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1. Introduction

Industrial Organization (IO) lies at the centerpiece of economic the-

ory. The “oligopoly problem” - the question of whether prices are de-

terminate or not in presence of only a few competitors - remains central

in economic literature and, indeed, it has proved to be one of the more

resilient problems in economic theory1.

Since the seminal contributions of Bertrand and Cournot, IO ideas

and models have helped extensively in advancing our understanding of

price formation in presence of a limited number of agents. Furthermore

IO findings have furnished fundamental insights into firms’ strategic

behavior in oligopoly contexts, and as such those findings are nowadays

widely used to assist decision makers and practitioners in the regulation

of industries and in concrete, court-based regulatory cases.

Modern IO is firmly grounded into game theory, and recently new

and powerful tools have been added to those traditionally available to

IO scholars. These tools are usually denoted, in a concise way, as games

with strategic complementarities (GSC), also known as supermodular

or quasisupermodular games.

GSC are built up and studied on the basis of a fixpoint theory and of

a theory of comparative statics that do not require neither continuity

nor convexity assumptions, while working for example with discrete

choice sets. In this respect, GSC are pretty innovative even within the

consolidated body of game-theoretical literature.

At the heart of GSC lies, however, an old and very familiar no-

tion in economics: that of complementarity in the sense of Pareto and

Edgeworth. In fact, once payoffs are shown to embody this kind of

complementarity, the joint best reply of the game can be proved to be

increasing in a certain sense. This increasingness notion, paired with

topological assumptions, allows to apply (extensions of) Tarski’s fix-

point theorem to the best reply of the game and to show existence and

other important properties of Nash equilibria.

The theory of GSC is, as such, pretty complex; especially whenever

full generality is at stake. Furthermore, the theory is scattered in a

literature that spans a long time period and plenty of different research

fields such as applied mathematics, economics and operations research.

1Vives (1999).
1



Only recently all the pieces have been put together, setting up a general

and new framework for the analysis of IO problems.2

In this paper, we review the theory of GSC from scratch to the state

of the art, with a strong emphasis on the notion of complementarity

that underlines the entire construction and on how this notion is used

to build up GSC. We organize a large amount of material in a unified

and self-contained frame, and we clarify the basic mathematical mod-

eling so that the reader may rapidly develop his own ability to deal

with applied research not falling entirely in the realm of well-known

examples. We will concentrate on why the assumptions are made, and

why that type of assumptions and not others. Furthermore, and maybe

even more importantly, we will shed light on the intuitions and concep-

tual points that lie in the background of the theory, and on how all the

aforementioned pieces blend together to set up a consistent method-

ological framework. For new results in the field one may see Calciano

(2007, 2009, 2010).

As an example of our approach, consider that complementarity and

GSC are usually treated in the literature the context of lattices3. How-

ever, lattices do not have much to do with complementarity. They are

just useful devices when the individual choice sets are not the product

of totally ordered sets. However, it is exactly in the context of choice

sets which are the product of totally ordered sets that complementarity

can be better understood.

Accordingly, the treatment in this paper does not start with lattices,

but introduce them when it is needed by the natural development of the

analysis. We present complementarity for choice sets which are chains

at first4, then product of chains, and finally lattices. We furthermore

distinguish between cardinal and ordinal complementarity, and show

why the latter should be introduced and what role it plays in the theory

of GSC: namely, that of making sure that properties obtained by using

cardinal complementarity are indeed ordinal properties; in the sense of

being retained under order-preserving transformations of payoffs.

We will prove every statement with the tools developed that far,

even at the obvious cost of longer, more pedantic proofs and more

2Is is worth remarking, however, that the theory of GSC finds application also
beyond IO.

3Lattices are partially ordered sets which have the infima and suprema of all
their finite subsets. All the definitions will be given in the subsequent sections of
the paper.

4Totally ordered sets are also called chains.
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cumbersome notation. A cost due to our choice of not using lattice

notions until strictly needed5.

The IO literature is full of extremely relevant applications of GSC,

and many papers are concerned with these applications, for example

Amir (1996, 2005 a, 2005 b), Bulow et al. (1985), Topkis (1995), just

to quote some of the better known works in the field. Furthermore, a

very well-known advanced IO book, Vives (1999), is entirely devoted

to applications of GSC. A classical exposition of the theory, with ap-

plications as well, can be found in Topkis (1998).

As a consequence, we will not fill our paper with applications. The

interested reader is referred to the works quoted above, which contain

themselves extended references. This paper is concerned with the for-

mal and conceptual structure of the theory of GSC, and as such it

complements the applied literature. Notwithstanding this, a final sec-

tion contains selected examples from IO which are presented here for

the sake of illustrating some aspects of the techniques that are less clear

and not so used in the applied literature but that, we believe, can be

useful and conductive of new applications.

The paper is organized as follows. Section 2 introduces and analyzes

the cardinal and ordinal notion of complementarity. Section 3 compares

and contrasts these two notions. Sections 4, 5, 6 examine the effects

of complementarity on individual decision problems in the context of

chains, products of chains, and lattices respectively. Section 7 intro-

duces and studies games with strategic complementarities. Section 8

contains IO applications.

2. Cardinal and ordinal complementarity

Complementarity is an old notion in economics. Samuelson (1974)

presents an authoritative historical perspective on it, and surveys the

idea of Pareto-Edgeworth complementarity, giving it the meaning of

an externality among activities. Samuelson’s reconstruction lies at the

basis of the current approach to complementarity.

Consider an agent having preferences whose cardinality allows him to

add own utility indeces. Consider a consumption bundle where tea and

lemon are present. According to Samuelson, tea and lemon are Pareto-

Edgeworth complements whenever, keeping all other goods fixed, a

joint increase of tea and lemon gives the agent a benefit exceeding the

5We will not prove purely topological result, because proving them would fall
beside the scope of the paper. Full references will be given for those results.
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sum of benefits that he would get by increasing them separately. This

means that an increase of, say, tea makes an increase of lemon more

desirable: the increase of tea exerts a positive externality on increasing

lemon.

Later literature (Bulow et al., 1985) independently rediscovers Samuel-

son’s approach, calling “strategic complements” what Samuelson called

Pareto-Edgeworth complements. Of course, in general there is no rea-

son to qualify a complementarity relation as “strategic”. But the termi-

nology has spread out in economics at large. We point out, then, that

strategic complementarity is exactly Pareto-Edgeworth complementar-

ity, and call it simply “complementarity” from now on.

Samuelson heuristic description translates directly into a property

of the utility function. Let R2 be the commodity space, with typical

element (x, t), where x is the amount of lemon and t is the amount of

tea. Start from a consumption bundle (x1, t1). Consider a consumption

bundle (x2, t2), with x1 < x2 and t1 < t2. At (x2, t1) we would have

increased only lemon. At (x1, t2) we would have increased only tea. At

(x2, t2) we would have increased both.

Samuelson description of complementarity says that:

u (x2, t1)− u (x1, t1) + u (x1, t2)− u (x1, t1)

≤
u (x2, t2)− u (x1, t1) ;

that is,

(1) u (x2, t1)− u (x1, t1) ≤ u (x2, t2)− u (x1, t2) .

This property has a modern name. Let X be a poset (a partially

ordered set), T be a set, and u : X × T → R. For fixed x1, x2 ∈ X,

with x1 < x2, call the expression

u (x2, t)− u (x1, t)

a first difference of u in x. This is clearly a function of t.

Definition 1. (Increasing differences). Let u (x, t) : X × T →
R, where X and T are posets. u has increasing differences in (x, t) if

every first difference of u in x is increasing in t; that is, if for every

x1, x2 ∈ X with x1 < x2, for every t1, t2 ∈ T with t1 < t2, inequality

(1) holds.
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Definition 2. (Cardinal complementarity). Let u (x, t) : X ×
T → R, where X and T are posets. We say that activities x and t are

cardinal complements if u has increasing differences in (x, t).

It is clear from the definition that u (x, t) has increasing differences

in (x, t) if and only if it has also increasing differences in (t, x), by which

we mean that any first difference of u (x, t) in t, i.e. any

u (x, t2)− u (x, t1)

with t1 < t2, is increasing in x. Hence the cardinal complementarity

relation is symmetric. We will come back to this important point in

the sequel.

In applications, to check if two one-dimensional activities x, t are

cardinal complements, one often uses the following immediate result.

Lemma 1. (Differential characterization of cardinal com-

plementarity). Let u (x, t) : R × R → R be differentiable in x for

every t, and let ux (x, t) be differentiable in t for every x.

u (x, t) has increasing differences in (x, t) if and only if for every

(x, t) ∈ R2, uxt (x, t) ≥ 0.

Furthermore, if for every (x, t) ∈ R2, uxt (x, t) > 0, then u (x, t) has

strict increasing differences in (x, t) (meaning that (1) holds with strict

inequality).

Proof: If u has increasing differences in (x, t), then for every t1, t2 ∈
R with t1 < t2, and for every distinct x, x0 ∈ R, we have that

u (x, t2)− u (x0, t2)− [u (x, t1)− u (x0, t1)]

x− x0

≥ 0.

Taking limit as x → x0, we get that ux (x0, t2) ≥ ux (x0, t1). Hence

ux (x, t) is increasing in t, and so for every x and every distinct t, t0 in

R,

ux (x, t)− ux (x, t0)

t− t0
≥ 0.

Taking limit as t → t0, we get the result.

Let now uxt (x, t) ≥ (>) 0 for every (x, t) ∈ R2. Since for every x

ux (x, t) is differentiable in t, then by the intermediate value theorem,

for every t1, t2 with t1 < t2, there exists some β ∈ (t1, t2) such that

ux (x, t2)− ux (x, t1)

t2 − t1
= uxt (x, β) ≥ (>) 0,
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meaning that for every x, ux (x, t2) − ux (x, t1) ≥ (>) 0. Hence for

u (x, t2)− u (x, t1), which is a differentiable function of x, by the inter-

mediate value theorem we have that, for every x1 < x2, there is some

α ∈ (x1, x2) such that

u (x2, t2)− u (x2, t1)− [u (x1, t2)− u (x1, t1)]

x2 − x1

=

ux (α, t2)− ux (α, t1) ≥ (>) 0.

Hence

u (x2, t2)− u (x2, t1)− [u (x1, t2)− u (x1, t1)] ≥ (>) 0,

and u has (strictly) increasing differences in (x, t). �

Remark: conventional complementarity. Bulow etc. (1985)

define“conventional”complementarity as a positive effects of increasing

one activity, say t, on total profits. In these terms, x is a conventional

complement of t if ux (x, t) ≥ 0, i.e. if payoff is increasing in t for every

x. On the other hand, strategic complementarity means that increasing

activity t has a positive effects on the marginal profits associated to x,

that is, uxt (x, t) ≥ 0. While this approach justifies the distinction, the

term “strategic” still sounds arbitrary. It is referred to the fact that

activity t is controlled by some opponent of the player at stake in a

game setting.

Lemma 2. (Multidimensional increasing differences). Let

u (x, t) : X × T → R, with X = X1 × · · · ×Xm and T = T1 × · · · × Tn,

each factor in the products being a poset.

u (x, t) has increasing differences in ((x1, . . . , xm) , (t1, . . . , tn)) on X×
T if and only if, for every (x′1, . . . , x

′
m, t′1, . . . , t

′
n) in X × T , for every

i = 1, . . . ,m and every j = 1, . . . , n, the function

u (x′1, . . . , xi, . . . , x
′
m, t′1, . . . , tj, . . . , t

′
n) : Xi × Tj → R

has increasing differences in (xi, tj) on Xi × Tj.

Proof: Necessity is trivial. For sufficiency, we need two steps.

STEP 1. We first prove that u (x, t) has increasing differences in

(xi, (t1, . . . , tn))

for any i = 1, . . . ,m and any fixed x−i, where given any x in X, x−i is

the projection of x onto all of its coordinates except for the ith one.

Take i = 1. Fix any (x2, . . . , xn). Pick any (x′i, t
′
1, . . . , t

′
n) ≤ (x′′i , t

′′
1, . . . , t

′′
n).
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Set (t2, . . . , tn) = (t′2, . . . , t
′
n). By assumption u has increasing differ-

ences in (x1, t1) for fixed (x2, . . . , xn) and (t′2, . . . , t
′
n); that is,

u (x′′1, x2, . . . , xm, t′1, t
′
2, . . . , t

′
n)− u (x′1, x2, . . . , xm, t′1, t

′
2, . . . , t

′
n)

≤
u (x′′1, x2, . . . , xm, t′′1, t

′
2, . . . , t

′
n)− u (x′1, x2, . . . , xm, t′′1, t

′
2, . . . , t

′
n)

Set now (t1, t3, . . . , tn) = (t′′1, t
′
3, . . . , t

′
n). By assumption, u has increas-

ing differences in (x1, t2) for fixed (x2, . . . , xn) and (t′′1, t
′
3, . . . , t

′
n). Hence

the inequality above can be continued into:

≤
u (x′′1, x2, . . . , xm, t′′1, t

′′
2, . . . , t

′
n)− u (x′1, x2, . . . , xm, t′′1, t

′′
2, . . . , t

′
n)

Set now (t1, t2, t4 . . . , tn) = (t′′1, t
′′
2, t

′
4 . . . , t′n). By assumption, u has in-

creasing differences in (x1, t3) for fixed (x2, . . . , xn) and (t′′1, t
′′
2, t

′
4 . . . , t′n).

Hece continue the inequalities above into:

≤
u (x′′1, x2, . . . , xm, t′′1, t

′′
2, t

′′
3, t

′
4 . . . , t′n)− u (x′1, x2, . . . , xm, t′′1, t

′′
2, t

′′
3, t

′
4 . . . , t′n)

Proceeding this way, we get a string of inequalities ending as:

. . .

≤
u (x′′1, x2, . . . , xm, t′′1, t

′′
2, . . . , t

′′
n)− u (x′1, x2, . . . , xm, t′′1, t

′′
2, . . . , t

′′
n) .

Hence, for fixed (x2, . . . , xn),

u (x′′1, x2, . . . , xm, t′1, t
′
2, . . . , t

′
n)− u (x′1, x2, . . . , xm, t′1, t

′
2, . . . , t

′
n)

≤
u (x′′1, x2, . . . , xm, t′′1, t

′′
2, . . . , t

′′
n)− u (x′1, x2, . . . , xm, t′′1, t

′′
2, . . . , t

′′
n) .

So u has increasing differences in (xi, (t1, . . . , tn)) for any fixed (x2, . . . , xn).

Redo the argument for i = 2, . . . ,m.

STEP 2. We now prove the result. Pick any

(x′1, . . . , x
′
m, t′1, . . . , t

′
n) ≤ (x′′1, . . . , x

′′
m, t′′1, . . . , t

′′
n) .

By the previous step, fixing (x2, x3, . . . , xm) = (x′2, x
′
3, . . . , x

′
m), u has

increasing differences in (x1, (t1, . . . , tn)), and hence in ((t1, . . . , tn) , x1)

(here we use that increasing differences does not distinguish between

the first and second variable). That is,

u (x′1, x
′
2, . . . , x

′
m, t′′1, . . . , t

′′
n)− u (x′1, x

′
2, . . . , x

′
m, t′1, . . . , t

′
n)

≤
u (x′′1, x

′
2, . . . , x

′
m, t′′1, . . . , t

′′
n)− u (x′′1, x

′
2, . . . , x

′
m, t′1, . . . , t

′
n) .
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Fix now (x1, x3, . . . , xm) = (x′′1, x
′
3, . . . , x

′
m). By Step 1, u has increasing

differences in (x2, (t1, . . . , tn)), and so u has increasing differences in

((t1, . . . , tn) , x2). Thus, we can continue the inequality above into:

≤
u (x′′1, x

′′
2, . . . , x

′
m, t′′1, . . . , t

′′
n)− u (x′′1, x

′′
2, . . . , x

′
m, t′1, . . . , t

′
n) .

Proceeding this way, we get a string of inequalities ending as:

. . .

≤
u (x′′1, x

′′
2, . . . , x

′′
m, t′′1, . . . , t

′′
n)− u (x′′1, x

′′
2, . . . , x

′′
m, t′1, . . . , t

′
n) .

Hence,

u (x′1, x
′
2, . . . , x

′
m, t′′1, . . . , t

′′
n)− u (x′1, x

′
2, . . . , x

′
m, t′1, . . . , t

′
n)

≤
u (x′′1, x

′′
2, . . . , x

′′
m, t′′1, . . . , t

′′
n)− u (x′′1, x

′′
2, . . . , x

′′
m, t′1, . . . , t

′
n) .

This prove that u has increasing differences in ((x1, . . . , xm) , (t1, . . . , tn))

on X × T . �

Corollary 1. (Differential characterization of multidi-

mensional increasing differences). Let u (x, t) : Rm × Rn → R
be twice differentiable on Rm × Rn (but we need less, see the assump-

tions in Lemma 1).

u (x, t) has increasing differences in (x, t) on Rm ×Rn if and only if,

for every i = 1, . . . ,m; every j = 1, . . . , n; and every (x, t) in Rm×Rn,

uxitj (x, t) ≥ 0.

Proof: Immediate by applying first Lemma 2 and then Lemma 1 .�

A weaker, ordinal (preserved under increasing transformations of

payoffs) notion of complementarity has been introduced by Milgrom

and Shannon (1994) by observing that, in the inequality defining in-

creasing differences, if the left-hand-side difference is (strictly) greater

than some real k, then the right-hand-side difference must also be

(strictly) greater than k. Normalizing k = 0, this means that whenever

an increase of lemon is desirable at a fixed level of tea, this increase

remains desirable if tea increases too. This property represents a weak

notion of Pareto-Edgeworth complementarity, and is formalized in the

definition of single crossing property.

Definition 3. (Single crossing property). Let X and T be

posets. Function u (x, t) : X × T → R has the single crossing property
8



in (x, t) if any first difference of u (x, t) in x which is (strictly) positive

at some t, remains (strictly) positive as t increases. That is, if for every

x1, x2 ∈ X with x1 < x2, for every t1, t2 ∈ T with t1 < t2,

u (x1, t1) ≤ u (x2, t1) ⇒ u (x1, t2) ≤ u (x2, t2) ;

u (x1, t1) < u (x2, t1) ⇒ u (x1, t2) < u (x2, t2) .

Clearly, if function u (x, t) has increasing differences in (x, t), it also

satisfies the single crossing property in (x, t), while the contrary does

not hold necessarily, as can be shown easily.

Definition 4. (Ordinal complementarity). Let u (x, t) : X ×
T → R, where X and T are posets. We say that activities x and t are

ordinal complements if u (x, t) has the single crossing property in (x, t).

The fact that u (x, t) has the single crossing property in (x, t) does

not imply that it has the single crossing property in (t, x), i.e. it does

not imply that whenever any first difference of u (x, t) in t is (strictly)

positive at some x, it remains so as x increases. Hence, contrary to

cardinal complementarity, ordinal complementarity does not generate

a symmetric relation. We elaborate on this fact in the next Section.

3. Cardinal versus ordinal complementarity

3.1. On the lack of symmetry of ordinal complementarity. We

have seen that a function u (x, t) has increasing differences in (x, t) if

and only if it has increasing differences in (t, x). Hence, if increas-

ing differences in (x, t) is meant to define the binary relation: “x is a

cardinal complement of t”, this relation is symmetric.

On contrary, the single crossing condition depends on the variable

with respect to whom the first difference is taken. Single crossing in

(x, t) does not imply single crossing in (t, x), as the following example

shows.

Consider the function:

u (x, t) =
x

t
+ t

with t 6= 0. For any x1 < x2, the corresponding first difference of u in

x is:

1

t
(x2 − x1) .

9



If any such first difference is strictly positive6, then t must be strictly

positive as well, and so this first difference stays strictly positive as t

increases, albeit being decreasing in t. Thus u has the single crossing

property in (x, t).

On the other hand, u (x, t) fails to have the single crossing property

in (t, x), since for any t1 < t2 the corresponding first difference of u in

t takes the form of

x

(
1

t2
− 1

t1

)
+ t2 − t1

which for t1 = 1 and t2 = 2 becomes −x
2

+ 1, which in turn is strictly

positive at x = 1 but nonpositive at any x ≥ 2.

If the single crossing property in (x, t) is take as a definition of the

binary relation “x is an ordinal complement of t”, this relation is not

symmetric.

This lack of symmetry is much more than a curiosity. It will require

to add extra assumptions on payoffs when studying the comparative

statics of the set of maximizers of u (x, t) in a purely ordinal context.

We will turn to this issue in subsection 5.2.

3.2. On some apparent inconsistency between cardinal and or-

dinal complementarity. We now exhibit a payoff function where the

two activities x and t are both ordinal complements and cardinal sub-

stitutes.

Consider again the function:

u (x, t) =
x

t
+ t

with t 6= 0. We have seen that it satisfies the single crossing property

in (x, t). On the restricted domain {(x, t) : x ≤ 1 ≤ t}, the function

satisfies also the single crossing property in (t, x). Indeed, for every

t1 < t2, the expression (
1

t2
− 1

t1

)
+ t2 − t1

is (strictly) positive iff t1t2 ≥ 1 (iff t1t2 > 1). Hence, when we rescale

the negative term
(

1
t2
− 1

t1

)
multiplying it by any x ≤ 1, we see that

this first difference remain positive or, respectively, strictly positive.

Hence u (x, t) satisfies the single crossing property in (t, x) on the stated

domain.

6It can never be 0
10



However, our function has decreasing differences in (x, t), since

uxt (x, t) = − 1

t2
< 0

for all x and all t 6= 0. Hence for this function, on the stated domain,

the two activities x and t are both ordinal complements and cardinal

substitutes.

This fact is due to the increased generality of the notion of ordinal

complementarity relative to that of cardinal complementarity, but how-

ever does not represent an instance of logical inconsistency of the two

notions. Indeed, as we will see in the sequel, any GSC-result driven

by cardinal complementarity of payoffs holds for any order-preserving

transformation of these payoffs, and so what really drives the result

are not the cardinal properties, but the ordinal ones, which are pre-

served by definition under these transformations. Thus we can well

transform cardinal complementarity into cardinal substitutability, for

example getting the function of the example, without loosing any GSC-

conclusion.

In terms of the complementarity relations, in our example the activ-

ities being cardinal substitutes are also ordinal substitutes. Hence they

are indeed ordinally “neutral” with each other.

4. Monotone comparative statics on chains

Let Bt be the set of maximizers over X of function u (x, t) : X×T →
R. We keep the assumption, in the comparative statics results below,

that Bt is nonempty for every t in T . Conditions to assure that this is

indeed the case in the various contexts will be introduced separately.

In view of these conditions, however, we introduce here an appropriate

intrinsic topology for posets.

Definition 5. (Interval topology). Let X be a poset. The in-

terval topology of X is the topology generated by taking the closed

intervals

[y, z] = {x ∈ X : y ≤ x ≤ z} ,

with y, z ∈ X, as a subbasis for closed sets.

For the sake of applications, we recall that in Rn the interval topology

is equivalent to the standard topology (Frink, see Birkhoff, 1967, Ch.

X).
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The simplest case is that in which the choice set X is a chain (a

totally ordered set, for example a subset of R). We have the following

comparative statics result.

Theorem 1. (Comparative statics on chains, cardinal case).

Let X be a chain, T be a poset and let u (x, t) : X × T → R have in-

creasing differences in (x, t). For every t1 < t2, for every a ∈ Bt1 and

every b ∈ Bt2 , min {a, b} ∈ Bt1 and max {a, b} ∈ Bt2 .

Proof: If a ≤ b we are done. Let then b < a. We have that

0 ≤ u (a, t1)− u (b, t1) ≤ u (a, t2)− u (b, t2) ≤ 0,

where the first and last inequality follow from optimality, and the

middle-one follows from increasing differences. Hence b ∈ Bt1 , and

a ∈ Bt2 . �

The generalization to the ordinal case is immediate, and the proof is

a prototype of how the inequalities of the single crossing property work

in monotone comparative statics theorems. Hence it is instructive to

fill in all the details.

Theorem 2. (Comparative statics on chains, ordinal case).

Let X be a chain, T be a poset and let u (x, t) : X ×T → R satisfy the

single crossing property in (x, t). For every t1 < t2, for every a ∈ Bt1

and every b ∈ Bt2 , min {a, b} ∈ Bt1 and max {a, b} ∈ Bt2 .

Proof: If a ≤ b we are done. Let then b < a. By the optimality of a

at t1

u (a, t1)− u (b, t1) ≥ 0,

and hence by the single crossing property

u (a, t2)− u (b, t2) ≥ 0,

which implies, by the optimality of b at t2, that a ∈ Bt2 . On the other

hand, by optimality of b at t2, the following inequality fails:

u (a, t2)− u (b, t2) > 0.

Hence, by the single crossing property,

u (a, t1)− u (b, t1) ≤ 0.

Thus, by the optimality of a at t1 we have that b ∈ Bt1 , and we are

done. �

Theorem 3. (Increasing extremal selections). Let X be a

chain, T be a poset and let u : X × T → R satisfy the single crossing
12



property in (x, t).

If Bt has either a least element a∗ (t) or a greatest element a∗ (t) for

every t ∈ T (or both), then this element is an increasing functions.

Proof: Take any t1 < t2. Consider first a∗ (t). Take any a ∈ Bt1 .

By the previous theorem, c := min {a, a∗ (t2)} ∈ Bt1 . Hence, a∗ (t1) ≤
c ≤ a∗ (t2). Analogously, for any b ∈ Bt2 , by the previous theorem

d := max {b, a∗ (t1)} ∈ Bt2 , and so a∗ (t1) ≤ d ≤ a∗ (t2). �

Conditions assuring that the argmax Bt has a least element and a

greatest element of every t in T are here the same as the standard

ones making it nonempty. Assume X compact in its interval topology

and u (x, t) upper semicontinuous in x for every t. Hence every Bt is

nonempty and compact. Compactness in the interval topology implies

that Bt has indeed a least and a greatest element. To understand why

this is so we will need an important topological result, that will be

presented later on in the paper as Theorem 7. See also the discussion

after Corollary 2 as well.

5. Monotone comparative statics on finite products of

chains

If X = Y × Z, where Y and Z are chains (for example, X is a

box in R2), then a natural way to extend to this context the definition

of monotonicity of the argmax Bt of u (y, z, t) over Y × Z is to use

coordinate-wise minima and maxima.

Pick any (y1, z1),(y2, z2) ∈ Y × Z. Define infima and suprema as

(y1, z1) ∧ (y2, z2) = (min {y1, y2} , min {z1, z2}) ,

(y1, z1) ∨ (y2, z2) = (max {y1, y2} , max {z1, z2}) .

Note that such infima and suprema are well defined exactly because Y

and Z are chains.

We say that Bt is increasing in t on T if for every t1 ≤ t2 in T , for

every (y1, z1) ∈ Bt1 and every (y2, z2) ∈ Bt2 ,

(y1, z1) ∧ (y2, z2) ∈ Bt1 ,

(y1, z1) ∨ (y2, z2) ∈ Bt2 .

In this context, increasing differences of u (x, t) in (x, t), with x =

(y, z), and hence the single crossing property u (x, t) in (x, t), do no

longer suffice to guarantee that Bt is increasing. The reason is examined

in the following subsections.
13



5.1. Using cardinal complementarity for comparative statics

over a product of chains. Let:

X = {(0, 0) , (0, 1) , (1, 0) , (1, 1)} ⊂ R2.

X is the product of chain {0, 1} by itself. Let T = {t1, t2}, with t1 < t2.

Let u : X × T → R be defined as:

u ((0, 0) , t1) = 0 u ((0, 0) , t2) = 0

u ((0, 1) , t1) = 8 u ((0, 1) , t2) = 16

u ((1, 0) , t1) = 10 u ((1, 0) , t2) = 15

u ((1, 1) , t1) = 1 u ((1, 1) , t2) = 10

This function has increasing differences (hence satisfies the single

crossing property) in (x, t). Indeed, check for all x1 ≤ x2, with

x1, x2 ∈ {(0, 0) , (0, 1) , (1, 0) , (1, 1)} .

For x1 = (0, 0):

u ((1, 0) , t1)− u ((0, 0) , t1) = 10 < 15 = u ((1, 0) , t2)− u ((0, 0) , t2)

u ((0, 1) , t1)− u ((0, 0) , t1) = 8 < 16 = u ((0, 1) , t2)− u ((0, 0) , t2)

u ((1, 1) , t1)− u ((0, 0) , t1) = 1 < 10 = u ((1, 1) , t2)− u ((0, 0) , t2)

For x1 = (0, 1):

u ((1, 1) , t1)− u ((0, 1) , t1) = −7 < −6 = u ((1, 1) , t2)− u ((0, 1) , t2)

For x1 = (1, 0):

u ((1, 1) , t1)− u ((1, 0) , t1) = −9 < −5 = u ((1, 1) , t2)− u ((1, 0) , t2)

For this function, Bt1 = {(1, 0)} and Bt2 = {(0, 1)}. Hence increas-

ingness of the argmax fails. What has happened here?

The problem is of course not in the notion of increasingness that

we adopted, which is the most natural one. The problem lies in the

definition of complementarity that we used.

Starting at the optimal bundle (1, 0), a shift of the parameter from t1
to t2 makes indeed desirable to increase the amount of the second good,

as increasing differences shows by taking x1 = (1, 0) < (1, 1) = x2; that

is, the marginal utility of the second good increases with t:

u ((1, 1) , t1)− u ((1, 0) , t1) = −9 < −5 = u ((1, 1) , t2)− u ((1, 0) , t2) .

Furthermore, a shift of the parameter from t1 to t2 makes desirable to

increase the amount of the first good too (i.e. to keep it to 1, which is

the maximum amount allowed by our feasible set), as the last inequality

above also shows. So why (1, 1) is not an optimal bundle at t2?
14



The point is that we have not considered so far the effect that an

increase in one of the two goods can have on the utility of increasing

the other good, everything else kept fixed.

Indeed, for our utility function, as we will see immediately below the

marginal utility of the first good decreases as the amount of the second

good increases, and vice versa, at any fixed level of t. Hence, the two

goods are substitutes to each other, and the net effect of increasing

the parameter t - as this effect is determined by the function of the

example - is to increase the optimal consumption of the second good

but to decrease that of the first good, ending up the re-optimization

process at bundle (0, 1).

In other words, the problem in this example is that u (y, z, t), al-

beit having increasing differences in the pair ((y, z) , t), has decreasing

differences in (y, z) for every t.

Take in fact y1 = 0 and y2 = 1. For fixed t, the corresponding first

difference of u (y, z, t) in y is decreasing in z, i.e. as z shifts from 0 to

1. Let’s check this.

For t = t1:

u ((1, 0) , t1)− u ((0, 0) , t1) = 10 > −7 = u ((1, 1) , t1)− u ((0, 1) , t1) .

For t = t2:

u ((1, 0) , t2)− u ((0, 0) , t2) = 15 > −6 = u ((1, 1) , t2)− u ((0, 1) , t2) .

Remark. When X is a chain, even a multidimensional chain, the

fact illustrated above can not happen. Indeed, in a chain, any real-

location following a parameter’s shift needs to take the form of either

an increase in the level of all goods, or a decrease. Hence the level of

all goods move in the same direction. Then, complementarity between

the bundle in X and the parameter suffices for monotone comparative

statics to hold. In some sense, on a chain all goods can be seen as

behaving as complements to each others.

Summing up. In this example monotone comparative statics has

failed because notwithstanding that each good is a complement to the

parameter, i.e. that u (y, z, t) has increasing difference in ((y, z) , t), the

two goods are substitutes to each other, i.e. u (y, z, t) has decreasing

differences in (y, z) for every t.

In order to obtain the desired monotone comparative statics, we

need to assure not only that each one of the activities y and z is a

complement to the parameter t, but also that the activities y and z are
15



complements to each other for each level of t. Hence we need to assume

both increasing differences of u (y, z, t) in ((y, z) , t), and increasing dif-

ferences of u (y, z, t) in (y, z) for any fixed t. Complementarities must

be pervasive. The comparative statics theorem in this context is then

the following:

Theorem 4. (Comp. statics on a product of chains, cardi-

nal case). Let Y and Z be a chains, T be a poset and u : Y ×Z×T →
R have increasing differences in ((y, z) , t), and in (y, z) for every t in

T .

For every t1 < t2, for every (y1, z1) ∈ Bt1 and every (y2, z2) ∈ Bt2 ,

(y1, z1) ∧ (y2, z2) ∈ Bt1 and (y1, z1) ∨ (y2, z2) ∈ Bt2 .

Proof: Apply the proof of theorem 5 below. �

5.2. Using ordinal complementarity for comparative statics

over a product of chains. If the choice space X is the product of

chains Y and Z, and if we use the ordinal notion of complementarity,

we need to take care of the non-symmetry of the induced complemen-

tarity relation. For u (y, z, t), assuming the single crossing property of

u in (y, z) for any fixed t, and of u in ((y, z) , t), is not enough.

Indeed, we are assuming that y is an ordinal complement to z at any

fixed t, and that both y and z are ordinal complements to t. However,

we are not assuming that z is an ordinal complement to y for fixed

t. As a result, we could well get that increasing t makes in the first

place the level of both y and z increase, then the increase in z makes

y increase as well, but then we could get that the increase in y makes

z decrease. Hence there would be no definite result, ex-ante, on the

comparative statics of the maximizers’ set.

To avoid this, we need to assume also that z is an ordinal complement

to y. Hence, we need to assume for u (y, z, t) that the single crossing

property is satisfied in both (y, z) and (z, y), for any fixed t.

This is done in the next theorem. After reading Section 6, it will be

clear that the proof of the theorem could have been made much shorter

and less pedantic. In the spirit of this paper, however, we have chosen

to explain in details the role and working of ordinal complementarity,

at the cost of a much longer and involved proof. A role that becomes

less clear when one works in a more general context such as that of

Section 6.
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Theorem 5. (Comp. statics on a product of chains, or-

dinal case). Let Y and Z be a chains and T be a poset. Let u :

Y × Z × T → R satisfy the single crossing property in ((y, z) , t), and

in both (y, z) and (z, y) for every t ∈ T .

For every t1 < t2, for every (y1, z1) ∈ Bt1 and every (y2, z2) ∈ Bt2 ,

(y1, z1) ∧ (y2, z2) ∈ Bt1 and (y1, z1) ∨ (y2, z2) ∈ Bt2 .

Proof: Pick any (y1, z1) ∈ Bt1 and any (y2, z2) ∈ Bt2 . If (y1, z1) ≤
(y2, z2), we are done.

Case (A): If (y2, z2) ≤ (y1, z1) then, by the theorem on comparative

statics on chains, the single crossing property in ((y, z) , t) suffices for

the result.

Case (B): Let y2 < y1 and z1 < z2. Here we need the single crossing

in ((y, z) , t) and in (y, z). By optimality of (y1, z1) at t = t1, we have

that:

u (y1, z1, t1)− u (y2, z1, t1) ≥ 0,

and so by the single crossing property in (y, z),

u (y1, z2, t1)− u (y2, z2, t1) ≥ 0.

Since (y2, z2) < (y1, z2) and t1 < t2, by the single crossing property in

((y, z) , t) we have that:

u (y1, z2, t2)− u (y2, z2, t2) ≥ 0,

and by optimality of (y2, z2) at t = t2, (y1, z2) = (y1, z1)∨(y2, z2) ∈ Bt2 .

Analogously, by optimality of (y2, z2) at t = t2,

u (y2, z2, t2)− u (y1, z2, t2) ≥ 0,

and so by the single crossing in (y, z) and by the fact that u takes

values in a chain,

u (y2, z1, t2)− u (y1, z1, t2) ≥ 0.

Since (y2, z2) < (y1, z2) and t1 < t2, then again by the single crossing

in ((y, z) , t),

u (y2, z1, t1)− u (y1, z1, t1) ≥ 0.

Hence by optimality of (y1, z1) at t = t1, we have that (y2, z1) =

(y1, z1) ∧ (y2, z2) ∈ Bt1 , and we are done.

Case (C): Let now y1 < y2 and z2 < z1. Here we need the single

crossing in ((y, z) , t) and in (z, y). By optimality of (y1, z1) at t = t1,

u (y1, z1, t1)− u (y1, z2, t1) ≥ 0.
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By the single crossing property in (z, y),

u (y2, z1, t1)− u (y2, z2, t1) ≥ 0.

Since (y2, z2) < (y2, z1) and t1 < t2, then by the single crossing in

((y, z) , t) we have that:

u (y2, z1, t2)− u (y2, z2, t2) ≥ 0.

Hence by optimality again, (y2, z1) = (y1, z1) ∨ (y2, z2) ∈ Bt2 . In the

same way, by optimality,

u (y2, z2, t2)− u (y2, z1, t2) ≥ 0.

Hence by the single crossing in (z, y),

u (y1, z2, t2)− u (y1, z1, t2) ≥ 0.

Again, because (y2, z2) < (y2, z1) and t1 < t2, by the single crossing in

((y, z) , t) we have that:

u (y1, z2, t1)− u (y1, z1, t1) ≥ 0,

and so, by optimality, (y1, z2) = (y1, z1) ∧ (y2, z2) ∈ Bt1 . �

Corollary 2. (Increasing extremal selections). Let Y and Z

be chains, T be a poset and u : Y × Z × T → R satisfy the single

crossing property in ((y, z) t) and in both (y, z) and (z, y) for every

t ∈ T .

If Bt has either a least element a∗ (t) or a greatest element a∗ (t) for

every t ∈ T (or both), then this element is an increasing function.

Proof: Take any t1 < t2. Consider a∗ (t). Take any c ∈ Bt1 . By the

previous theorem, c ∧ a∗ (t2) ∈ Bt1 . Hence,

a∗ (t1) ≤ c ∧ a∗ (t2) ≤ a∗ (t2) .

Analogously, for any b ∈ Bt2 , by the previous theorem a∗ (t1)∨ b ∈ Bt2 ,

and so

a∗ (t1) ≤ a∗ (t1) ∨ b ≤ a∗ (t2) .

�

The conditions assuring that the argmax Bt has indeed a least and a

greatest element are the same conditions assuring that it is nonempty,

namely that the choice set is compact in the interval topology and

that the objective function is upper semicontinuous in the decision

variables at each value of the parameter. To explain why, we need

further definitions and an important topological result, presented as

Theorem 7 below. See also the discussion after Corollary 3.
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6. Monotone comparative statics on lattices

If the choice set X is a poset which is not a finite product of chains

(for example a circle in the plane), then pointwise infima and suprema

of pairs of elements of X do not need to exist (or to be in X). To

extend to this context the notion of increasingness of Bt that we have

used so far, we need to introduce lattices.

Definition 6. (Lattice) Let X be a nonempty poset. X is a lattice

if for every x1, x2 ∈ X, x1 ∧ x2 ∈ X and x1 ∨ x2 ∈ X (where the first

expression denotes the infimum and the latter denotes the supremum

of {x1, x2} in X).

We now introduce, in the context of lattices, a notion of increasing-

ness that is due to Veinott7. We call it Veinott-increasingness and point

out that, if X is either a chain or a product of chains, it coincides with

increasingness in the sense of the previous sections of this paper.

Definition 7. (Veinott-increasingness) Let X be a lattice and

F : x ∈ X 7→ Fx ⊆ X be a correspondence. We say that F is Veinott-

increasing if for every x, y ∈ X, with x ≤ y, for every v ∈ Fx and every

z ∈ Fy, v ∧ z ∈ Fx and v ∨ z ∈ Fy.

There is an important difference with the previous sections. Albeit

increasing differences and the single crossing property can still be de-

fined on X × T , these properties may be insufficient to investigate the

behavior of the first differences of u (x, t), hence to produce the desired

comparative statics conclusions, when X is a general lattice.

Let us elaborate more on this. Let X be a lattice, T be a poset,

and u (x, t) : X × T → R have the single crossing property in (x, t).

Let as usual Bt denote the argmax of u (x, t) over X. Take unordered

x1 ∈ Bt1 and x2 ∈ Bt2 . By optimality of x1 at t1, the first difference

u (x1, t1)− u (x1 ∧ x2, t1)

is greater than or equal to zero. By the single crossing property, the

same holds at t = t2. And this is all we can say by using the single

crossing property8. In particular, we do not reach any statement about

the eventual non negativity of the first difference

u (x1 ∨ x2, t2)− u (x2, t2) ,

which is what we need to asses whether Bt is Veinott-increasing or not.

7See Topkis (1978).
8Analogously were we using increasing differences.
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Note that this problem is due exactly to the fact that lattice X is no

longer assumed to be the product of chains. A solution to the problem

consists in having a property of u (x, t) that relates in the right way,

for fixed t in T and for any x1, x2 in X, the two first differences above.

This property is called supermodularity. Its ordinal version, quasisu-

permodularity, which remains preserved under ordinal transformations

of payoffs, has been introduced by Milgrom and Shannon (1994).

Definition 8. ((Quasi)supermodularity). Let X be a lattice. A

function u (x) : X → R. is supermodular on X if for every x1, x2 ∈ X,

u (x1) + u (x2) ≤ u (x1 ∧ x2) + u (x1 ∨ x2) .

Function u (x) is quasisupermodular on X if for every x1, x2 ∈ X,

u (x1 ∧ x2) ≤ u (x1) ⇒ u (x2) ≤ u (x1 ∨ x2) ;

u (x1 ∧ x2) < u (x1) ⇒ u (x2) < u (x1 ∨ x2) .

In general lattices X, (quasi)supermodularity has not a direct inter-

pretation in terms of complementarity. It only make the choice vari-

ables in X behave “consistently” with complementarity, but it is not

complementarity itself. It is essentially a useful mathematical device.

But, as Lemma 3 and Lemma 6 show, the interpretation in terms of

complementarity is completely restored as soon as X takes the more

familiar forms that we considered in the previous sections.

Lemma 3. (Characterization of supermodularity in terms

of increasing differences). Let X = Y ×Z and u (y, z) : X → R.

(i) If Y and Z are chains and u (y, z) has increasing differences in

(y, z) on Y × Z, then it is supermodular in (y, z) on Y × Z.

(ii) If Y and Z are lattices, and u (y, z) is supermodular in (y, z) on

Y × Z, then it has increasing differences in (y, z) on Y × Z.

Proof: (i) Take any unordered x′ = (y′, z′) , x′′ = (y′′, z′′) in Y × Z

(if they are ordered supermodularity holds trivially). Let, without loss

of generality, x′ ∧ x′′ = (y′, z′′) and x′ ∨ x′′ = (y′′, z′) (here we are using

the assumption that Y and Z are chains). By increasing differences,

u (y′′, z′′)− u (y′, z′′) ≤ u (y′′, z′)− u (y′, z′) ,

which is supermodularity.

(ii) Pick any (y′, z′) ≤ (y′′, z′′) in the lattice Y × Z. For x′ := (y′, z′′)

and x′′ := (y′′, z′), we have that x′ ∧ x′′ = (y′, z′) and x′ ∨ x′′ = (y′′, z′′).
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By supermodularity,

u (x′′)− u (x′ ∧ x′′) ≤ u (x′ ∨ x′′)− u (x′) ,

which is increasing differences. �

Lemma 4. (Vector supermodularity). Let u (x) : X → R,

where X = X1 × · · · ×Xn and each factor is a chain. Function u (x) is

supermodular in (x1, . . . , xn) on X if and only if for every (x′1, . . . , x
′
n)

in X, for every h, i = 1, . . . , n, with h < i, the function

u
(
x′1, . . . , xh, x

′
h+1 . . . , xi, . . . , x

′
n

)
: Xh ×Xi → R

is supermodular in (xh, xi) on Xh ×Xi.

Proof: Necessity is trivial. As for sufficiency, since u (x) is super-

modular in each pair of variables (xh, xi), then by Lemma 3 u (x) has

increasing differences in each (xh, xi) (fix the value of all the other en-

tries xk, k 6= h, i, and apply the proof of point (ii) of Lemma 3). To

get the statement, apply then Lemma 2. �

Lemma 5. (Differential characterization of supermodu-

larity). Let u (x) : Rn → R be twice differentiable on Rn. Function

u (x) is supermodular on Rn if and only, for every x in Rn and every

h, i = 1, . . . , n with h 6= i, uxhxi
(x) ≥ 0.

Proof: By Lemma 4, u (x) has increasing difference in each pair of

variables. Apply then Lemma 1, the differential characterization of

increasing differences. �

The difference between Lemma 6 below and Lemma 3 - in which we

have characterized supermodularity in terms of increasing differences

- lies in the fact that, in the definition of quasisupermodularity, when

we interchange the roles of the two initial points x1, x2 of lattice X we

obtain different statements. This is not true for supermodularity.

Lemma 6. (Characterization of quasisupermodularity in

terms of the single crossing property) Let X := Y × Z and

u (y, z) : X → R.

(i) If Y and Z are chains and u (y, z) has the single crossing property

in both (y, z) and (z, y) on Y ×Z, then it is quasisupermodular in (y, z)

on Y × Z.

(ii) If Y and Z are lattices and u (y, z) is quasisupermodular in (y, z)

on Y × Z, then it has the single crossing property in both (y, z) and

(z, y) on Y × Z.
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Proof: (i) Take any unordered (y′, z′) , (y′′, z′′) in Y × Z (if they

are ordered quasisupermodularity holds trivially). Let, without loss of

generality, x′ ∧ x′′ = (y′, z′′) and x′ ∨ x′′ = (y′′, z′) (here we are using

the assumption that Y and Z are chains). Let

u (y′, z′)− u (y′, z′′) ≥ (>) 0.

Hence this first difference of u (y, z) in z is (strictly) positive at y′, and

by the single crossing property in (z, y) it stays (strictly) positive at

y′′, meaning that:

u (y′′, z′)− u (y′′, z′′) ≥ (>) 0.

Let now

u (y′′, z′′)− u (y′, z′′) ≥ (>) 0.

Hence this first difference of u (y, z) in y is (strictly) positive at z′′, and

by the single crossing property in (y, z) it stays (strictly) positive at z′,

meaning that

u (y′′, z′)− u (y′, z′) ≥ (>) 0.

Hence quasisupermodularity holds.

(ii) Pick any (y′, z′) ≤ (y′′, z′′) in the lattice Y × Z. For x′ :=

(y′, z′′) and x′′ := (y′′, z′), x′ ∧ x′′ = (y′, z′) and x′ ∨ x′′ = (y′′, z′′). By

quasisupermodularity,

u (x′)− u (x′ ∧ x′′) ≥ (>) 0 ⇒ u (x′ ∨ x′′)− u (x′′) ≥ (>) 0,

which is the single crossing property of u (y, z) in (z, y). Again by

quasisupermodularity,

u (x′′)− u (x′ ∧ x′′) ≥ (>) 0 ⇒ u (x′ ∨ x′′)− u (x′) ≥ (>) 0,

which is the single crossing property of u (y, z) in (y, z). �

We now prove the monotone comparative statics theorem for the

general context of lattices. We prove the general ordinal version of

the theorem, due to Milgrom and Shannon (1994). Theorems 2 and

5 are special cases of Theorem 6. The the proof of Theorem 5 would

have been written in a much shorter and transparent way, had we used

quasisupermodularity instead.

In the case where the optimization is constrained, if we add to the

condition t1 < t2 in Theorem 6 that the constraint set shifts according

to the Veinott set-relation, then we obtain that quasisupermodular-

ity and the single crossing property are not only sufficient, but also

necessary to conclude that the argmax is Veinott increasing.
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Theorem 6. (Comparative statics on lattices, Milgrom

and Shannon, 1994.) Let X be a lattice, T be a poset, and u (x, t) :

X × T → R.

If u (x, t) is quasisupermodular in x on X for every t in T , and has

the single crossing property in (x, t) on X × T , then the argmax Bt of

u (x, t) over X is a Veinott-increasing correspondence; that is, for every

t1 < t2 in T , for every x1 ∈ Bt1 and every x2 ∈ Bt2 , x1 ∧ x2 ∈ Bt1 and

x1 ∨ x2 ∈ Bt2 .

Proof: Take any x1 ∈ Bt1 and any x2 ∈ Bt2 . By optimality,

u (x1 ∧ x2, t1) ≤ u (x1, t1) ,

and so by quasisupermodularity

u (x2, t1) ≤ u (x1 ∨ x2, t1) .

Because x2 ≤ x1 ∨ x2 and t1 < t2, by the single crossing property

u (x2, t2) ≤ u (x1 ∨ x2, t2) .

Thus, by optimality, x1 ∨ x2 ∈ Bt2 . For the other part, by optimality,

u (x1 ∨ x2, t2) ≤ u (x2, t2) .

Hence by quasisupermodularity

u (x1, t2) ≤ u (x1 ∧ x2, t2) ,

and by the single crossing property,

u (x1, t1) ≤ u (x1 ∧ x1, t1) .

Hence, by optimality, x1 ∧ x2 ∈ Bt1 . �

Corollary 3. (Increasing extremal selections). Let X be a

lattice and T be a poset. Let u (x, t) : X×T → R be quasisupermodular

in x on X for every t in T , and have the single crossing property in (x, t)

on X × T . If Bt has either a least element a∗ (t) or a greatest element

a∗ (t) for every t ∈ T (or both), then this element in an increasing

functions.

Proof: Take any t1 < t2. Consider a∗ (t). Take any c ∈ Bt1 . By the

previous theorem, c ∧ a∗ (t2) ∈ Bt1 . Hence,

a∗ (t1) ≤ c ∧ a∗ (t2) ≤ a∗ (t2) .

Analogously, for any b ∈ Bt2 , by the previous theorem a∗ (t1)∨ b ∈ Bt2 ,

and so

a∗ (t1) ≤ a∗ (t1) ∨ b ≤ a∗ (t2) .
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The conditions assuring that every Bt has a least and a greatest

element are those making it nonempty. We need a further result. This

discussion applies to the previous Sections as well.

Definition 9. (Complete lattice). Let X be a nonempty lattice.

X is a complete lattice if for every nonempty subset S ⊆ X, inf S ∈ X

and sup S ∈ X.

What we care about here is that, on setting S = X, a complete lattice

has a least and a greatest element. We need the following important

topological result.

Theorem 7. (Topological characterization of complete-

ness). A lattice is compact in its interval topology if and only if it is

complete.

Proof: Birkhoff, 1967, Ch. X, Theorem 20. �

Assume then that X is compact in its interval topology and that

u (x, t) is upper semicontinuous in x for every t. Hence every Bt is

nonempty and compact. Furthermore, by theorem 6, on setting t1 = t2,

we see that every Bt is indeed a lattice (a sublattice of X). Thus, by

Theorem 7, every Bt is a complete lattice, and so it has a least and a

greatest element.

For the previous Sections, hence, just assume that the chain X and

the product of chains Y ×Z are compact in their interval topology, and

apply the same argument.

7. Games with Strategic Complementarities

Games with strategic complementarities (GSC) are essentially games

where each player’s payoff is (quasi)supermodular in own strategies and

has (the single crossing property) increasing differences in each pair

(x, y), where x is any own strategy and y is any profile of opponents’

strategies.

In view of the differential characterization of increasing differences,

it is clear that GSC are appealing as far as checking conditions on

payoffs is concerned. However, and more importantly, GSC are relevant

because of their nice properties. Namely, in a GSC Nash equilibria

exists, the Nash set is a complete lattice, and furthermore the extremal

Nash equilibria have well-determinate comparative statics properties

and are rationalizable.
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Theorem 6 represents the first of two fundamental results in the

construction of games with strategic complementarities. The second

fundamental result is Theorem 8 below, a fixpoint theorem due inde-

pendently to Veinott (1992) and Zhou (1994), and which is an extension

to correspondences of the famous fixpoint theorem of Tarski. Thus,

GSC are a merge of new comparative statics results and new fixpoint

results.

We report here Veinott-Zhou fixpoint theorem in a slightly different,

more general version due to Calciano (2009). We have chosen here

to use results from Calciano (2009) to make the paper entirely self-

contained, as will become clear in the sequel of this section.

In this section, contrary to the rest of the paper, we have decided to

omit some proofs, namely those of Theorems 8 and 9. This is because

these proofs are more advanced and not so consistent to the scope of

this paper, which remains to clarify the notion of complementarity that

lies at the heart of modern industrial organization.

Some more notation is needed. Let X be a poset and associate to a

correspondence F : X → X the two sets:

A := {x ∈ X : ∃y ∈ F (x) : x ≤ y} ;

B := {x ∈ X : ∃y ∈ F (x) : y ≤ x} .

Set A is the set of elements x of X at which F jumps above the

diagonal. Set B is the dual of A. The fixpoint set of F is a subset of

the intersection of A and B. We say that correspondence F : X → X

has a greatest (least) element if for every x ∈ X, the set F (x) has a

greatest (least) element.

Theorem 8. (Veinott 1992, Zhou 1994, Calciano 2009). Let

X be a complete lattice and F : X → X be a correspondence. If F is

Veinott-increasing and has both a greatest and a least element, then:

(a) ∨A and ∧B are, respectively, the greatest and least fixpoint of F ;

(b) the fixpoint set of F is a complete lattice.

In the original theorems of Veinott and Zhou, the correspondence

F is assumed to be subcomplete-sublattice-valued. In other words, in

these theorems F is assumed to be such that, for every x ∈ X, the

infimum and supremum in X of all subsets of F (x) lie in F (x). In

Theorem 8 we required this property to hold only for set F (x) itself.
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The generalization contained in Calciano (2009) is indeed wider, since

it concerns the increasingness notion as well.

All the remarks above apply to the next theorem too, which is the

fundamental comparative statics result for the study of the behavior of

extremal Nash equilibria.

Theorem 9. (Topkis 1998, Calciano 2009). Let X be a com-

plete lattice, T be a poset and F : X × T → X be a correspondence.

If F is Veinott-increasing in (x, t) and has both a greatest and a least

element, then:

(a) for every t in T the correspondence F (., t) has a greatest and a

least fixpoint, and these fixpoints are increasing in t;

(b) if, in addition, ∨F (x, t′) < ∧F (x, t′′) for every x in X and every

t′ < t′′ in T , then both the least and greatest fixpoints of F (., t) are

strictly increasing in t.

We now finally introduce GSC. Let Γ be a game over a players set I

and let (X, u) be its normal form, where

X :=
∏
i∈I

Xi

is the space of strategy profiles, and

u := (ui)i∈I

is the vector of players’ payoffs ui : X → R. We do not put any

restriction on strategies. The normal form may be in pure strategies,

in mixed strategies, in correlated strategies. Furthermore, a continuum

of pure strategies is perfectly allowed. Let

F : X → X

be the joint best reply correspondence of the game.

Definition 10. (Games with strategic complementarities

(GSC)). A game Γ has strategic complementarities if:

(i) each individual strategy space Xi is a complete lattice;

(ii) F is nonempty and has both a greatest and a least element;

(iii) F is Veinott-increasing.

The most important property of a GSC is the following.

Proposition 1. (Non-emptiness and structure of equilib-

rium set). The Nash set of a GSC is a nonempty complete lattice

Proof: Apply Theorem 8 to the joint best reply F of the game. �
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Let [e, e] be the Nash set of a GSC, where e and e are the least and

greatest Nash equilibria, respectively. The following result describes

the comparative statics of e and e.

Proposition 2. (Comparative statics of equilibria). Let T

be a partially ordered set and (Γt)t∈T be a collection of games with

strategic complementarities. Let F : X × T → X associate, to every

t ∈ T , the joint best reply F (., t) of game Γt.

If F is Veinott-increasing in (x, t) and has both a greatest and a least

element, then:

(a) the least and greatest Nash equilibria, e (t) and e (t), are increasing

in t;

(b) if, in addition, ∨F (x, t′) < ∧F (x, t′′) for every x in X and every

t′ < t′′ in T , then e (t) and e (t) are strictly increasing in t.

Proof: Apply Theorem 9 to the joint best reply F of the game. �

Definition 11. ((Quasi)supermodular game). A game Γ is (quasi)

supermodular if:

(i) every Xi is a lattice compact in its interval topology;

(ii) every individual payoff function ui (xi, x−i) is upper semi-continuous

in own strategies xi for every opponents’ strategy profile x−i;

(iii) every individual payoff function is (quasi)supermodular in own

strategies xi for every opponents’ strategy profile x−i, and has (the

single crossing property) increasing differences in (xi, x−i).

For a game Γ, being quasisupermodular is a sufficient condition for

being a GSC.

Proposition 3. A quasisupermodular game, hence a supermodular

game, is a GSC.

Proof: The topological assumptions make the joint best reply F have

a greatest and a least element, as we have seen in Theorem 7. Qua-

sisupermodularity and the single crossing property make it be Veinott-

increasing, as we have seen in Theorem 6. �

We recall that pure strategy xi of player i is serially undominated

if it survives the iterative process of removing from the game strongly

dominated strategies (see Milgrom and Roberts, 1990, for details). It

is well-known that only serially undominated strategies can be ratio-

nalizable, and only serially udominated strategies can be played (can
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receive positive probability) in a pure Nash equilibrium, in a mixed

Nash equilibrium, or in a correlated equilibrium.

The following result says that the set of serially undominated strate-

gies of a GSC is contained in its Nash set. Hence if the equilibrium is

unique, a GSC is dominance-solvable.

Proposition 4. (Dominance solvability). Let Γ be a supermod-

ular game. For each player i, there exists least and greatest rationaliz-

able strategies, xi and xi. Furthermore, the strategy profiles (xi, i ∈ I)

and (xi, i ∈ I) are Nash equilibria.

Proof: This is Milgrom and Roberts (1990)’s main theorem, theorem

5. �

8. Applications to Cournot and Bertrand competition

This section contains examples of how to use supermodular games

in applications. The applications concern basic IO models, and are

presented here for the sake of illustrating some aspects of the techniques

that are less clear and not so used in the applied literature but that,

we believe, can be useful and conductive of new applications.

We start from basic problems in IO and transform them into super-

modular games. To save space and notation, we treat every application

as an individual decision problem. The extension to games is imme-

diate, just consider every revenue function treated below as the payoff

of a typical player. We remark that there is no implicit assumption of

symmetry; we are just avoiding to index players.

8.1. Monotone comparative statics on a chain. Bertrand com-

petition with linear demand curves. A firm with constant mar-

ginal cost c > 0 choose own scalar price p ∈ [c, +∞), against the pricing

of its competitors p−i ∈ Rn
+, to maximize:

Π
(
p, p−i

)
= (p− c) D

(
p, p−i

)
,

where the demand function for firm’s product is

D
(
p, p−i

)
= α + β + p

n∑
j=1

γjp
j
−i,

with β, γ > 0.

Direct computation shows that Π has increasing differences in
(
p, p−i

)
.
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8.2. Monotone comparative statics on a chain. Cournot duopoly

with substitute products. A firm choose quantity (capacity) q ∈
[0, +∞) to maximize

Π (q, q−i) = qP (q, q−i)− C (q) ,

against its opponent decision on its own capacity q−i ∈ [0, +∞).

P (q, q−i) is the inverse demand function, and C (q) is the cost function.

We make the following assumptions:

1.P (q, q−i) is decreasing in q−i, hence the products are gross substitutes

(we use uncompensated demand functions). This is typical in Cournot

duopoly.

2.P (q, q−i) has decreasing differences in (q, q−i), meaning that own de-

mand is less elastic when opponent’s production is higher: the decrease

of own price following an increase in own production is decreasing as

opponent’s production is higher.

As such, the problem in not supermodular. We make it supermod-

ular by selection of the order. Given the total order ([0, +∞) ,≤),

consider its dual order
(
[0, +∞) ,≤d

)
, where

∀a, b ∈ [0, +∞) , a ≤d b ⇔ b ≤ a.

Consider the new decision problem where q is chosen in [0, +∞) and

q−i is now chosen in the dual [0, +∞)d, which is [0, +∞) endowed with

≤d

Claim: P (q, q−i) has increasing differences in (q, q−i) on [0, +∞)×
[0, +∞)d.

Proof: Pick any
(
q′, q′−i

)
,
(
q′′, q′′−i

)
in [0, +∞) × [0, +∞)d such that

q′ ≤ q′′ and q′−i ≤d q′′−i. Hence, q′′−i ≤ q′−i. So, in the original decision

problem, by decreasing differences of P in (q, q−i),

P
(
q′′, q′′−i

)
− P

(
q′, q′′−i

)
≥ P

(
q′′, q′−i

)
− P

(
q′, q′−i

)
,

which is exactly increasing difference of P in (q, q−i) on [0, +∞) ×
[0, +∞)d, i.e. the first difference of P in q increases as q−i increased in

[0, +∞)d.

Claim: Π (q, q−i) has increasing differences in (q, q−i) on [0, +∞)×
[0, +∞)d.

Proof: Pick any
(
q′, q′−i

)
,
(
q′′, q′′−i

)
in [0, +∞)× [0, +∞)d such that q′ ≤

q′′ and q′−i ≤d q′′−i. By increasing differences of P on [0, +∞)×[0, +∞)d,
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rearranging terms,

P
(
q′′, q′−i

)
− P

(
q′′, q′′−i

)
≤ P

(
q′, q′−i

)
− P

(
q′, q′′−i

)
.

Since, in the original problem, P (q, q−i) is decreasing in q−i on [0, +∞),

by the same argument as in Claim 1 above P (q, q−i) is now increasing

in q−i on the dual order [0, +∞)d. Hence, in the inequality above, both

differences on l.h.s. and r.h.s. are negative. Since 0 ≤ q′ ≤ q′′, can

multiply as follows:

q′′
[
P

(
q′′, q′−i

)
− P

(
q′′, q′′−i

)]
≤ q′

[
P

(
q′, q′−i

)
− P

(
q′, q′′−i

)]
.

The inequality above is what we needed.

Comparative statics conclusion: The set of optimal capacities

for the firm is increasing in q′−i on the dual [0, +∞)d, hence it is de-

creasing in q′−i on [0, +∞). As the opponent increases production, its

optimal for the firm to decrease own production. Indeed, product sub-

stitution implies that by increasing production, the opponent lowers

its price and steals consumers from the firm, which needs to lower own

production to keep profits.

8.3. Monotone comparative statics on the product of chains.

Pricing and advertising in Bertrand competition with substi-

tute products. This example is taken from Topkis (1995). A firm

with constant marginal cost c > 0 chooses its price p ∈ [c, +∞), and

its advertising effort a ∈ [0, +∞), against the pricing of its competitors

p−i ∈ Rn
+. The firm has cost K (a) for advertising. The profit function

is:

Π
(
p, a, p−i

)
= (p− c) D

(
p, a, p−i

)
−K (a) .

We make the following assumptions:

1. The demand function D
(
p, a, p−i

)
is increasing in a.

2. The demand function is increasing in p−i. This means that com-

petitors’ products are gross substitutes to that of the firm (we consider

uncompensated demand).

3. The demand function is supermodular in (p, a), meaning that an in-

crease in own price leads to a loss of demand (if demand is decreasing)

which is less, if quality is higher.

4. The demand functions has increasing differences in
(
(p, a) , p−i

)
,

meaning that (i) the loss of demand for increasing own prices is miti-

gated when opponents’ substitute products are priced higher, since less
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consumers are willing to leave own market because substitute prod-

ucts are more expensive, and (ii) the increase in demand for increasing

advertising is higher when opponents’ substitute products are priced

higher, since the firm has then a wider market share.

Claim: The profit function is supermodular in (p, a) on [c, +∞) ×
[0, +∞) and has increasing differences in

(
(p, a) , p−i

)
on [c, +∞) ×

[0, +∞)× Rn
+.

Proof: To show increasing differences of Π in
(
(p, a) , p−i

)
, pick any(

p′, a′, p′
−i

)
≤

(
p′′, a′′, p′′

−i

)
. Using the definition of increasing differ-

ences,

(p′′ − c) D
(
p′′, a′′, p′

−i

)
−K (a′′)−

[
(p′ − c) D

(
p′, a′, p′

−i

)
−K (a′)

]
≤

(p′′ − c) D
(
p′′, a′′, p′′

−i

)
−K (a′′)−

[
(p′ − c) D

(
p′, a′, p′′

−i

)
−K (a′)

]
⇔

(p′′ − c)
[
D

(
p′′, a′′, p′

−i

)
−D

(
p′′, a′′, p′′

−i

)]
≤

(p′ − c)
[
D

(
p′, a′, p′

−i

)
−D

(
p′, a′, p′′

−i

)]
In the last inequality, the two terms in square brackets are nonposi-

tive, due to increasingness of D in p−i. Furthermore, the last inequality

holds without the multiplying factors (p′′ − c) and (p′ − c), by the as-

sumption that demand has increasing differences in
(
(p, a) , p−i

)
. Since

both p′′ ≥ c and p′ ≥ c, the last inequality holds.

To show supermodularity of Π in (p, a), take any
(
p′, a′, p′

−i

)
≤(

p′′, a′′, p′′
−i

)
with p′

−i = p′′
−i, and redo the same argument as above,

by recalling that the assumption of supermodularity of demand in the

vector variable (p, a) is equivalent of it having increasing differences in

(p, a). This time, however, we need to use increasingness of demand in

a.

Comparative statics conclusion: Optimal prices and advertis-

ing levels are increasing in the parameters p−i. Note that if also op-

ponents set their advertising level a−i, and if own demand D is de-

creasing with this, then profits do not have increasing differences in(
(p, a) ,

(
p−i, a−i

))
.
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