
θ (γ + ρ) +

α

2τ
γ
)
Q

]
(16)

and
.

D = γ(
1

2
+
1

2τ
Q−D), (17)

which can be represented in a phase diagram in D-Q-space (Figure 1). If the initial demand for

Provider i is above one half (D > 1
2), then the quality difference Q is strictly positive and converges

towards zero as D converges towards the steady-state level (12).
12 Intuitively, if the initial demand is

above one half, the marginal benefit from quality is higher for Provider i as quality affects a larger

number of consumers.13 Thus, for D0 >
1
2 , Provider i has a stronger incentive than Provider j

to provide quality in the initial period of the game, implying a positive initial quality difference:

Q (0) > 0. However, on the equilibrium dynamic path, the quality difference is sufficiently small

such that D̂ (Q) < D0, implying that Provider i’s potential demand is lower than its actual demand.

As demand for Provider i reduces over time, this provider’s incentive to invest in quality reduces

correspondingly, while the opposite is true for the rival provider. This process continues until the

steady state where quality and demand differences vanish.

[Figure 1 about here]

The steady-state level of quality (where D = 1
2 and

.
qi = 0) is given by

qOL =
2(p− c) γ + α (γ (2v + τ) + 2τρ)

4θτ (γ + ρ)− 2αγ . (18)

It is straightforward to see that steady-state quality will be higher with a higher price or with more

motivated providers. The relationship between steady-state quality and the intensity of competition

(measured by τ−1 or γ), in the open- and closed-loop solutions, will be explored later in Section 6.

12The condition α < α also ensures stability in the saddle-path sense, i.e., there is only one admissible path which
leads to the steady state. Details are available upon request.
13From (6), for a given level of demand, the marginal benefit of quality is

∂Bi
∂qi

= D

and thus increasing with demand.
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4 Closed-loop solutions

4.1 Memoryless closed-loop rule

According to this rule, the problem (8), (9) and (10) of Provider i, with the corresponding Hamil-

tonian (11), must be solved by taking into account the interaction between the rival’s control variable

qj and the state D at any point in time. More specifically, the first-order condition (12), the con-

straint (14), and transversality condition remain unchanged. However, the adjoint equation (13) has

to be replaced by the following:

.
µi = ρµi −

∂Hi
∂D

− ∂Hi
∂q̂j

∂q̂j
∂D
, (19)

where the term ∂Hi
∂q̂j

∂q̂j
∂D captures the interaction between the rival’s choice and the state. Provider i

explicitly considers the fact that, at any point in time, the state variable affects the rival’s optimal

quality, which in turns affects his own choice. Since
∂q̂j
∂D = −α

θ (i.e., higher demand from Provider i

reduces the quality of Provider j); and ∂Hi
∂q̂j

= − γ
2τ µi (i.e., a higher quality of Provider j reduces the

utility of Provider i),14 condition (19) can be written as

.
µi = µi (ρ+ γ)− (p− c+ α (v + qi − τD))−

αγµi
2θτ

. (20)

The standard solution procedure15 leads to

.
qi =

αγ

θ

(
1

2
+
qi − qj
2τ

−D
)
− γ

2τθ
(p− c+ α(v + qi − τD)) +

[
(ρ+ γ)− αγ

2τθ

]
(qi −

α

θ
D). (21)

In the symmetric steady state, where D = 1/2 and qi = qj, we obtain the steady-state level of quality

in the memoryless closed-loop solution by solving for
.
qi = 0, yielding

qML =
2θγ (p− c) + α (2θ (ρτ + γv) + γ(τθ − α))

4θ (τθ(γ + ρ)− γα) , (22)

which is also increasing in α and p.

14These properties are also due to the fact that providers’ motivation is such that each of them derives utility from
the satisfation of his own clients. Notice also that the property ∂q̂j/∂D < 0 is consistent with the intertemporal
strategic substitutability of choice variables mentioned below.
15 I.e., obtain qi from (12) and differentiate it with respect to time; substitute the dymanics of D and µi and substitute

µi by its expression from (12).
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4.2 Feedback closed-loop rule

When solving for the feedback closed-loop solution, we restrict attention to stationary Markovian

strategies, obtaining a stationary Markovian Nash equilibrium in linear strategies. The full derivation

of the feedback solution is given in the Appendix. The equilibrium dynamic decision rules are found

to be

qi = φi(D) =
α

θ
D + (σ1 + σ2D)

γ

2τθ
(23)

and

qj = φj(D) =
α

θ
(1−D) + (σ1 + σ2(1−D))

γ

2τθ
, (24)

where

σ1 =
4θτ2 (p− c+ αv) + 2τγσ2 (θτ − α)− γ2σ22

4τ (θτ (γ + ρ)− αγ)− γ2σ2
(25)

and

σ2 =
τ

3γ2

(
(2θτ (2γ + ρ)− 4αγ)−

√
(2θτ (2γ + ρ)− 4αγ)2 + 12αγ2 (θτ − α)

)
< 0. (26)

From (23)-(24), notice that ∂qi/∂ (1−D) < 0 and ∂qj/∂D < 0. Thus, according to the definition

given by Jun and Vives (2004), qualities are intertemporal strategic substitutes. That is, the control

(quality) of each player responds negatively to a positive change in the state (demand) of the other

player.16

Applying the steady-state condition D = 1/2 to (23)-(24), steady-state quality in the feedback

solution is

qFB =
12θγ (p− c+ αv) + 10θατρ+ 2αγ (θτ − α) + α

√
(2θτ (2γ + ρ)− 4αγ)2 + 12αγ2 (θτ − α)

2θ

(
8γ (θτ − α) + 10θτρ+

√
(2θτ (2γ + ρ)− 4αγ)2 + 12αγ2 (θτ − α)

) .

(27)

As in the open-loop and memoryless closed-loop solutions, steady-state quality is increasing in p and

α.

16From (23)-(24), it can easily be shown that ∂qi
∂(1−D) < 0 and

∂qj
∂D

< 0 if α < θτ(2ρ+5γ)
2γ . Our assumption of α < α

ensures that this condition is always met.
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5 Comparison of steady-state quality levels

One of our main objectives is to investigate which solution concept yields the most competitive

outcome in terms of steady-state quality levels. A comparison of the previously derived steady-state

quality levels yields the following result:

Proposition 1 (i) If α = 0 or p = p̃, then qML = qFB = qOL;

(ii) If α > 0 and p > p̃, then qML > qFB > qOL;

(iii) If α > 0 and p < p̃, then qOL > qFB > qML; where

p̃ := c− α
( α
2θ
+ v − τ

2

)
> p. (28)

Proof. From (18) and (27): qFB > (<) qOL if 2γΦ
[
2θ (p− c) + α

(
α+ 2θ

(
v − τ

2

))]
> (<) 0 where

Φ := 2 (2θτγ + θτρ+ αγ)−
√
(2 (2θτγ + θτρ+ αγ))2 − 12θατγ (3γ + 2ρ) > 0.

From (18) and (22): qML > (<) qOL if 2γ2α
[
2θ (p− c) + α

(
α+ 2θ

(
v − τ

2

))]
> (<) 0. Notice that

Φ = 0 if α = 0, implying that qFB = qOL = qML if α = 0. For α > 0, the comparison between

qFB and qOL, and the comparison between qML and qOL, both depend on the sign of 2θ (p− c) +

α
(
α+ 2θ

(
v − τ

2

))
. From (27) and (22): qML > (<) qFB if

γ
(√
Ψ− (2γ (θτ − α) + θτρ)

) [
2θ (p− c) + α

(
α+ 2θ

(
v − τ

2

))]

4θ (γ (θτ − α) + θτρ)
(
4γ (θτ − α) + 5θτρ+

√
Ψ
) > (<) 0,

where Ψ := (θτ (2γ + ρ))2 − αγ (θτ (5γ + 4ρ)− αγ) > 0. Notice that
√
Ψ− (2γ (θτ − α) + θτρ) > 0

since Ψ − (2γ (θτ − α) + θτρ)2 = 3αγ2 (θτ − α) > 0. Thus, the comparison between qML and qFB

also depend on the sign of 2θ (p− c) +α
(
α+ 2θ

(
v − τ

2

))
. The sign of this expression is determined

by the critical value of the price given by p̃, which then determines the quality ranking stated in the

Proposition. Finally, notice that p̃− p = α
2θγ (γ (2θτ − α) + 2θτρ) > 0.

The first part of the proposition confirms a result already provided by Brekke et al. (forthcoming).

Under pure profit-maximising behaviour and with production costs that are linear in output, there is
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an absence of strategic interaction that yields the stated coincidence results.17 The second and third

parts of the proposition present results that, to the best of our knowledge, are new to the literature.

In regulated markets where motivated providers compete dynamically on quality, steady-state quality

is highest in the memoryless closed-loop solution and lowest in the open-loop solution, if the price

is above a certain threshold level. Otherwise, if the price is sufficiently low, steady-state quality is

highest in the open-loop solution and lowest in the memoryless closed-loop solution. Notice that the

threshold value of p is such that the price mark-up on marginal cost is negative, i.e., p̃ < c.

The intuition for these new results is found by noticing how the presence of motivated providers

affects the strategic nature of quality competition. Suppose that Provider i increases its quality.

This reduces the number of consumers patronising Provider j and therefore also reduces the marginal

benefit of quality investments for altruistic reasons (i.e., ∂Bj/∂qj is reduced). Consequently, Provider

j responds by reducing its quality. In other words, qualities are strategic substitutes at each point in

time.

If the price is sufficiently high, p > p̃, this strategic substitutability makes dynamic competition

tougher in the closed-loop solutions (under memoryless or feedback rules), where players can set

their quality choices according to the evolution of demand and taking into account the strategic

interaction at each instance of time. By increasing its quality today, Provider i can provoke a quality

reduction from its competitor tomorrow (and vice versa). Due to this strategic nature of the dynamic

competition, and due to the lack of any form of commitment over time, steady-state quality turns

out to be higher in the closed-loop solutions as compared to the open-loop case.

However, this conclusion holds only if each provider has a sufficiently strong incentive to increase

demand. The lower the price is, the lower is the incentive to attract more consumers for profit-

oriented reasons. If the price is sufficiently low, such that the providers face a negative price-cost

margin (p < c), the incentive to attract more consumers for altruistic reasons is counteracted by

incentives to dampen demand for financial reasons. Indeed, if the price is sufficiently below marginal

costs (p < p̃ < c), implying that the incentives to compete for consumers are relatively weak, a more

collusive outcome with lower steady-state quality levels, is achieved under closed-loop rules. Notice

that provider motivation (α > 0) still ensures that quality levels are positive even if providers face

17Brekke et al. (forthcoming) only consider the open-loop and the feedback closed-loop solution. Here we confirm
that the coincidence result also applies to the memoryless closed-loop solution.
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negative price-cost margins. With purely profit-oriented providers, interior solutions would not exist

if p < c: for example, if hospitals maximise profits and are paid through block grants they would

have no incentives to provide quality above the minimum level, which seems an obvious theoretical

conclusion, but an implausible scenario for the real world.

By drawing on the analysis of Brekke et al. (forthcoming), we can also say something about

the robustness of Proposition 1 with respect to alternative cost assumptions. In our analysis we

have, for simplicity, assumed constant marginal production costs. In a similar modelling framework,

Brekke et al. (forthcoming) show that steady-state quality is higher in the open-loop solution than

in the feedback closed-loop solution with increasing marginal production costs and profit-maximising

providers. Thus, allowing for cost convexity is likely to increase the threshold level of provider

motivation above which steady-state quality is higher under closed-loop rules. More specifically, our

conjecture is that, with convex provision costs, quality will be higher under closed-loop decision rules

if the degree of provider motivation is sufficiently high relative to the degree of cost convexity.

6 Competition intensity and steady-state quality

Let us now see how steady-state quality depends on the intensity of competition under the different

solution concepts. In our model there are two reasonable measures of competition intensity; the

degree of competition increases if travelling costs become lower (a decrease in τ) and/or if demand

becomes less sluggish (an increase in γ). Notice that both of these measures can be influenced by

policy. For example, by making publicly available quality indicators measuring the performance of,

e.g., hospitals or schools, the government can increase consumer awareness about quality and thereby

reducing demand sluggishness.18

For tractability reasons, we restrict attention to the open-loop and the memoryless closed-loop

solutions. From Proposition 1 we know that these two rules always yield the highest and lowest

steady-state quality levels. From (18) and (22), we derive the following results:

Proposition 2 Consider the steady-state quality in the open-loop and memoryless closed-loop solu-

18An example of such policy measures is the publication of hospital and school ‘League Tables’ in the UK.
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tions, respectively. The effects of lower travelling costs are given by

−∂q
OL

∂τ
= γ

(
α (α (γ + 2ρ) + 4vθ (γ + ρ)) + 4θ (γ + ρ) (p− c)

2 (γ (2θτ − α) + 2θτρ)2
)
> (<) 0 if p > (<) pOLτ

and

−∂q
ML

∂τ
= γ

(
2θ (γ + ρ) (p− c+ vα) + α2ρ

4 (γ (θτ − α) + θτρ)2
)
> (<) 0 if p > (<) pMLγ ,

where

pMLτ := c− α
(
v +

αρ

2θ (γ + ρ)

)
> pOLτ := c− α

(
v +

α (γ + 2ρ)

4θ (γ + ρ)

)
> p,

while the effects of less sluggish demand are given by

∂qOL

∂γ
= τρ

(
2θ (p− c) + α (α+ θ (2v − τ))

(γ (2θτ − α) + 2θτρ)2
)
> (<) 0 if p > (<) pγ

and

∂qML

∂γ
= τρ

(
2θ (p+ vα)− α (θτ − α)
4 (γ (θτ − α) + θτρ)2

)
> (<) 0 if p > (<) pγ ,

where

pγ := c− α
(
v − 1

2
τ +

α

2θ

)
> pMLτ .

If providers face a positive price-cost margin (p > c), there is an unambiguously positive relation-

ship between competition intensity and steady-state quality. Lower travelling costs or less sluggish

demand leads to a higher steady-state quality level both under open-loop and closed-loop rules. This

is what we would expect, as lower travelling costs and less sluggish demand make actual demand

more quality-elastic and therefore stimulate each provider’s incentives to increase quality.

However, the relationship between competition intensity and steady-state quality changes if the

providers’ face a sufficiently low price (that is lower than marginal production costs). If the price-cost

margin is negative, the providers’ optimal quality choices result from two counteracting incentives,

as previously discussed. The providers have an incentive to increase quality for altruistic reasons

(α > 0) but they also have an incentive to reduce quality for profit-oriented reasons (since p < c).

More quality-elastic demand, due to lower travelling costs or less sluggish demand, will strengthen

both these incentives, but the profit incentive will increase more if the price is sufficiently low,
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implying that steady-state quality will decrease.19

This result has potentially important policy implications. If policy makers try to stimulate quality

competition by publishing quality indicators in order to make demand less sluggish, this will have

the intended effect only if the providers receive a sufficiently high unit price. Otherwise, if the price

is too low, policy measures to stimulate quality competition by reducing demand sluggishness may

be counterproductive.

The scope for a negative relationship between competition intensity and steady-state quality can

be further explored by comparing the different threshold values of p reported in Proposition 2:

Corollary 1 Since pγ > pMLτ > pOLτ , a negative relationship between competition intensity and

steady-state quality is more likely (i.e., applies for a larger set of parameter values) if we consider a

reduction in demand sluggishness rather than travelling costs, and it is more likely if the providers

use closed-loop rather than open-loop rules.

7 Welfare

In this section we derive first-best quality, in and off steady state, and analyse how first-best quality

can be achieved by optimal price regulation. When analysing optimal price regulation, we restrict

attention to the open-loop and memoryless closed-loop solutions.

We define social welfare as the sum of producers’ and consumers’ surplus net of third-party

payments. Under the assumption that the providers face a limited liability constraint, the transfer

T will be set such that each provider breaks even. Social welfare at time t is then given by

W (t) = (1 + βα)

(∫ D(t)

0
(v + qi (t)− τx) dx+

∫ 1

D(t)
(v + qj (t)− τ (1− x)) dx

)

− (1 + λ)
(
c+

θ

2

(
qi (t)

2 + qj (t)
2
)
+ 2F

)
, (29)

where λ > 0 is the opportunity cost of public funds. A non-trivial issue when defining social welfare

in the presence of motivated providers is whether the altruistic part of provider preferences should

be included (implying that consumer utility is ‘double-counted’) in the welfare function or not. By

19These results resemble some of those reported in Brekke, Siciliani and Straume (forthcoming) who find, in a static
setting, that the relationship between competition and quality is ambiguous in the presence of motivated providers.
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including a binary parameter β = {0, 1}, we make the welfare expression sufficiently flexible to

incorporate both alternatives, double-counting (β = 1) and no double-counting (β = 0).

7.1 Steady-state analysis

We start out by deriving the first-best optimal quality in steady state, where each provider serve

half of the market. Maximising (29) with respect to qualities yields the first-best level of quality in

steady state:

qi = qj = q
∗ =

1 + αβ

2θ (1 + λ)
. (30)

Intuitively, higher costs of quality provision (θ) or higher opportunity costs of public funds (λ ) will

reduce the first-best level of quality. On the other hand, allowing for double-counting of consumer

utility (β = 1) increases the first-best quality, with the effect of double-counting being stronger the

more motived providers are.

What is the optimal price that ensures that steady-state quality will be at the first-best level?

This depends on the decision rules used by the providers. Under open-loop rules, the optimal price,

pOL, is implicitly given by qOL
(
pOL

)
= q∗, yielding

pOL = c+
(1 + αβ) (2θτ (γ + ρ)− αγ)− θα (1 + λ) (2 (vγ + τρ) + τγ)

2γθ (1 + λ)
. (31)

Under memoryless closed-loop rules, the optimal price, pML, is implicitly given by qML
(
pML

)
= q∗,

yielding

pML = c+
2 (1 + αβ) (θτ (γ + ρ)− αγ)− α (1 + λ) (2θ (vγ + τρ) + γ (θτ − α))

2γθ (1 + λ)
. (32)

A comparison of these two optimal prices yields the following result

Proposition 3 The optimal price is higher (lower) under the open-loop than under the memoryless

closed-loop solution if α < (>) α̂ := 1
1−β+λ .

Notice that the critical value α̂ is such thatmin
{
pOL, pML

}
> p̃ for α < α̂ andmax

{
pOL, pML

}
<

p̃ for α > α̂. Thus, if the degree of provider motivation is sufficiently low (α < α̂) and the providers

use memoryless closed-loop rules, first-best quality is achieved by setting a price pML > p̃. At

17



this price, steady-state quality is lower if the players instead use open-loop rules, i.e., qOL
(
pML

)
<

qML
(
pML

)
= q∗. Therefore, a higher price (pOL > pML) is needed to induce first-best quality in

the open-loop solution. However, this result is reversed if provider motivation is sufficiently strong

(α > α̂). In this case, first-best quality is induced in the open-loop solution by setting a price

pOL < p̃. At this price, steady-state quality is now lower when the providers use memoryless closed-

loop rules and the optimal price under the closed-loop solution is therefore higher. The latter case,

where pML > pOL, is more likely to occur in the absence of double-counting (β = 0) and when the

opportunity cost of public funds is high, which imply that the first-best quality level is relatively

low. Notice that a positive opportunity cost of public funds (λ > 0) is a necessary condition for

pML > pOL, since α̂ ≥ 1 for λ = 0.

A further characterisation of the optimal price under the different solution concepts is given by

the following result:

Proposition 4 Suppose that social welfare is defined such that β = 0. In this case, there exist two

threshold values α̃0 and α̃1, where α̃0 < α̃1 < 1, such that the optimal price that implements first-best

quality in steady state implies:

(i) a positive price-cost margin under both the open-loop and the memoryless closed-loop solution

if α < α̃0;

(ii) a negative price-cost margin under the memoryless closed loop solution and a positive price-

cost margin under the open-loop solution if α̃0 < α < α̃1;

(iii) a negative price-cost margin under both the open-loop and the memoryless closed-loop solu-

tions if α > α̃1.

Proof. From (31) we have that pOL (>) < c if

α (<) > α̃1 :=
2θτ (γ + ρ)

γ + θ (1 + λ) (γ (2v + τ) + 2τρ)
< 1.

It is straightforward to confirm that α̃1 < α̂. Thus, for α = α̃1, the optimal price under the

memoryless closed-loop solution is even lower than under the open-loop solution; i.e., pML (α̃1) <

pOL (α̃1) = c. Since pML > c for α = 0 and pML is monotonically decreasing in α, there exists a

threshold value α̃0 ∈ (0, α̃1) such that pML < c if α > α̃0.
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This result has interesting policy implications. If providers are sufficiently motivated, they should

be optimally financed by a combination of lump-sum transfers (T ) and unit prices (p), where the

price does not fully cover the unit costs. Furthermore, the scope for an optimal price below unit

costs is larger if the providers use memoryless closed-loop rules. These conclusions hold if social

welfare is defined such that consumer utility is not double-counted (i.e., if β = 0). If we allow for

double-counting (β = 1), the optimal price would be higher under both solution concepts (in order

to induce the higher first-best quality level). This would reduce the scope for optimal prices below

unit costs.

It is also worth noticing that α̃1 is decreasing in γ. Thus, less sluggish demand increases the

scope for an optimal price below unit costs under both solution concepts.

7.2 Dynamic welfare analysis

We now extend the welfare analysis to consider optimal price regulation off the steady state. In order

to derive the first-best quality benchmark, suppose that the regulator can directly set the providers’

quality levels at each point in time. The first-best dynamic quality paths are then given by the

solution to the following problem:

Maximise
qi,qj

+∞∫

0

W (t) e−ρtdt, (33)

subject to

dD(t)

dt
≡

.

D(t) = γ(D̂(t)−D(t)), (34)

D(0) = D0 > 0, (35)

whereW (t) is given by (29). Let µ(t) be the current value co-state variable associated with the state

equation. The current-value Hamiltonian is20

H = (1 + βα)

[∫ D

0
(v + qi − τx) dx+

∫ 1

D

(v + qj − τ (1− x)) dx
]

− (1 + λ)
[
c+

θ

2

(
q2i + q

2
j

)
+ 2F

]
+ µγ

(
1

2
+
qi − qj
2τ

−D
)
. (36)

20To ease notation, we drop the time index t.
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The solution is given by (a) ∂H/∂qi = 0, ∂H/∂qj = 0, (b)
.
µ = ρµ − ∂H/∂D, (c)

.

D = ∂H/∂µ, or

more extensively:

(1 + βα)D +
γ

2τ
µ = (1 + λ) θqi, (37)

(1 + βα) (1−D)− γ

2τ
µ = (1 + λ) θqj, (38)

.
µ = µ (ρ+ γ)− (1 + βα) [qi − qj + τ (1− 2D)] , (39)

.

D = γ(
1

2
+
qi − qj
2τ

−D), (40)

to be considered along with the transversality condition limt→+∞ e
−ρtµ(t)D(t) = 0. The above

conditions are also sufficient if H is concave in (qi, qj ,D), which is the case for θτ > 1.
21 By totally

differentiating (37), and using (39)-(40), the optimal solution is provided by:

.
qi
∗
= (ρ+ γ)

(
q∗i −

1 + βα

(1 + λ) θ
D∗
)
, (41)

.
qj
∗
= (ρ+ γ)

(
q∗j −

1 + βα

(1 + λ) θ
(1−D∗)

)
, (42)

.

D
∗
= γ(

1

2
+
q∗i − q∗j
2τ

−D∗). (43)

Setting
.
qi
∗
= 0 and differentiating yields

∂D∗

∂q∗i
| .
q∗i=0

= θ > 0. (44)

From (37) and (38), it also follows that q∗j =
1+βα
(1+λ)θ − q∗i , which means that we can re-write (43) as

.

D
∗
= γ

[
1

2
−D∗ + 1

τ

(
q∗i −

1 + βα

2 (1 + λ) θ

)]
. (45)

Setting
.

D
∗
= 0 and differentiating yields ∂D

∗

∂q∗i
| .
D=0

= 1
τ
> 0. The first-best solution is described

in Figure 2. Similarly to the equilibrium paths under the open-loop or memory-less closed-loop

21H is concave in (qi, qj ,D) if the Hessian matrix



Hqiqi Hqiqj HqiD

Hqjqi Hqjqj HqjD

HDqi HDqj HDD


 =



−θ 0 1
0 −θ −1
1 −1 −2τ




is negative semidefinite. This is true if θτ > 1.
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solutions, quality and demand move together on the socially optimal path. For D0 >
1
2 , the quality

for Provider i is higher than Provider j. Intuitively, if initially Provider i has more than half of

the market, the marginal benefit from quality is higher for Provider i, as quality affects a larger

number of consumers. As demand for Provider i reduces over time, the optimal quality for Provider

i (j) reduces (increases). This process continues until the steady state where quality and demand

differences vanish.

[Figure 2 about here]

Let us now see how the regulator can implement the first-best quality paths off steady state by

choosing provider-specific and time-varying prices. We want to investigate how the optimal prices

depend on whether quality and demand are off the steady state or not, and how these prices differ

according to whether the providers use open-loop or closed-loop rules.

Comparing (41) with (15), the optimal price for Provider i under the open-loop scenario is

pOLi = c+
2τ

γ
(ρ+ γ)

(
1 + βα

1 + λ
− α

)
D∗ − α (v + q∗i − τD∗) + 2τα

(
1

2
+
q∗i − q∗j
2τ

−D∗
)
. (46)

Recall that pOL, given by (31), is the optimal steady-state price when the providers use open-loop

rules. Whether the optimal off-steady-state price for Provider i is higher or lower than the steady-

state one depends on the sign of the following expression:

pOLi − pOL =
2τ

γ
(ρ+ γ)

(
1 + βα

1 + λ
− α

)(
D∗ − 1

2

)
− α

((
q∗i −

1

2θ

)
− τ

(
D∗ − 1

2

))

+2ατ

(
1

2
+
q∗i − q∗j
2τ

−D∗
)
. (47)

Suppose that D0 > 1/2 and 1+βα
1+λ − α > 0, so that first-best quality and initial demand are

above the steady-state levels for Provider i. There are three terms to account for. The first term

takes into account the fact that the provider does provide higher quality when the demand is high,

but not as much as the regulator would like. The regulator needs therefore to increase the price.

The second term takes into account the extra utility for the provider from treating the marginal

consumer. There are two counteracting effects: on one hand quality is higher than in the first best

but transportation costs are also higher. Depending on the net effect (i.e., whether the utility of the
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marginal consumer is higher or lower off steady state or in the steady state), the price tends to be

higher or lower compared to the steady state. The third term is negative as demand is decreasing

over time (
.

D
∗
< 0) and therefore the provider has a lower incentive to provide quality, which needs

to be compensated with a higher price.

Comparing (41) with (21), the optimal price for Provider i under the memoryless closed-loop

scenario is given by

pMLi = c+
2τ

γ
(ρ+ γ)

(
1 + βα

1 + λ
− α

)
D∗−α (v + q∗i − τD∗)+2τα(

1

2
+
q∗i − q∗j
2τ

−D∗)−α(q∗i −
α

θ
D∗).

(48)

Using (46) and (48), the optimal dynamic prices under the open-loop and memoryless closed-loop

scenarios compare as follows:

pOLi (t)− pMLi (t) = α(q∗i (t)−
α

θ
D∗(t)). (49)

Using the optimal steady-state prices under the two solution concepts, this expression can be rewritten

as

pOLi (t)− pMLi (t) =
(
pOL − pML

)
+ α

[
1

θ

(
1 + βα

1 + λ
− α

)(
D∗ − 1

2

)
+

(
q∗i −

1 + βα

(1 + λ) θ
D∗
)]
. (50)

Once more, suppose that 1+βα1+λ −α > 0 and D0 > 1/2, implying that first-best quality and initial

demand are above the steady-state levels for Provider i. The first term in (50) gives the difference in

optimal steady-state prices between the open-loop and memoryless closed-loop case. This difference

is positive for 1+βα1+λ − α > 0 (cf. Proposition 4). The second term is also positive by the assumption

D0 > 1/2. The third term is always negative since
.
qi
∗
= (ρ+ γ)

(
q∗i − 1+βα

(1+λ)θD
∗
)
< 0, as we can see

from the phase diagram in Figure 2. Therefore, the difference in optimal prices between the open-

loop and memoryless closed-loop cases can be larger or smaller off the steady state.22 An interesting

special case is when β = 0 (no ‘double-counting’ of consumer utility), so that q∗i and D
∗ do not

depend on altruism. In this case, when α is sufficiently high the second term is small, which suggests

that the price difference will be smaller off the steady-state (as the third term is negative) and then

increase as the system converges to the steady state. This is most clearly seen by considering the limit

22Notice that in the steady state the second and third terms are equal to zero.
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case α = 1+βα
1+λ , where p

OL = pML while pOLi (t) < pMLi (t) off steady state. If α is marginally larger

than 1+βα
1+λ , the optimal price for Provider i is higher under open-loop than under closed-loop rules

in steady state (pOL > pML), while the opposite is true off steady state (pOLi (t = 0) < pMLi (t = 0)).

8 Concluding remarks

In this paper we have analysed quality competition between publicly funded providers in markets with

sluggish demand, the prime applications of our analysis being health care and education (hospital

or school competition). We have shown that, in such markets, the presence of provider motivation

makes a crucial difference for the dynamic nature of quality competition. In contrast to previous

results in the literature, we have shown that steady-state quality is higher under closed-loop rules

(when competition is more intense) than under open-loop rules, if the providers face sufficiently high

unit prices. Any price in excess of unit costs is sufficient to produce this result. However, the result is

reversed if the price is sufficiently below unit costs). Interestingly, we have shown that the ranking of

steady-state qualities in the three different solution concepts considered depends on a single threshold

value of the price. An implication of this is that both the highest and the lowest steady-state quality

levels are always to be found either in the open-loop or in the memoryless closed-loop solutions. In

contrast, the feedback closed-loop solution always provides intermediate levels of steady-state quality,

regardless of the price.

In markets with sluggish demand, policy makers can try to reduce demand sluggishness by col-

lecting and publishing quality indicators on a regular basis, in order to make consumers more aware

of quality differences between providers. As a policy measure to stimulate quality competition, we

have shown that this may be counterproductive if the providers face a price that is below unit costs.

Therefore policies with high unit prices and policies which increase information are complements. If

the price is sufficiently below unit costs, more quality-responsive demand will reduce quality in steady

state, and this is more likely to happen if providers use closed-loop decision rules. Nevertheless, in

our welfare analysis we have shown that the optimal design of the provider payment system implies

prices below unit costs if the degree of provider motivation is sufficiently high.
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Appendix: Solving for the feedback closed-loop solution

Using (6), Provider i’s instantaneous objective function is

T + (p− c)D − θ
2
q2i − F + α

[
(v + qi)D −

τD2

2

]
, (A1)

which, together with (3), defines a linear-quadratic problem. The value function of Provider i is

therefore defined as

V i(D) = σ0 + σ1D + (σ2/2)D
2. (A2)

Focusing on stationary Markovian linear strategies, defined by qi = φi(D) and qj = φj(D), the

value function must satisfy the Hamilton-Jacobi-Bellman (HJB) equation, which, for Provider i, is

given by

ρV i(D) = max

{
T + (p− c)D − θ

2
q2i − F + α((v + qi)D − τ

D2

2
) + V iDγ

(
1

2
+
qi − qj
2τ

−D
)}

(A3)

Maximisation of the right-hand-side of (A3) yields αD − θqi + V iD γ
2τ = 0, which, after substitution

of V iD = σ1 + σ2D, yields

qi = φi(D) =
α

θ
D + (σ1 + σ2D)

γ

2τθ
, (A4)

and, by symmetry,

qj = φj(D) =
α

θ
(1−D) + (σ1 + σ2(1−D))

γ

2τθ
. (A5)

(A3) can therefore be expressed as

ρV i(D) =





T + (p− c)D − θ
2

(
α
θD + (σ1 + σ2D)

γ
2τθ

)2 − F

+α
((
v +

(
α
θD + (σ1 + σ2D)

γ
2τθ

))
D − τ D2

2

)

+(σ1 + σ2D) γ

(
1
2 +

(αθD+(σ1+σ2D)
γ
2τθ )−(

α
θ
(1−D)+(σ1+σ2(1−D))

γ
2τθ )

2τ −D
)





. (A6)

For the above equality to hold, the parameters must satisfy the following equations:
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ρσ0 −
1

2
γσ1 − T + F +

1

8θτ2
γ2σ21 +

1

4θτ2
γ2σ1σ2 +

1

2θ

α

τ
γσ1 = 0 (A7)

(
γσ1 + ρσ1 −

αγ

θτ
σ1 − (p− c)− vα−

γ

2
σ2 +

γ2

4θτ2
σ22 +

α

2θτ
γσ2 −

γ2

4θτ2
σ1σ2

)
D = 0 (A8)

(
ατ

2
− 1

2θ
α2 + σ2

(
γ +

ρ

2
− 1
θ

α

τ
γ

)
− 3γ2

8θτ 2
σ22

)
D2 = 0 (A9)

Solving (A8) for σ1 yields (25), while solving (A9) for σ2 yields two candidate solutions:

σ2 =
τ

3γ2

(
(2θτ (2γ + ρ)− 4αγ)±

√
(2θτ (2γ + ρ)− 4αγ)2 + 12αγ2 (θτ − α)

)
.

Since the value function must be concave in order to ensure stable strategies, we select the negative

root. The steady-state level of quality is found by substituting the derived expressions for σ1 (from

(A8)) and σ2 into (A4) or (A5) and setting D =
1
2 .
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Figure 1. Phase diagram for the open-loop solution 
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Figure 2. First best quality
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