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Abstract 
 

In this paper, we analyze different first-order methods of smooth convex optimization employing 
inexact first-order information. We introduce the notion of an approximate first-order oracle. The list 
of examples of such an oracle includes smoothing technique, Moreau-Yosida regularization, Modified 
Lagrangians, and many others. For different methods, we derive complexity estimates and study the 
dependence of the desired ac- curacy in the objective function and the accuracy of the oracle. It 
appears that in inexact case, the superiority of the fast gradient methods over the classical ones is not 
anymore absolute. Contrary to the simple gradient schemes, fast gradient methods necessarily suffer 
from accumulation of errors. Thus, the choice of the method depends both on desired accuracy and 
accuracy of the oracle. We present applications of our results to smooth convex-concave saddle point 
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1 Introduction

In large-scale convex optimization, first-order methods remain the methods of choice due
to their cheap iteration cost. When the objective function is assumed to be smooth (e.g.
its gradient is Lipschitz-continuous with constant L), the simplest numerical schemes to
be considered are the gradient method and its variants. However, it is well known that
these methods exhibit non optimal worst-case complexity of O

(
L
ε

)
iterations, where ε is

the desired accuracy for the objective function.
In the black-box framework, the first-order methods that achieve the lower complexity

bound of O

(√
L
ε

)
iterations, have been developed for various classes of problems since

1983 [18, 19, 13, 14]. Theses schemes, also called Fast Gradient Methods (FGM), outper-
form theoretically, and often in practice, the classical gradient methods. A new interest
to this field has appeared in the last years with development of smoothing technique for
non-smooth convex problems (see [14, 15, 16, 4]). In this approach, FGMs are used for
minimizing a smooth approximation of the initial nonsmooth objective function.

All these first-order methods need an exact first-order information. Namely, at each
point, the oracle must provide an exact value of the function and its gradient. However,
in the problem obtained by the smoothing technique, the gradient of the modified objec-
tive function is computed by solving another auxiliary optimization problem. In many
situations in practice, we are able to solve this subproblem only approximately. Hence,
the first-order information given to numerical methods is often inexact. This is only one
among many other examples, which motivate our research in analyzing the behavior of
first-order methods working with inexact oracle.

In this paper, in Section 2 we introduce a new definition of inexact first-order oracle
and give some simple examples. In Section 3, we show how our concept works in the
situations when the inexact oracle is computed by an auxiliary optimization problem. In
particular, we consider convex-concave saddle point problems, modified Lagrangians, and
Moreau-Yosida regularization.

In the Sections 4 and 5, we look at the classical and fast gradient methods for F 1,1
L (Q),

the class of convex functions which gradient is Lipschitz-continuous on convex set Q with
constant L. We obtain their efficiency estimates under assumption that the available
oracle provides us only with approximative first-order information. For each method,
we also study the link between the desired accuracy in the objective function and the
necessary accuracy of the oracle.

It appears that in inexact case, the superiority of FGM over the classical one is not
anymore absolute. If the accuracy of the oracle is not high enough, any FGM, contrarily
to the classical gradient method, suffers from accumulation of errors. Hence, the choice
between these methods depends on the relative complexity of computations in inexact
oracle. This comparison is done in Section 6.

In Section 7, we compare our approach with other popular definitions of inexact or-
acle, as applied to the smoothed max-representable functions typically obtained by the
smoothing techniques [3, 1]. We show that our definition can give better complexity
results.

In Section 8, we discuss the consequences of the applicability of our definition of inexact
oracle to non-smooth and weakly-smooth convex problems. In our approach, it is possible
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to apply any first-order method of smooth convex optimization (i.e. developed for the
class F 1,1

L (Q)) to functions with a weaker level of smoothness. For that, we just replace
in the method the gradients by subgradients (this is for non-smooth case), and use the
Lipschitz constants, which grow with the desired accuracy. In this way, we can obtain a
“universal” first-order method, which has the optimal rate of convergence for objective
functions with different level of smoothness. By this application, we prove the lower
bounds on the rate of accumulation of errors in the first-order methods. It appears that
accumulation of errors is a intrinsic property of any FGM. The slower gradient methods
are able to keep the error on the level of accuracy of the oracle. All methods discussed in
our paper have the lowest possible rate of accumulation of errors.

In the last Section 9, for the problems with strongly convex objective function, we
obtain the complexity results and study the links between oracle accuracy and desired
accuracy for the solution.

2 Definition of inexact first-order oracle

Consider the following convex optimization problem:

f∗ = min
x∈Q

f(x), (1)

where Q is a closed convex set in a finite-dimensional space E, and function f is convex
on Q. The space E is endowed with the norm ‖·‖E and E∗, the dual space of E, with
‖g‖∗E = supy∈E{|〈g, y〉| : ‖y‖E ≤ 1} where 〈., .〉 denotes the dual pairing. Let (1) be
solvable with optimal solution x∗.

Definition 1 Let function f be convex on convex set Q. We say that it is equipped with a
first-order (δ, L)-oracle if for any y ∈ Q we can compute a pair (fδ,L(y), gδ,L(y)) ∈ R×E∗
such that for all x ∈ Q we have

fδ,L(y) + 〈gδ,L(y), x− y〉 ≤ f(x)

≤ fδ,L(y) + 〈gδ,L(y), x− y〉+ L
2 ‖x− y‖

2
E + δ.

(2)

We denote by Oδ,L[f ](y) = (fδ,L(y), gδ,L(y)) the response of the oracle at point y.

In some applications, the Lipschitz constant L is a function of the oracle accuracy
δ, which can be chosen arbitrarily. In this case, we have a one-parametric family of
(δ, L(δ))-oracles.

Recall that for functions in F 1,1
L (Q), for any pair of point x, y ∈ Q we have

f(y) + 〈∇f(y), x− y〉 ≤ f(x) ≤ f(y) + 〈∇f(y), x− y〉+ L
2 ‖x− y‖

2
E . (3)

Thus, our definition is a generalization of the properties of the standard first-order oracle
providing the exact gradient and the exact function value. However, as we will see soon,
our approach is not restricted by the functions from F 1,1

L (Q).
Let us mention the most important properties of (δ, L)-oracle.
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• Taking in (2) x = y, we obtain:

fδ,L(y) ≤ f(y) ≤ fδ,L(y) + δ. (4)

Thus, fδ,L(y) is a lower δ-approximation of the function value.

• For all x, y ∈ Q we have

f(x) ≥ fδ,L(y) + 〈gδ,L(y), x− y〉 ≥ f(y) + 〈gδ,L(y), x− y〉 − δ. (5)

Therefore gδ,L(y) is an δ-subgradient of f at y ∈ Q:

gδ,L(y) ∈ ∂δf(y) = {z ∈ E∗ : f(x) ≥ f(y) + 〈z, x− y〉 − δ ∀x ∈ Q}.

Methods of non-smooth convex optimization based on δ-subgradients have a long
history (see e.g. [21, 20, 2, 10] for subgradient methods, and [2, 7, 8] for proximal
point and bundle methods). In our paper, we will show that the second inequality
in (2) can be satisfied even by usual subgradient. This opens a possibility for using
FGM in nonsmooth convex optimization.

• If 〈gδ,L(y), x − y〉 ≥ 0, for all x ∈ Q, then fy,δ ≤ f∗ and therefore f(y) ≤ f∗ + δ.
Thus, (δ, L) oracle provides us with a certificate for the quality of an approximate
solution.

• Let Q ≡ E. Then for any gy ∈ ∂f(y) we have

‖gy − gδ,L(y)‖∗E ≤ [2δL]1/2. (6)

Indeed, for any x ∈ E we have f(x) ≥ f(y) + 〈gy, x − y〉 ≥ fδ,L(y) + 〈gy, x − y〉.
Comparing this inequality with the second part of (2), we get (6).

• If fi has (δi, Li)-oracle, i = 1, 2, then f1 + f2 has (δ1 + δ2, L1 + L2)-oracle.

In the end of this sections, let us consider two simple examples of inexact oracle. The
more serious applications will be given in Section 3.

1. Computations at shifted points. Let function f ∈ F 1,1
M (Q) be endowed with an

oracle providing at each point y ∈ Q the exact values of function and gradient computed
at a shifted point yδ. Let us show that such an oracle can be seen as an (δ, L)-oracle with

δ = M ‖y − yδ‖2E , L = 2M.

Indeed, the first inequality in (2) is satisfied since for any x ∈ Q we have

f(x) ≥ f(yδ) + 〈∇f(yδ), x− yδ〉

= f(yδ) + 〈∇f(yδ), y − yδ〉+ 〈∇f(yδ), x− y〉.

Thus, we can take fδ,L(y)
def
= f(yδ) + 〈∇f(yδ), y − yδ〉, and gδ,L(y)

def
= ∇f(yδ).

In order to prove the second inequality in (2), note that for all x ∈ Q we have

f(x)
(3)

≤ f(yδ) + 〈∇f(yδ), x− yδ〉+ M
2 ‖x− yδ‖

2
E

= f(yδ) + 〈∇f(yδ), y − yδ〉+ 〈∇f(yδ), x− y〉

+M
2 ‖x− y‖

2
E + M

2 ‖x− yδ‖
2
E −

M
2 ‖x− y‖

2
E .
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Since ‖ · ‖2E is a convex function, ‖x− yδ‖2E ≤ 2‖y − yδ‖2E + 2‖x− y‖2E . Therefore,

f(x) ≤ fδ,L(y) + 〈gδ,L(y), x− y〉+M ‖x− y‖2E +M ‖y − yδ‖2E .

Thus, we can take L = 2M and δ = M‖y − yδ‖2E .
2. Convex problems with weaker level of smoothness. Let us show that the

notion of (δ, L)-oracle can be useful for solving the problems with exact first-order informa-
tion, but with lower level of smoothness. Let function f be convex and subdifferentiable
on Q. For each y ∈ Q we fix its unique subgradient g(y) (this has nontrivial sense for
nonsmooth functions only). Assume that f satisfies the following smoothness condition:

‖g(x)− g(y)‖∗E ≤ Lν ‖x− y‖νE , ∀x, y ∈ Q, (7)

where ν ∈ [0, 1], and Lν < +∞. This condition leads to the following inequality:

f(x) ≤ f(y) + 〈g(y), x− y〉+ Lν
1+ν ‖x− y‖

1+ν
E , ∀x, y ∈ Q. (8)

Denote the class of such functions by F 1,ν
Lν

(Q). If ν = 1, we get functions with Lipschitz-
continuous gradient. For ν < 1, we get lower level of smoothness. In particular, if ν = 0,
then we get functions with bounded variation of subgradients. Clearly, the latter class
includes functions which subgradients are uniformly bounded by M (just take L0 = 2M).

Let us fix ν ∈ [0, 1) and arbitrary δ > 0 . We are going to find a constant A(δ, ν) such
that for any function from F 1,ν

Lν
(Q) we have

f(x)− f(y)− 〈g(y), x− y〉 ≤ A(δ,ν)
2 ‖x− y‖2E + δ, ∀x, y ∈ Q. (9)

Then, we can apply to these functions the usual first-order methods working with inexact
(δ, A(δ, ν))-oracle. Comparing (8) and (9), we come to the following definition:

A(δ, ν) = 2 max
t≥0

{
Lν

1+ν t
−1+ν − δt−2

}
(τ=1/t2)

= 2 max
τ>0

{
Lν

1+ν τ
1−ν
2 − δτ

}
.

The optimal value of τ in the later maximization problem is τ∗ =
[
Lν
2δ ·

1−ν
1+ν

] 2
1+ν

. Thus,

A(δ, ν) = 2τ
1−ν
2
∗

[
Lν

1+ν − δτ
1+ν
2
∗

]
= Lντ

1−ν
2
∗ = Lν

[
Lν
2δ ·

1−ν
1+ν

] 1−ν
1+ν

. (10)

In particular, for ν = 0 (functions with bounded variation of subgradients),

A(δ, 0) =
L2
0

2δ . (11)

Thus, the exact first-order oracle for nonsmooth convex functions can be seen as an (δ,
L2
0

2δ )-
oracle. The similar statement is true for functions with Hôlder-continuous gradient (7).
Therefore, we can cover the problems with weaker level of smoothness by our analysis of
the methods working with (δ, L)-oracle. Note that in this case, δ does not really represent
an accuracy of the oracle. The choice of a smaller δ does not cost more, and the answer
of the oracle is the same for any δ. However, the corresponding Lipschitz constant grows

as O
(
δ−

1−ν
1+ν

)
. These observations give us a possibility to apply any first-order method of

smooth convex optimization to non-smooth or weakly smooth functions (see Section 8).
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Remark 1 This analysis can easily be generalized to the case where we use δ-subgradients
with bounded variations instead of exact subgradients. We obtain in this case a (2δ, A(δ, ν))-
oracle.

Remark 2 Another typical approach in order to apply first-order method of F 1,1
L (E) to

a function with a weaker level of smoothness is to smooth the function using averaging
of the first-order informations. Assume that E is endowed with the standard euclidean
norm. Consider a convex function f ∈ F 1,0

M . Let δ > 0, z ∈ E, and define:

fδ(z) =
1

Vδ

∫
‖y−z‖2≤δ

f(y)dy

gδ(z) = ∇fδ(z) =
1

Vδ

∫
‖y−z‖2≤δ

g(y)dy

where Vδ denotes the volume of the Euclidean ball B2(z, δ), and {g(y) : y ∈ B(z, δ)} is
a measurable selection of subgradients of f in this ball. As f is convex and Lipschitz-
continuous with constant M we have:

f(x) ≥ f(y) + 〈g(y), x− z〉+ 〈g(y), z − y〉 ∀x, y, z ∈ E

f(x) ≤ f(y) + 〈g(y), x− z〉+ 〈g(y), z − y〉+M ‖x− y‖2 ∀x, y, z ∈ E.

Averaging now with respect to y these two inequalities, we obtain:

f(x) ≥ fδ(z) + 〈gδ(z), x− z〉 − δM ∀x, z ∈ Z

f(x) ≤ fδ(z) + 〈gδ(z), x− z〉+ δM +
M

Vδ

∫
‖y−z‖2≤δ

‖x− y‖2 dy.

Furthermore, we have:

‖x− y‖2 ≤
√

2 ‖x− z‖22 + 2 ‖y − z‖22 ≤
2 ‖x− z‖22 + 2 ‖y − z‖22

2δ
+
δ

2
.

and therefore:

f(x) ≤ fδ(z) + 〈gδ(z), x− z〉+
M ‖x− z‖2

δ
+

5Mδ

2
.

With δ = 7M
2 δ, fδ,L(z) = fδ(z)− δM , gδ,L(z) = gδ(z), we obtain an (δ, 7M2

2δ )-oracle. Note
that the dependence of L in M and δ is of the same order as what we have using directly
subgradients instead of averaging.

3 Inexact oracles obtained by optimization pro-

cedures

In this section, we consider different smooth convex optimization problems of the form (1)
with objective function defined by another optimization problem:

f(x) = max
u∈U

Ψ(x, u), (12)
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where U is a convex set, and Ψ(x, u) is smooth and strongly concave in u for any x ∈ Q
with concavity parameter κ ≥ 0. The computation of f(x) and ∇f(x) requires the exact
solution of this auxiliary problem. However, very often this is impossible or too costly.
Instead, we have to use the approximate solutions.

We will measure the accuracy of an approximate solution ux for problem (12) in three
different ways:

V1(ux) = max
u∈U
〈∇2Ψ(x, ux), u− ux〉,

V2(ux) = max
u∈U

[
Ψ(x, u)−Ψ(x, ux) + κ

2 ‖ux − u‖
2
E

]
,

V3(ux) = max
u∈U

[Ψ(x, u)−Ψ(x, ux)] .

(13)

Since Ψ(x, ·) is strongly concave, we have:

Ψ(x, u) ≤ Ψ(x, ux) + 〈∇2Ψ(x, ux), u− ux〉 − κ
2‖u− ux‖

2
E , u ∈ U.

Therefore,
V3(ux) ≤ V2(ux) ≤ V1(ux).

For a given level of accuracy δ > 0, the condition V1(ux) ≤ δ is the strongest one, and
condition V3(ux) ≤ δ is the most relaxed.

We describe now three classes of max-type functions for which the approximate solu-
tion of subproblem (12) must satisfy one of conditions Vi(ux) ≤ δ. The choice of i depends
on the class, taking into account the definition of (δ, L)-oracle.

Let us show how to satisfy stopping criterions (13) in practice. The most common
criterion is the third one. It reduces to estimating the optimality gap in the value of
objective function. In many optimization methods there exists a direct control of this
condition. Other criterions are more difficult. Therefore, let us describe a “brut force”
approach for satisfying the strongest condition.

Let Du <∞ be the diameter of U . Let us choose u0 ∈ U and form a new function

Ψ̄(x, u) = Ψ(x, u)− 1
2µ‖u− u0‖22.

Denote by V̄i(u) the corresponding accuracy measures, and u∗x = arg max
u∈U

Ψ̄(x, u). For

any u ∈ U we obtain

0 ≥ 〈∇2Ψ̄(x, u∗x), u− u∗x〉 = 〈∇2Ψ̄(x, u∗x), ux − u∗x〉+ 〈∇2Ψ̄(x, u∗x), u− ux〉

≥ −V̄3(ux) + 〈∇2Ψ̄(x, u∗x)−∇2Ψ̄(x, ux), u− ux〉+ 〈∇2Ψ̄(x, ux), u− ux〉

≥ −V̄3(ux)− ‖∇2Ψ̄(x, u∗x)−∇2Ψ̄(x, ux)‖∗Du + 〈∇2Ψ̄(x, ux), u− ux〉.

Hence, if ∇2Ψ̄(x, ·) is Lipschitz continuous on U with constant L, then we get

V1(ux) ≤ V̄1(ux) + µD2
u

(3)

≤ V̄3(ux) +Du[2LV̄3(ux)]1/2 + µD2
u.
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Thus, if we choose µ = δ
3D2

u
, we can get the desired level of V1(ux) by ensuring V̄3(ux) ≤

δ2

18LD2
u

. Note that function Ψ̄(x, ·) is strongly concave. Therefore, the complexity of its

maximization in the scale V̄3 depends logarithmically on the desired accuracy. If this is

done, for example, by FGM, then it requires at most O(L
1/2

δ1/2
ln 1

δ ) iterations (see section
2.2 in [13]).

3.1 Functions obtained by smoothing technique

Let U be a closed, convex set of a finite dimensional space F endowed with the norm
‖·‖F , and

Ψ(x, u) = G(u) + 〈Au, x〉,

where A : F → E∗ is a linear operator, and G(u) is a differentiable, strongly concave
function with concavity parameter κ > 0. Under these assumptions, optimization problem
(12) has only one optimal solution u∗x. Moreover, f is convex and smooth with Lipschitz-
continuous gradient ∇f(x) = Au∗x. The corresponding Lipschitz-constant is defined as

L(f) = 1
κ‖A‖

2
F→E∗ . (14)

where ‖A‖F→E∗ = max{‖Au‖E∗ : ‖u‖F = 1}. The importance of this class of functions is
justified by the smoothing approach for nonsmooth convex optimization (see [14, 15, 16,
4]).

Suppose that for all y ∈ Q we can find a point uy ∈ U satisfying condition

V3(uy) = Ψ(y, u∗y)−Ψ(y, uy) ≤ δ
2 . (15)

Let us show that then we can construct an (δ, 2L(f))-oracle.
Indeed, since Ψ(·, u) is convex, for all u ∈ U , we have

f(x) = Ψ(x, u∗x) ≥ Ψ(x, uy) ≥ Ψ(y, uy) + 〈∇1Ψ(y, uy), x− y〉

= fδ,L(y) + 〈gδ,L(y), x− y〉,
(16)

where fδ,L(y)
def
= Ψ(y, uy), gδ,L(y)

def
= ∇1Ψ(y, uy) = Auy, and L will be specified later.

Further, note that

〈∇1Ψ(y, u∗y), x− y〉 = 〈gδ,L(y), x− y〉+ 〈A(u∗y − uy), x− y〉. (17)

Since f has Lipschitz-continuous gradient, we have:

f(x) ≤ f(y) + 〈∇f(y), x− y〉+ L(f)
2 ‖x− y‖

2
E

= f(y) + 〈∇Ψ1(y, u∗y), x− y〉+ L(f)
2 ‖x− y‖

2
E

(17)
= f(y) + 〈gδ,L(y), x− y〉+ L(f)

2 ‖x− y‖
2
E + 〈A(u∗y − uy), x− y〉.
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On the other hand, we have:

〈A(u∗y − uy), x− y〉 ≤
∥∥u∗y − uy∥∥F ∥∥AT (x− y)

∥∥
E

(14)

≤ κ
2

∥∥u∗y − uy∥∥2

F
+ L(f)

2 ‖x− y‖
2
E .

Therefore,

f(x) ≤ f(y) + 〈gδ,L(y), x− y〉+ L(f) ‖x− y‖2E + κ
2

∥∥u∗y − uy∥∥2

F
.

Since Ψ is strongly concave, κ
2

∥∥uy − u∗y∥∥2

F
≤ Ψ(y, u∗y)−Ψ(y, uy). Thus,

f(x) ≤ Ψ(y, uy) + 2(Ψ(y, u∗y)−Ψ(y, uy)) + 〈gδ,L(y), x− y〉+ L(f) ‖x− y‖2E .

In view of conditions (15) and (16), we prove that the pair (Ψ(y, uy), Auy), satisfying
condition (15), corresponds to an (δ, L)-oracle with L = 2L(f).

3.2 Moreau-Yosida regularization

In this section, we consider functions of the form

f(x) = min
u∈U

{
L(x, u)

def
= h(u) + κ

2 ‖u− x‖
2
2

}
, (18)

where h is a smooth convex function on a convex set U ⊂ E. The function f is convex with
Lipschitz-continuous gradient ∇f(x) = κ(x − u∗x), where u∗x denotes the unique optimal
solution of the problem (18). The Lipschitz constant of the gradient is equal to κ.

Instead of solving exactly the problem (18), we compute a feasible solution ux satisfying

V2(ux) = max
u∈U

{
L(x, ux)− L(x, u) + κ

2 ‖u− ux‖
2
2

}
≤ δ. (19)

(Since L is convex in u, we inverted the sign in the definition of V2 in (13).) Let us show
that for all x ∈ Q the objects

fδ,L(x) = L(x, ux)− δ = h(ux) + κ
2 ‖ux − x‖

2
2 − δ,

gδ,L(x) = ∇1L(x, ux) = κ(x− ux)

(20)

correspond to an answer of (δ, L)-oracle with L = κ. Indeed,

f(x) = L(x, u∗x) ≥ L(y, u∗x) + κ
2 〈y − x, 2u

∗
x − x− y〉

(19)

≥ L(y, uy) + κ
2‖u

∗
x − uy‖22 − δ + κ

2 〈y − x, 2u
∗
x − x− y〉

= L(y, uy) + κ〈y − uy, x− y〉+ κ
2 ‖u

∗
x − uy‖

2
2 − δ

+κ
2 〈y − x, 2u

∗
x − 2uy + y − x〉

= L(y, uy) + κ〈y − uy, x− y〉 − δ

+κ
2

(
‖u∗x − uy‖

2
2 + ‖y − x‖22 + 2〈y − x, u∗x − uy〉

)
≥ L(y, uy) + κ〈y − uy, x− y〉 − δ.
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Thus, we satisfy the first inequality in (2) with the values defined by (20).
Further, for all x, y ∈ Q we have

f(x) = h(u∗x) + κ
2 ‖u

∗
x − x‖

2
2 ≤ h(uy) + κ

2 ‖uy − x‖
2
2

= h(uy) + κ
2 ‖uy − y‖

2
2 + κ

2 〈x− y, x+ y − 2uy〉

= L(y, uy) + κ〈y − uy, x− y〉+ κ
2 ‖y − x‖

2
2 .

Thus, in view of definition (20), we prove the second inequality in (2) with L = κ.

3.3 Functions defined by Augmented Lagrangians

Consider the following convex problem:

max
u∈U
{h(u) : Au = 0} , (21)

where h is a smooth function, which is concave on the convex set U ⊂ F , F is a finite-
dimensional space, and A : F → E∗ is the linear operator. Let E be endowed with the
standard Euclidean norm. In the Augmented Lagrangian approach, we need to solve the
dual problem:

min
x∈E

f(x), (22)

f(x)
def
= max

u∈U

[
Ψ(x, u)

def
= h(u) + 〈x,Au〉 − κ

2‖Au‖
2
2

]
. (23)

It is well known that f is a convex smooth function with Lipschitz-continuous gradient :

∇f(x) = Au∗x,

where u∗x denotes any optimal solution of the optimization problem (23). The Lipschitz
constant of the gradient is equal to 1

κ .
The problem (22) is usually solved by a first-order method. For that, we need to

compute exactly f(xk) and ∇f(xk) at each test point xk, which is impossible or to costly
in practice.

Assume instead, that we compute an approximation ux ∈ U such that

V1(ux) = max
u∈U
〈∇2Ψ(x, ux), u− ux〉

= max
u∈U
〈∇h(ux) +ATx− κATAux, u− ux〉 ≤ δ.

(24)

Let us show that the objects

fδ,L(x) = Ψ(x, ux), gδ,L(x) = ∇1Ψ(x, ux) = Aux (25)

correspond to a (δ, L)-oracle with L = 1
κ . Indeed, for all x, y ∈ E we have

f(x) = max
u∈U

{
h(u) + 〈x,Au〉 − κ

2‖Au‖
2
2

}
≥ h(uy) + 〈x,Auy〉 − κ

2‖Auy‖
2
2 = Ψ(y, uy) + 〈x− y,Auy〉.
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Thus, in view of definition (25), the first inequality in (2) is proved. Further,

f(x) ≤ max
u∈U
{h(uy) + 〈∇h(uy), u− uy〉+ 〈x,Au〉 − κ

2‖Au‖
2
2}

(24)

≤ max
u∈U
{h(uy)− 〈AT y − κATAuy, u− uy〉+ 〈x,Au〉 − κ

2‖Au‖
2
2}+ δ

= Ψ(y, uy) + 〈Auy, x− y〉

+ max
u∈U

{
〈x− y,A(u− uy)〉 − κ

2‖A(u− uy)‖22
}

+ δ.

Thus, in view of (25), we prove the second inequality in (2) with L = 1
κ .

4 Gradient methods with inexact oracle

Consider the problem (1), where f is endowed with (δ, L)-oracles. In this section, we will
use the standard Euclidean norm ‖x‖2 = 〈x, x〉1/2. We assume that the gradient mapping

TL(x, g) = arg min
y∈Q

[ 1
L〈g, y − x〉+ 1

2‖y − x‖
2
2]

is computable. The first order optimality condition for point TL(x, g) are as follows:

〈g + L(TL(x, g)− x), y − TL(x, g)〉 ≥ 0 ∀y ∈ Q. (26)

4.1 Primal gradient method (PGM)

Consider the following method:

Initialization: Choose x0 ∈ Q.

Iteration (k ≥ 0): Choose δk and Lk.

Compute (fδk,Lk(xk), gδk,Lk(xk)).

Compute xk+1 = TLk(xk, gδk,Lk(xk)).

(27)

Lemma 1 For k ≥ 1, we have

k−1∑
i=0

1
Li

[f(xi+1)− f(x∗)] ≤ 1
2‖x0 − x∗‖2 +

k−1∑
i=0

δi
Li
. (28)

Proof:
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Denote rk = ‖xk − x∗‖22, fk = fδk,Lk(xk), and gk = gδk,Lk(xk). Then

r2
k+1 = r2

k + 2〈xk+1 − xk, xk+1 − x∗〉 − ‖xk+1 − xk‖2

(26)

≤ r2
k + 2

Lk
〈gk, x∗ − xk+1〉 − ‖xk+1 − xk‖2

= r2
k + 2

Lk
〈gk, x∗ − xk〉 − 2

Lk
[〈gk, xk+1 − xk〉+ Lk

2 ‖xk+1 − xk‖2]

(2)

≤ r2
k + 2

Lk
[f(x∗)− fk]− 2

Lk
[f(xk+1)− fk − δk].

Summing up these inequalities for i = 0, . . . , k − 1, we obtain (28). 2

When the exact first-order information is used (δi = 0, Li = L), then the sequence
{f(xi)} is a decreasing sequence. It is not true when we use an inexact oracle. Therefore,
let us define

x̂k =
∑k−1
i=0 L

−1
i xi+1∑k−1

i=0 L
−1
i

∈ Q.

Since f is convex,

f(x̂k)− f(x∗) ≤
1
2‖x0−x

∗‖22 +
∑k−1
i=0 L

−1
i δi∑k−1

i=0 L
−1
i

. (29)

In the case when the oracle accuracy is constant (δi = δ, Li = L), we have:

f(x̂k)− f(x∗) ≤ LR2

2k + δ, R
def
= ‖x0 − x∗‖2 . (30)

Thus, there is no error accumulation, and the upper bound for the residual is decreasing
with k up to the level δ. Hence, for the accuracy of order δ, we need O(LR

2

δ ) iterations.

4.2 Dual gradient method [17]

This method generates two sequences {xk}k≥0 and {yk}k≥0.

Initialization: Choose x0 ∈ Q.

Iteration (k ≥ 0): 1. Choose δk and Lk.

2. Compute (fδk,Lk(xk), gδk,Lk(xk)).

3. Compute xk+1 = arg min
x∈Q

[
k∑
i=0

1
Li
〈gδi,Li(xi), x− xi〉+ 1

2‖x− x0‖22
]
.

(31)

Define yk = TLk(xk, gδk,Lk(xk)), k ≥ 0.

Lemma 2 For any k ≥ 0 we have

k∑
i=0

1
Li

[f(yi)− f(x∗)] ≤ 1
2‖x0 − x∗‖2 +

k∑
i=0

δi
Li
. (32)
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Proof:
For k ≥ 0, denote fk = fδk,Lk(xk), gk = gδk,Lk(xk), and

ψk(x) =
k∑
i=0

1
Li

[fi + 〈gi, x− xi〉] + 1
2‖x− x0‖2, ψ∗k = min

x∈Q
ψk(x).

In view of the first inequality in (2), for all x ∈ Q we have

ψ∗k ≤ ψk(x) ≤
∑k

i=0
1
Li
f(x) + 1

2 ‖x− x0‖2 . (33)

Let us prove that ψ∗k ≥
k∑
i=0

1
Li

[f(yi)− δi]. Indeed, this inequality is valid for k = 0:

f(y0)
(2)

≤ f0 + 〈g0, y0 − x0〉+ L0
2 ‖y0 − x0‖2 + δ0 = L0ψ

∗
0 + δ0.

Assume it is valid for some k ≥ 1. Since Ψk(x) is strongly convex, we have:

ψk(x) ≥ ψ∗k + 1
2‖x− xk‖

2
2, x ∈ Q

Therefore,

ψ∗k+1 = min
x∈Q

{
ψk(x) + 1

Lk
[fk + 〈gk, x− xk〉]

}
≥ ψ∗k + 1

Lk
min
x∈Q

{
fk + 〈gk, x− xk〉+ Lk

2 ‖x− xk‖
2
2

}
(2)

≥ ψ∗k + 1
Lk

(f(yk)− δk).

Thus, using our inductive assumption, we prove that ψ∗k ≥
k∑
i=0

1
Li

[f(yi)− δi] for all k ≥ 0.

It remains to combine this fact with inequality (33) for x = x∗. 2

Same as for Primal Gradient Method, we can define

ŷk =
∑k
i=0 L

−1
i yi∑k

i=0 L
−1
i

∈ Q,

and obtain the decreasing upper bound

f(ŷk)− f(x∗) ≤
1
2‖x0−x

∗‖22 +
∑k
i=0 L

−1
i δi∑k

i=0 L
−1
i

, k ≥ 0. (34)

Thus, we obtain the same convergence results as that for PGM. For this reason, in the rest
of this paper notation PGM refers both to the primal and to the dual gradient methods.
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5 Fast gradient method with inexact oracle

In this section, we adapt one of the last versions of Fast Gradient Method (FGM) devel-
oped in [14]. Let d(x) be a prox-function, which is differentiable and strongly convex on
Q, and x0 = arg min

x∈Q
d(x) be its prox-center. By translating and scaling d if necessary, we

can always ensure that

d(x0) = 0, d(x) ≥ 1
2 ‖x− x0‖2 , ∀x ∈ Q. (35)

Here ‖·‖ denotes any norm on E.
Let {αk}∞k=0 be a sequence of reals such that

α0 ∈ (0, 1],
α2
k

Lk
≤ Ak

def
=

k∑
i=0

αi
Li
, k ≥ 0. (36)

Define τk =
αk+1

Ak+1Lk+1
, k ≥ 0. Consider the following method.

Initialization: Choose δ0, L0, and x0 = arg min
x∈Q

d(x).

Iteration (k ≥ 0): 1. Compute (fδk,Lk(xk), gδk,Lk(xk)).

2. Compute yk = TLk(xk, gδk,Lk(xk)).

3. Compute zk = arg min
x∈Q
{d(x) +

k∑
i=0

αi
Li
〈gδi,Li(xi), x− xi〉}.

4. Choose δk+1 and Lk+1. Define xk+1 = τkzk + (1− τk)yk.

(37)

Denote ψ∗k = min
x∈Q
{d(x) +

∑k
i=0

αi
Li

[fδi,Li(xi) + 〈gδi,Li(xi), x− xi〉]}.

Theorem 1 For all k ≥ 0, we have: Akf(yk) ≤ ψ∗k + Ek with Ek =
k∑
i=0

Aiδi.

Proof:
Denote fk = fδk,Lk(xk), and gk = gδk,Lk(xk). For k = 0, we have

ψ∗0 = min
x∈Q

{
d(x) + α0

L0
[f0 + 〈g0, x− x0〉]

}
(35)

≥ α0
L0

min
x∈Q

{
f0 + 〈g0, x− x0〉+ L0

2 ‖x− x0‖2
} (2)

≥ α0
L0

[f(y0)− δ0].

Assume now that the statement of the theorem is true for some k ≥ 0. By the
optimality conditions of the optimization problem at Step 3,

〈∇d(zk) +
∑k

i=0
αi
Li
gi, x− zk〉 ≥ 0, ∀x ∈ Q.
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Hence, in view of strong convexity of d,

d(x) ≥ d(zk) + 〈∇d(zk), z − zk〉+ 1
2‖x− zk‖

2

≥ d(zk) +
∑k

i=0
αi
Li
〈gi, zk − x〉+ 1

2 ‖x− zk‖
2 .

Thus, for all x ∈ Q,

d(x) +
k+1∑
i=0

αi
Li

[fi + 〈gi, x− xi〉] ≥ d(zk) +
k∑
i=0

αi
Li

[fi + 〈gi, zk − xi〉]

+1
2 ‖x− zk‖

2 +
αk+1

Lk+1
[fk+1 + 〈gk+1, x− xk+1〉].

We have obtained:

ψ∗k+1 ≥ ψ∗k + min
x∈Q
{1

2 ‖x− zk‖
2 +

αk+1

Lk+1
[fk+1 + 〈gk+1, x− xk+1〉]}.

On the other hand, we have:

ψ∗k +
αk+1

Lk+1
[fk+1 + 〈gk+1, x− xk+1〉]

≥ Akf(yk)− Ek +
αk+1

Lk+1
[fk+1 + 〈gk+1, x− xk+1〉]

(2)

≥ Ak[fk+1 + 〈gk+1, yk − xk+1〉]− Ek +
αk+1

Lk+1
[fk+1 + 〈gk+1, x− xk+1〉]

= Ak+1fk+1 + 〈gk+1, Ak(yk − xk+1) +
αk+1

Lk+1
(x− xk+1)〉 − Ek.

Taking into account that

Ak(yk − xk+1) +
αk+1

Lk+1
(x− xk+1)

= Akτk(yk − zk) +
αk+1

Lk+1
x− αk+1

Lk+1
τkzk − αk+1

Lk+1
(1− τk)yk =

αk+1

Lk+1
(x− zk),

we obtain

ψ∗k +
αk+1

Lk+1
[fk+1 + 〈gk+1), x− xk+1〉] ≥ Ak+1fk+1 +

αk+1

Lk+1
〈gk+1, x− zk〉 − Ek.

Therefore,

ψ∗k+1 ≥ Ak+1fk+1 − Ek + min
x∈Q
{1

2 ‖x− zk‖
2 +

αk+1

Lk+1
〈gk+1, x− zk〉}

= Ak+1

[
fk+1 + min

x∈Q
{ 1

2Ak+1
‖x− zk‖2 + τk〈gk+1, x− zk〉}

]
− Ek

(36)

≥ Ak+1

[
fk+1 + minx∈Q{

τ2kLk+1

2 ‖x− zk‖2 + τk〈gk+1, x− zk〉}
]
− Ek.
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For x ∈ Q, define y = τkx+ (1− τk)yk. Since y − xk+1 = τk(x− zk), we obtain

min
x∈Q

{
τ2kLk+1

2 ‖x− zk‖2 + τk〈gk+1, x− zk〉
}

= min
y

{
Lk+1

2 ‖y − xk+1‖2 + 〈gk+1, y − xk+1〉 : y ∈ τkQ+ (1− τk)yk
}

≥ min
y∈Q

{
Lk+1

2 ‖y − xk+1‖2 + 〈gk+1, y − xk+1〉
}
.

(38)

On the other hand,

Ψ∗k+1 ≥ Ak+1

[
fk+1 + min

x∈Q
{ τ

2
kLk+1

2 ‖x− zk‖2 + τk〈gk+1, x− zk〉}
]
− Ek

(2),(38)

≥ Ak+1f(yk+1)− Ek −Ak+1δk+1,

and we get: Ak+1f(yk+1) ≤ Ψk+1 + Ek+1 with Ek+1 = Ek +Ak+1δk+1. 2

Theorem 2 For all k ≥ 0, we have f(yk)− f∗ ≤ 1
Ak

(
d(x∗) +

∑k
i=0Aiδi

)
.

Proof:
Denote fi = fδi,Li(xi), and gi = gδi,Li(xi). Then

ψ∗k = min
x∈Q

{
d(x) +

k∑
i=0

αi
Li

[fi + 〈gi, x− xi〉]
}

≤ d(x∗) +
k∑
i=0

αi
Li

[fi + 〈gi, x∗ − xi〉] ≤ d(x∗) +Akf(x∗).

Now, using the recurrence obtained in Theorem 1, we complete the proof. 2

If use the simplest choice of sequence {αi}, i.e αi = i+1
2 , then the sequence of Lipschitz

constants must satisfy inequality (k+1)2

4Lk

(36)

≤
k∑
i=0

i+1
2Li

, i.e.

Lk ≥ (k+1)2

2 /

[
k∑
i=0

i+1
Li

]
.

(It is true, for example, for any increasing sequence {Lk}k≥0.) In this case, we obtain

f(yk)− f∗ ≤ 1∑k
i=0

i+1
2Li

(
d(x∗) +

k∑
i=0

i∑
j=0

j+1
2Lj

δi

)
.

Consider the case of constant accuracy of the oracle (δi = δ, Li = L). Then we have

Ak = (k+1)(k+2)
4L , τk = 2

k+3 , and therefore

f(yk)− f∗ ≤ 4Ld(x∗)
(k+1)2

+ 1
(k+1)(k+2)

k∑
i=0

(i+ 1)(i+ 2)δ.
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Since
∑k

i=0(i+ 1)(i+ 2) = 1
6(k + 1)(k + 2)(2k + 6), we obtain

f(yk)− f∗ ≤ 4Ld(x∗)
(k+1)(k+2) + 1

6(2k + 6)δ ≤ 4LR2

(k+1)2
+ 1

3(k + 3)δ. (39)

Contrarily to the classical gradient methods, the use of inexact oracle in FGM results in
accumulation of errors. The first terms in (39) decreases as O( 1

k2
), but the second term

is increasing in k. Asymptotically, the use of inexact oracle makes FGM divergent.
For non-asymptotic behavior, we can consider two cases.
1. The oracle accuracy δ is fixed.
In this case, we can find the number of iterations k∗ that minimizes the residual in

the objective function:

E(k) = 4Ld(x∗)
(k+1)2

+ 1
3(k + 1)δ + 2

3δ.

This function is convex in k and its minimum is reached at the iteration

k∗ = 2 3

√
3Ld(x∗)

δ − 1.

At this moment, the obtained accuracy in the objective function is:

E(k∗) = Θ(δ2/3L1/3R2/3).

2. The oracle accuracy δ can be chosen.
Let us assume that parameter L of inexact oracle is independent on δ. If we need to

reach the accuracy ε for the residual f(yk)− f∗, it is enough to perform k iterations, with
k satisfying two inequalities:

4Ld(x∗)
(k+1)2

≤ ε
2 ,

1
3(k + 3)δ ≤ ε

2 .

The first inequality gives us: k ≥
√

8Ld(x∗)
ε −1, and the second one gives k ≤ 3ε

2δ −3. This
is possible if and only if

δ ≤ 3ε3/2

2
√

8Ld(x∗)+4
√
ε
. (40)

In conclusion, if we choose the oracle accuracy satisfying relation (40), then after

k(ε) =

√
8Ld(x∗)

ε − 1

iterations, we obtain a point yk(ε) ∈ Q satisfying f(yk(ε))− f∗ ≤ ε.
Contrarily to the classical gradient methods, in order to reach accuracy ε by FGM, we

need to require that the accuracy of inexact oracle satisfies (40).

6 Inexact oracle: What method is better?

If the oracle is exact, FGM is the optimal method for the class F 1,1
L (Q). For the accuracy

ε in the objective function, it needs O(
√

L
εR) iterations. At the same time, PGM needs

O
(
LR2

ε

)
iterations.
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Situation is more complicated when inexact first-order oracle is used. Contrary to
PGM, FGM suffers from an errors accumulation. In order to compare their efficiency, we
consider two cases.

1. Oracle accuracy can be chosen.
In this case we assume that L is independent on the oracle accuracy δ (see examples

in Section 3). If we need to reach the accuracy of ε for function value, PGM with inexact

oracle requires accuracy of the oracle on the level of Θ(ε). However, it needs O
(
LR2

ε

)
iterations.

For FGM with inexact oracle, due to the errors accumulation, we need a higher accu-

racy of the oracle (Θ
(
ε3/2√
LR

)
). But the necessary number of iterations is only of the order

O

(√
L
εR

)
. Thus, the choice between two methods depends on complexity of inexact

oracle. Denote by C(δ), the computational time, which is needed by inexact oracle for
computing the answer (fδ,L(x), gδ,L(x)). Then PGM is preferable if

1
εLR

2C(ε) < 1
ε1/2

L1/2RC
(

ε3/2

L1/2R

)
.

Consider the following situations.

• The oracle is very expensive: C(δ) = Ω
(

1
δ

)
(e.g. C(δ) = 1

δ2
). Then, it is preferable

to use PGM.

• Oracle has moderate efficiency: C(δ) = Θ
(

1
δ

)
. Then both methods are in a certain

sense equivalent.

• Oracle is very efficient: C(δ) = o
(

1
δ

)
(for example, C(δ) = 1

δ1/2
, or even C(δ) = ln 1

δ ).
Then FGM is better.

2. Oracle accuracy is fixed.
In this case, the sequence of iterates generated by PGM satisfies inequality

f(xk)− f∗ ≤ LR2

2k + δ,

whereas the sequence obtained by FGM satisfies inequality

f(yk)− f∗ ≤ 4LR2

(k+1)(k+2) + k+3
3 δ.

The dependence of these two rates of convergence in k are represented at the following
picture for different values of the oracle accuracy:
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δ = 0.01, L = 1 and R = 1
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δ = 0.001, L = 1 and R = 1

δ = 0.0001, L = 1 and R = 1

The higher is the accuracy of the oracle, the larger is the number of iterations, where
the FGM is better than PGM. At the limit, when the oracle accuracy δ = 0, FGM
outperforms PGM for any number of iterations.

On the other hand, when the oracle accuracy is very poor, the accumulation of oracle
errors in the FGM is so high that PGM is always better than FGM.

For a higher, but non zero accuracy, the situation is more complicated. Due to the
constant factors in the convergence rates, PGM starts to provide smaller error for the few
first iterations. After that, due to its high convergence rate, FGM decreases the gap in
objective function much better than PGM. For FGM, this gap attains its minimum value

at the moment N1 = Θ

(
3

√
LR2

δ

)
with corresponding accuracy δ∗ = Θ(δ2/3L1/3R1/3). It

is not interesting to perform more iterations since then the gap can only increase due to
accumulation of errors.

Note that there exists a moment N2, after which the PGM provides us better accuracy

than FGM. However we have to wait until N3 = Θ
(
LR2

δ2/3

)
iterations in order to have the

accuracy of PGM becomes better than δ∗. After that, we can reach by PGM the final ac-

curacy of order δ (not possible by FGM). This needs Θ
(
LR2

δ

)
iterations. Asymptotically,

by PGM we can obtain an accuracy exactly equal to δ.
In conclusion, FGM is the method of choice when we need an accuracy lower than

δ2/3L1/3R2/3. For reaching a better accuracy, PGM must be used.
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7 Comparison with other approaches

Fast-gradient methods using inexact first-order oracle have been already studied in [3]
and [1]. In this approach, the set Q is assumed to be bounded, and oracle provides at
each point y ∈ Q, an approximative gradient g(y) satisfying condition

|〈g(y)−∇f(y), x− z〉| ≤ ξ ∀x, y, z ∈ Q. (41)

Let us compare this definition with (2), taking into account their applicability and the
obtained results.

First of all, the applicability of (41) needs more assumptions.

• The set Q must be bounded (do not need this for (2)).

• The objective function must be differentiable. The existence of the gradient at all
points is necessary since it must be compared with the approximative gradient. In
our case, we are able to consider also non-smooth convex function.

But even in the smooth case f ∈ F 1,1
L (Q), we can argue that the condition (41) is

stronger than (2). Let f ∈ F 1,1
L (Q):

1. Let us show that the approximative gradient g(y) satisfying (41), can be used also
in our definition. Indeed, in view of (3) and (41), for all x, y ∈ Q we have

f(y)− ξ + 〈g(y), x− y〉 ≤ f(x) ≤ f(y) + ξ + 〈g(y), x− y〉+ L
2 ‖x− y‖

2 .

Thus, taking fδ,L(y) = f(y)− ξ, and gδ,L(y) = g(y) we satisfy (2) with δ = 2ξ.

2. On the other hand, our condition (2) does not imply (41) with any ξ = Θ(δ). Indeed,
consider the function f(x) = maxu∈U Ψ(x, u), where

Ψ(x, u) = −1
2 ‖u‖

2
2 + 〈x, u〉, Q = {y ∈ Rn : ‖y‖2 ≤ 1}, U = Rn. (42)

For point x = 0, let us fix for the answer of oracle some point u0 with ‖u0‖2 =
δ1/2. Since u∗0 = 0, and f(0) − Ψ(0, ux0) = 1

2 ‖ux0‖
2
2 = δ

2 , the answer of the oracle

(fδ,L(0), gδ,L(0)) = (− δ
2 , u0) satisfies condition (2) with L = 2 (see Section 3.1).

However,

max
y,z∈Q

|〈∇f(0)− gδ,L(0), y − z〉| = 2 maxy∈Q |〈u0, y〉| = 2δ1/2.

Let us compare now the quality of the answers of these oracles for FGM (we assume
that Q is bounded). It is proved that FGM using the oracle (41) converges as follows:

f(yk)− f∗ ≤ CLR2

k2
+ 3ξ,

where C is an absolute constant. Thus, there is no error accumulation. Therefore, the
accuracy of the oracle can be of the same order as the desired accuracy of the solution.
At first sight, this result seems to be better than the results obtained with (δ, L)-oracle.

However, note that for the same level of accuracy, condition (41) is much stronger
than (2). Let us look at important example. Consider the class of functions with explicit
max-structure: f(x) = maxu∈U Ψ(x, u), where set U is closed and convex, and Ψ(x, u) =
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G(u) + 〈x,Au〉, where G(u) is a differentiable, strongly concave function with concavity
parameter κ. Assume that we want to solve the primal problem minx∈Q f(x) with accuracy
ε. In our definition of inexact oracle, the oracle accuracy δ corresponds directly to the
accuracy of solving the dual problem (see Section 3.1).

For definition (41), we can also use an approximate dual solution:

∇f(x) = Au∗x, g(x) = Aux.

However, now we need to satisfy the following relation:

|〈A(u∗x − ux), y − z〉| ≤ ε, ∀x, y, z ∈ Q. (43)

(We can take ξ = ε since the condition (41) avoids accumulation of errors). For that, we
need to have ux close to u∗x:

‖ux − ux‖ ≤ ε
diam (Q)·‖A‖F→E∗

.

Since Ψ is strongly concave: Ψ(x, u∗x)−Ψ(x, ux) ≥ κ
2 ‖ux − u

∗
x‖

2, a sufficient condition for
(41) is as follows:

Ψ(x, u∗x)−Ψ(x, ux) ≤ κ
2

(
ε

diam (Q)·‖A‖F→E∗

)2
.

In our approach, in order to avoid accumulation of errors, it is enough to solve the dual
problem up to accuracy ε3/2 (see (40)) (instead of ε2 for 41) .

Remark 3 In some cases, inequality Ψ(x, u∗x) − Ψ(x, ux) ≤ ε2/8 is also a necessary
condition for (43). Indeed, consider again the saddle point problem defined by (42). We
have f(0)−Ψ(0, u0) = 1

2 ‖u0‖22. In order to satisfy condition (43) we need to ensure

ε ≥ 2 max
y∈Q
|〈u0, y〉| = 2‖u0‖2 = 2

√
2(f(0)−Ψ(0, u0)).

Remark 4 The definition of inexact oracle used in [1] is in fact a little bit different from
(41). The author assumes that g(y) satisfies the following conditions:

f(x) ≥ f(y) + 〈g(y), x− y〉 − ξ ∀x ∈ dom f

f(x) ≥ f(y) + 〈g(y), x− y〉 − ξ ‖x− y‖ ∀x ∈ dom f

and that the set Q is bounded. It is possible to prove that this definition implies (41) with
ξ = DQξ (where DQ denotes the diameter of Q) and with ∇f(y) eventually replaced by a
subgradient when the function is non-smooth.

8 Applications to non-smooth optimization

8.1 Solving weakly smooth problems

Let f be a convex function satisfying the Hôlder condition (7). This class includes non-
smooth convex functions with bounded variation of subgradients (ν = 0), and smooth
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convex functions with Hôlder continuous gradient (ν ∈ (0, 1]). We have shown in Section
2, that for all δ > 0 these functions can be equipped with (δ, L)-oracle with

L = A(δ, ν) = Lν

[
Lν
2δ ·

1−ν
1+ν

] 1−ν
1+ν

.

This observation allows us to apply first-order methods of F 1,1
L (Q) to functions with

weaker level of smoothness, replacing the gradients by subgradients and using the Lipschitz

constants that grow as O
(
δ−

1−ν
1+ν

)
with the desired oracle accuracy.

Remark 5 In this case, δ does not represent the real accuracy of the oracle. It does not
cost more to generate a first-order information corresponding to a smaller δ. In fact, for
each δ > 0, the answer of (δ, L)-oracle is the same. It just returns the value of the function
and a subgradient.

Oracle accuracy δ is involved only in the computation of Lipschitz constant L = A(δ, ν).
This constant must be properly used in the numerical methods. In view of this flexibility,
there is always a tradeoff between the high “accuracy” of the oracle, and the small Lipschitz
constant L.

For the sake of simplicity, we assume that the number of iterations N is fixed.
Let us apply PGM (27) to a weakly smooth function f with the inexact (δ, L)-oracle.

In view of (30), after N iterations we have

f(x̂N )− f(x∗) ≤ Lν

[
Lν
2δ ·

1−ν
1+ν

] 1−ν
1+ν R2

2N + δ
def
= CN

(
1
δ

) 1−ν
1+ν + δ.

Denote τ = 1−ν
1+ν . Then the optimal accuracy δN can be found from the equation

CN
τ

δ1+τN

= 1.

Thus, we come to the following bound:

f(x̂N )− f(x∗) ≤ δN

(
CN
δ1+τN

+ 1
)

= 2δN
1−ν . (44)

Note that

δN = (τCN )
1

1+τ =

(
1−ν
1+ν · Lν

[
Lν
2 ·

1−ν
1+ν

] 1−ν
1+ν R2

2N

) 1+ν
2

= 1−ν
1+ν ·

LνR1+ν

2
1−ν
2 ·N

1+ν
2
.

Thus, we come to the following upper bound:

f(x̂N )− f(x∗) ≤ LνR1+ν

1+ν ·
(

2
N

) 1+ν
2 . (45)

For functions with bounded variation of subgradients (ν = 0), we get:

f(x̂N )− f(x∗) ≤ L0R ·
(

2
N

) 1
2 ,

which is the optimal rate of convergence (see [12, 13]). However for functions with Hôlder

continuous gradient, the obtained rate is not optimal (it can reach O(N−
1+3ν

2 ), see [11, 9]).
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Further, let us apply now FGM to a weakly smooth function using an (δ, L)-oracle. In
view of (39), after N iterations we have:

f(yN )− f(x∗) ≤ 4Lν

[
Lν
2δ ·

1−ν
1+ν

] 1−ν
1+ν R2

(N+1)2
+ δ · (N + 1)

def
= ĈN

(
1
δ

) 1−ν
1+ν + δ · (N + 1).

The equation for optimal δN now becomes ĈN
τ

δ1+τN

= N + 1. Therefore, we get

f(yN )− f(x∗) ≤ δN

(
ĈN
δ1+τN

+N + 1
)

= 2δN
1−ν (N + 1).

Note that

δN = (ĈN
τ

N+1)
1

1+τ =

(
1−ν
1+ν · 4Lν

[
Lν
2 ·

1−ν
1+ν

] 1−ν
1+ν R2

(N+1)3

) 1+ν
2

= 1−ν
1+ν ·

LνR1+ν

(N+1)
3
2 (1+ν)

· 2
1+3ν

2 .

Thus, we obtain the following upper bound:

f(yN )− f(x∗) ≤ 2LνR1+ν

1+ν

(
2

N+1

) 1+3ν
2
. (46)

For functions with bounded variation of subgradients (ν = 0), we get

f(yN )− f(x∗) ≤ 2L0R
(

2
N+1

) 1
2
,

which is the optimal rate. For functions with Hôlder continuous gradient, the obtained
rate of convergence is also optimal ([11, 9]). Thus, we get a universal optimal first-order
method both for smooth, weakly smooth and non-smooth convex functions.

The applicability of any first-order method of smooth convex optimization to non-
smooth convex problems, justified by the notion of (δ, L)-oracle, has many interesting
consequences. We mention two of them.

• We can apply PGM and FGM to objective functions formed as a sum of smooth and
non-smooth components.

• We can get lower bounds on the rate of accumulation of errors in the first-order
methods based on (δ, L)-oracle. It appears that accumulation of errors is an intrinsic
property of any FGM. Slower first-order methods can avoid accumulation of errors,
and PGM is the fastest method having this good property.

We discuss these topics in the next section.
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8.2 Solving composite optimization problems

Consider the composite convex objective function:

f(x) = f1(x) + f2(x),

where f1 is a smooth convex function with Lipschitz continuous gradient (constant L(f1)),
and f2 is a non-smooth convex function which variation of subgradients is bounded by
constant M(f2). We assume that the standard exact first-order oracles are available for
both f1 and f2.

Note that function f1 is equipped with (0, L(f1))-oracle, and by (11) function f2 has
(δ, 1

2δM
2(f2))-oracle. Hence, we conclude that the data

(f1(y) + f2(y),∇f1(y) + g2(y)), g2(y) ∈ ∂f2(y), (47)

can be seen as (δ, L)-oracle for function f with L = L(f1) + 1
2δM

2(f2). Assume also that
the number of iterations N for our methods is fixed.

Let us apply now PGM to function f using the inexact (δ, L)-oracle (47). Then, after
N iterations we have:

f(x̂N )− f∗
(30)

≤
(
L(f1) + 1

2δM
2(f2)

)
R2

2N + δ.

Minimizing this expression with respect to δ ≥ 0, we obtain δ∗ = M(f2)R

2N1/2 . Therefore, the
best upper bound for the residual is

f(x̂N )− f∗ ≤ L(f1)R2

2N + M(f2)R

N1/2 .

This method has the optimal rate of convergence for nonsmooth part of the problem, but
not for the smooth one.

Let us check now the performance of FGM as applied to the composite problems. In
view of (39) after N iterations of the scheme, we have

f(yN )− f∗ ≤ 4
(
L(f1) + 1

2δM
2(f2)

)
R2

(N+1)2
+ δ · (N + 1).

Minimizing this function in δ ≥ 0, we obtain: δ∗ = 21/2M(f2)R

(N+1)3/2
. The upper-bound therefore

becomes

f(yN )− f∗ ≤ 4L(f1)R2

(N+1)2
+ 23/2M(f2)R

(N+1)1/2
.

For composite objective function, this method is optimal both for the smooth and non-
smooth parts of the problem.

Remark 6 Our analysis is similar, in a certain sense, to that of [6], where the author
applies a version of FGM to a stochastic composite optimization problem.

In the deterministic case, the author applies a variant of FGM, replacing for the non-
smooth part of objective, the gradients by subgradients, and the Lipschitz constant by a
value of the order O(M(f2)N3/2). This method appears to be optimal both for the smooth
and non-smooth parts of the composite function.

In our approach, N = Θ((1
δM(f2))2/3), and we get M(f2)N3/2 = Θ(1

δM
2(f2)), which

is, up to a constant factor, the quantity that replaces the Lispchitz constant for our method.



January 19, 2011 26

8.3 First-order methods and accumulation of errors

Applicability of first-order methods of smooth optimization to non-smooth problems,
based on the notion of inexact oracle, opens a possibility for deriving lower bounds on
accumulation of errors. This is the main subject of this section.

Let us start from the following observation.

Theorem 3 Consider a first-order method for F 1,1
L (Q) with convergence rate O(LR

2

kp ).
Assume that the bounds on the performance of this method, as applied to a problem
equipped with inexact (δ, L)-oracle, are given by inequality

f(zk)− f∗ ≤ C1L‖x0−x∗‖2
kp + C2k

qδ, (48)

where C1, C2 are absolute constants, and k is the iteration counter. Then q ≥ p− 1.

Proof:
Let f be a non-smooth convex function, which variation of subgradients is bounded by
constant M . We have seen that for such a function, the standard oracle can be treated as
(δ, M

2

2δ )-oracle for any δ > 0. Therefore, by our method we can ensure the following rate
of convergence:

f(zk)− f∗ ≤ C1M2R2

2δkp + C2k
qδ.

Optimizing the right-hand side of this inequality in δ, we get

f(zk)− f∗ ≤ [2C1C2]1/2MR · k−
p−q
2 .

From the lower complexity bounds for nonsmooth optimization problems, we know that
the black-box methods cannot converge faster than O( 1

k1/2
). Hence, we conclude that

p− q ≤ 1. 2

In the exact case, for minimizing a function in F 1,1
L (Q), any first-order method with

convergence rate Θ(LR
2

k2
) is optimal (e.g. FGM), and any method with the convergence

rate Θ(LR
2

k ) is suboptimal (e.g. PGM). In the case of inexact (δ, L)-oracle, the situation
is more complicated.

The total performance of the method depends also on the way it accumulates the
successive errors coming from the oracle. In this situation, the superiority of FGM over
PGM is not anymore so clear. As we have seen in the previous sections, FGM suffers from
accumulation of errors, but PGM does not.

From Theorem 3, we know that this accumulation is a direct consequence of the fast

convergence of the scheme. Any method with complexity estimate Θ(
√

L
εR) must suffer

from this instability. On the other hand, it appears that in inexact situation, both FGM
and PGM are optimal, but in different senses.

• q = 0⇒ p ≤ 1 :
It is impossible to have a first-order method without accumulation of errors, which
has better complexity than PGM, that is Θ(LR

2

ε ) .

• p = 2⇒ q ≥ 1 :

On the other hand, if we have a first-order method with complexity Θ(
√

L
εR), then

it always has accumulating of errors, which grow at least as Θ(kδ) .
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The next theorem relates the rate of convergence of the method with the required
accuracy of the oracle.

Theorem 4 Let parameter L of inexact oracle (2) be independent on δ. Under assump-
tions of Theorem 3, accuracy ε in the residual of objective function requires at least the
following accuracy of the oracle:

δ ≤ p·ε
(p+q)C2

[
q·ε

(p+q)C1LR2

]q/p
.

Proof:
In order to guarantee accuracy ε by the estimate (48), we have to choose k and δ such
that:

C1LR2

kp ≤ αε, C2k
qδ ≤ (1− α)ε

for some α ∈ [0, 1]. The first inequality gives us k ≥
[
C1LR2

αε

]1/p
, and using the second

inequality, we obtain

C2

[
C1LR2

αε

]q/p
δ ≤ (1− α)ε.

Thus, δ ≤ (1−α)αq/p·ε(p+q)/p
C2[C1LR2]q/p

. It remains to maximize the right-hand side of this inequality

in α. 2

Corollary 1 If a first-order method has efficiency estimate Θ
(
LR2

ε

)
, then it can be ap-

plied to an (δ, L)-oracle, with accuracy at least Ω( ε1+q

LqR2q ) or higher.
For the method optimal with respect to accumulation of errors (q = p− 1 = 0), we can

choose δ = Ω(ε).

Corollary 2 If a first-order method has efficiency estimate Θ

(√
L
εR

)
, then it can be

applied to an (δ, L)-oracle, with accuracy at least Ω( ε
1+q/2

Lq/2Rq
) or higher.

For the method optimal with respect to accumulation of errors (q = p− 1 = 1), we can

choose δ = Ω( ε3/2

L1/2R
).

9 Strongly convex case

In this section, we assume that convex function f , which is endowed with (δ, L)-oracle,
satisfies also condition

f(x) ≥ f(x∗) + µ
2 ‖x− x

∗‖2 , ∀x ∈ Q. (49)

This inequality is satisfied, for example, when f is strongly convex on Q with parameter
µ, that is

f(αx+ (1− α)y) ≤ αf(y) + (1− α)f(x)− α(1− α)µ2 ‖x− y‖
2
E (50)

for all x, y ∈ Q, and α ∈ [0, 1]. In this section, we study the possibilities of solving
the problem (1) with strongly convex objective, when only an inexact (δ, L)-oracle (2) is
available.
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9.1 Inexact PGM for strongly convex case

Let function f be equipped with (δ, L)-oracle. Let us apply to it PGM, starting from
some point ū ∈ Q. Denote by u+ the point obtained after N iterations. Then

f(u+)− f∗
(30)

≤ L
2N ‖x

∗ − ū‖2 + δ
(49)

≤ γf
N (f(ū)− f∗) + δ,

where γf = L
µ . Choosing N = 2γf , and denoting the resulting u+ by p(ū), we get

f(p(ū))− f∗ − 2δ ≤ 1
2(f(uk−1)− f∗ − 2δ)

Repeating now the operation uk+1 = p(uk), k ≥ 0, we obtain

f(uk)− f∗ ≤ 1
2k

(f(u0)− f∗) + 2δ. (51)

As usual, in our analysis we consider two cases.
1. The oracle accuracy is fixed.
As in the general convex case, there is no accumulation of errors. The best accuracy

for the objective, that can be reached asymptotically, is 2δ. However, we can get the same
order of accuracy after iterations in Θ(γf log2

f(x0)−f∗
δ ) iterations.

2. The oracle accuracy can be chosen
If we need to reach final accuracy ε for the residual in objective function, the oracle

accuracy can be chosen as δ = 1
4ε. Then the process (51) generates the required solution

after k ≥ 1 + log2
f(x0)−f∗

ε iterations. The total number of iterations in the process does
not exceed

N · k = 2γf ·
(

1 + log2
f(x0)−f∗

ε

)
. (52)

Note that the dependence of this bound in the condition number γf is not optimal.

9.2 Inexact FGM for strongly convex case

Let us apply to problem (1), (2) the fast gradient method starting from some point ū ∈ Q
and using the prox-function dū(x) = 1

2‖x − ū‖
2
2. And let u+ be the point obtained after

N iterations. In accordance to (39), we have

f(u+)− f∗ (49)
=

4γf (f(ū)−f∗)
(N+1)2

+ δ · (N + 1).

Let us choose N = 4γ
1/2
f − 1 and denote the point u+ by v(ū). Then,

f(v(ū))− f∗ ≤ 1
4(f(uk)− f∗) + δ, δ

def
= 4γ

1/2
f · δ.

Therefore the process uk+1 = v(uk), k ≥ 0, has the the following convergence:

f(uk+1)− f∗ − 4δ
3 ≤ 1

4(f(uk)− f∗ − 4δ
3 ) ≤ 1

4k+1 (f(u0)− f∗ − 4δ
3 ). (53)

We consider now two important cases.
1. The oracle accuracy is fixed.
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Contrarily to the general case, now there is no accumulation of oracle errors. The error
on the objective function decreases with the number of iterations. However, we are not
able to reach the level of oracle accuracy. The best what can be achieved asymptotically

is Θ(γ
1/2
f δ). This needs Θ(γ

1/2
f log2

f(u0)−f∗
δ ) iterations. Thus, FGM is the method of

choice when the target accuracy for objective is not higher than γ
1/2
f δ .

2. The oracle accuracy can be chosen.
If we need accuracy ε for the objective, we can define δ ≤ 9ε

32γ
1/2
f

. Formally, we can

choose the oracle accuracy δ of the same order as ε. However note that in some applications
the value γf can be very big. Under this choice, we reach the level ε in k = O(log4

f(u0)−f∗
ε )

iterations. Hence, the total number of iterations of FGM does not exceed

O(γ
1/2
f log4

f(u0)−f∗
ε ). (54)

Thus, in the strongly convex case, for the choice between PGM and FGM, we have
compare the efficiency of the method with the accuracy of the oracle. The picture becomes
more diverse since we need to take into account the magnitude of the condition number.

9.3 Application to non-smooth strongly convex problems

In this section we assume that function f , which variation of subgradients is bounded by
constant M , is strongly convex with parameter µ. Assume also that its inexact (δ, M

2

2δ )-
oracle is available.

In order to solve problem (1) up to accuracy ε, let us apply PGM described in Section
9.1. We need to choose δ = 1

4ε. Then the condition number is as follows:

γf = 1
µ ·

2M2

ε .

Thus, in accordance to (52), we need O(2M2

µε ln f(u0)−f∗
ε ) iterations. This complexity is

optimal, up to a logarithmic factor (see [12, 5]).
For the fast gradient method, described in Section 9.2, we need to satisfy the system

of equations

δ = 9ε

32γ
1/2
f

, γf = M2

2δµ .

Thus, γf =
(

16M2

9µε

)2
, and we obtain from (54) the same optimal complexity (up to a

logarithmic factor).
These results confirm that our complexity analysis presented in Sections 9.1, 9.2, is

tight both for PGM and FGM.
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