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1 Introduction

When analyzing a strategic situation, we often assume the common knowledge of payoffs and

describe the situation as a complete information game. However, an equilibrium outcome of

a complete information game may be very different from that of an incomplete information

game that departs slightly from the complete information game, as demonstrated by Rubinstein

(1989) and Carlsson and van Damme (1993). In this light, Kajii and Morris (1997a,b) introduced

the concept of equilibria that are robust to incomplete information. A Nash equilibrium of a

complete information game is said to be robust to incomplete information if every incomplete

information game the payoffs of which differ from those of the original game only very rarely

has a Bayesian Nash equilibrium close to the Nash equilibrium.

This paper introduces the concept of nested best-response potentials and provides a new

sufficient condition for the robustness of an equilibrium to incomplete information. The nested

best-response potentials generalize the best-response potentials introduced by Morris and Ui

(2005), applying the idea of ‘nesting’ based on Uno (2007) as follows. A best-response potential

of a game is a real-valued function on the set of action profiles of the game that ‘incorporates

information’ about every players’ best-response. It is known that a maximizer of a best-response

potential is a Nash equilibrium of the game. It is as if the best-response potential is the payoff

function of a representative agent that chooses strategies for all players.

In considering a nested best-response potential, we think of a representative agent for a

subset T of players, instead of one for all of them: for each player i in T , and for any given

belief over strategy profiles of other players, maximizing this representative agent’s payoff fT

yields a best-response for each player i in T . Suppose that there is a partition T of players

such that, for each member T of T , there is such a representative agent whose payoff function

is fT .3 Then the collection of fT ’s can be seen as a new complete information game, where each

member T in T is regarded as a single player. That is, the original game is reduced to a game

with a smaller number of players.

Notice that such reduction can be nested: the new game among step 1 representative agents

may be reduced to a game with an even smaller number of players, by considering a step 2

3This idea also has appeared as q-potential in Monderer (2007).
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representative agent for each member of a partition of step 1 representative agents, and then a

representative agent for each member of a partition of these, and so on. We say that a game has

a nested best-response potential if a game is reduced to a game with one representative agent

through this process. We call a unique maximizer of nested best-response potential a nested

BRP-maximizer.

The main result of this paper shows that a nested BRP-maximizer is robust to incomplete

information in sense of Kajii and Morris (1997b) (Theorem 4.1).

In the literature, various sufficient conditions are given for robustness to incomplete infor-

mation in sense of Kajii and Morris (1997a,b). Kajii and Morris (1997a) provide sufficient con-

ditions for games with unique correlated equilibria and for games with p-dominance equilibria

with low p. Ui (2001) provides a sufficient condition for games with exact potential maximizers

(P-maximizers) introduced by Monderer and Shapley (1996). Morris and Ui (2005) provide a

sufficient condition for games with generalized potential maximizers (GP-maximizers), which

strictly generalized the conditions of Kajii and Morris (1997a) and Ui (2001). Morris and Ui

(2005) also introduce three special concepts of GP-maximizer: best-response potential maximiz-

ers (BRP-maximizers), monotone potential maximizers (MP-maximizers), and local potential

maximizers (LP-maximizers).4 Tercieux (2006) provides a sufficient condition for games with

p-best-response sets with low p, which strictly generalized two conditions of Kajii and Mor-

ris (1997a,b) but specialized the condition in terms of LP-maximizers, MP-maximizers, and

GP-maximizers. Oyama and Tercieux (2009) provide a sufficient condition for games with iter-

ated MP-maximizers, which generalizes the condition in terms of MP-maximizers.5 Moreover,

Oyama and Tercieux (2009) also introduce two special but tractable concepts of iterated MP-

maximizers: iterated LP-maximizers and iterated p-dominance equilibria, since it is generally

a difficult task to find an MP-maximizer and an iterated MP-maximizer.

We show that our condition in terms of nested BRP-maximizers strictly generalizes the condi-

tions in terms of P-maximizers and BRP-maximizers. We also demonstrate that our condition

neither implies nor is implied by the conditions in terms of unique correlated equilibria, p-

4Whether the condition in terms of BRP-maximizers implies the condition in terms of MP-maximizers is an
open question.

5It is not sure whether the condition in terms of iterated MP-maximizers strictly generalizes the condition in
terms of MP-maximizers.
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dominance equilibria, p-best-response sets, iterated LP-maximizers and iterated p-dominance

equilibria. However, it is left as an open question whether our condition implies the condi-

tions in terms of GP-maximizers, MP-maximizers, LP-maximizers, and iterated MP-maximizers.

We discuss advantages of our condition over the conditions in terms of GP-maximizers, MP-

maximizers, LP-maximizers, and iterated MP-maximizers in practical aspects(Remarks 5.11

and 5.18).

2 Robust equilibria

A finite complete information game consists of a finite player set N = {1, . . . , n}, a finite action

set Ai for i ∈ N , and the payoff function gi : A → R for i ∈ N , where A :=
∏

i∈N Ai. Since

we fix the set A of action profiles, we denote a complete information game (N, (Ai)i∈N , (gi)i∈N)

simply by gN := (gi)i∈N . For notational convenience, we write a = (ai)i∈N ∈ A; for i ∈ N ,

A−i =
∏

j 6=iAj and a−i = (aj)j 6=i ∈ A−i; and for T ⊆ N , AT =
∏

i∈T Ai, aT = (ai)i∈T ∈ AT ,

A−T =
∏

i∈N\T Ai, and a−T = (ai)i∈N\T ∈ A−T . We write (aT , a−T ) ∈ AT × A−T . We write

(ai, a−i) instead of (a{i}, a−{i}) for simplicity. For i ∈ N , a function f : A → R and Xi ⊂ Ai,

let denote BRf
i (λi|Xi) := arg maxai∈Xi

∑
a−i∈A−i

λi(a−i)f(a) and BRf
i (λi) := BRf

i (λi|Ai) for

λi ∈ ∆(A−i).
6

Consider an incomplete information game with the player set N and the set A of action

profiles. Let Θi be a countable set of types of player i. The set of type profiles is Θ :=
∏

i∈N Θi.

We write Θ−i =
∏

j 6=i Θj and θ−i = (θj)j 6=i ∈ Θ−i; for T ⊆ N , ΘT =
∏

i∈T Θi, θT = (ti)i∈T ∈ ΘT ,

Θ−T =
∏

i∈N\T Θi, and θ−T = (θi)i∈N\T ∈ Θ−T . Let P ∈ ∆(Θ) be the common prior probability

distribution over the set Θ of type profiles such that for each i ∈ N and θi ∈ Θi, the marginal

probability of θi is positive, i.e., Pi(θi) :=
∑

θ−i∈Θ−i
P (θi, θ−i) > 0. A payoff function for player

i is a bounded function ui : A× Θ → R. Since we will fix N , Θ, and A throughout the paper,

we simply denote an incomplete information game by (P,u), where u := (ui)i∈N .

A strategy of player i is a function σi : Θi → ∆(Ai). We write Σi for the set of strategies of

player i, and write Σ =
∏

i∈N Σi and σ = (σi)i∈N ∈ Σ; Σ−i =
∏

j 6=i Σj and σ−i = (σj)j 6=i ∈ Σ−i;

6For a set S, ∆(S) denotes the set of all probability distributions over S.
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for T ⊆ N , ΣT =
∏

i∈T Σi and σT = (σi)i∈T ∈ ΣT . We write σi(ai|θi) for the probability of

action ai given σi ∈ Σi and θi ∈ Θi. For σ ∈ Σ, we write σ(a|θ) =
∏

i∈N σi(ai|θi) for a ∈ A and

θ ∈ Θ; for σ−i ∈ Σ−i, σ−i(a−i|θ−i) =
∏

j 6=i σj(aj|θj) for a−i ∈ A−i and θ−i ∈ Θ−i; for T ⊆ N and

σT ∈ ΣT , σT (aT |θT ) =
∏

i∈T σi(ai|θi) for aT ∈ AT and θT ∈ ΘT .

A strategy profile (σi)i∈N ∈ Σ is a (Bayesian Nash) equilibrium of (P,u) if, for each i ∈ N ,

and for each θi ∈ Θi,

∑
θ−i∈Θ−i

P (θ−i|θi)[
∑
a∈A

σ(a|θi, θ−i)ui(a, (θi, θ−i))−
∑

a−i∈A−i

σ−i(a−i|θ−i)ui((a′i, a−i), (θi, θ−i))] ≥ 0

for all a′i ∈ Ai, where P (θ−i|θi) = P (θi, θ−i)/
∑

θ̂−i∈Θ−i
P (θi, θ̂−i).

Given a complete information game gN and an incomplete information game (P,u), for each

i ∈ N , consider the subset Θ̄i of Θi such that, if θi ∈ Θ̄i is realized, i’s payoffs are given by gi

independently of the every types θ−i of the other players:

Θ̄i = {θi ∈ Θi|ui(a, (θi, θ−i)) = gi(a) for all a ∈ A, θ−i ∈ Θ−i with P (θi, θ−i) > 0}.

We write Θ̄ =
∏

i∈N Θ̄i. An incomplete information game (P,u) is a δ-elaboration of gN if

P (Θ̄) = 1− δ, where δ ∈ [0, 1].

Kajii and Morris (1997a) introduced the robustness of equilibria to all elaborations.

Definition 2.1 An action distribution µ ∈ ∆(A) is robust to all elaborations in gN if, for any

ε > 0, there exists δ̄ > 0 such that, for any 0 < δ ≤ δ̄, every δ-elaboration of gN has an

equilibrium σ with maxa∈A |µ(a)−
∑

θ∈Θ P (θ)σ(a|θ)| ≤ ε.

Kajii and Morris (1997b) also introduced the following weaker notion of robustness of equi-

libria to ‘canonical’ elaborations.

A type θi ∈ Θi\Θ̄i is committed if player i of this type has a strictly dominant action

aθii ∈ Ai, i.e., ui((a
θi
i , a−i), (θi, θ−i)) > ui((ai, a−i), (θi, θ−i)) for all ai ∈ Ai\{aθii }, a−i ∈ A−i, and

θ−i ∈ Θ−i with P (θi, θ−i) > 0. A δ-elaboration (P,u) of gN is canonical if, for each i ∈ N , every

θi ∈ Θi\Θ̄i is a committed type.
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Definition 2.2 An action distribution µ ∈ ∆(A) is robust to canonical elaborations in gN if,

for every ε > 0, there exists δ̄ > 0 such that, for all 0 < δ ≤ δ̄, any canonical δ-elaboration of

gN has an equilibrium σ with maxa∈A |µ(a)−
∑

θ∈Θ P (θ)σ(a|θ)| ≤ ε.

It is clear that if an action distribution is robust to all elaborations, then it is also robust to

canonical elaborations.7

3 Nested potentials

This section introduces the notion of nested best-response potential for complete information

games. The nested best-response potentials generalize the best-response potentials defined by

Morris and Ui (2005). A best-response potential of a complete information game gN is a real

valued function f on the set A of action profiles such that, for each player i and any i’s belief

λi ∈ ∆(A−i) over the set A−i of other players’ actions, i’s best-response against the belief λi in

the alternative game where i’s payoff function equals f , is also his best-response in the original

game gN :8

Definition 3.1 (Morris and Ui, 2005) A function f : A → R is a best-response potential

of gN if, for each i ∈ N , BRf
i (λi) ⊆ BRgi

i (λi) for all λi ∈ ∆(A−i). An action profile a∗ is a

BRP-maximizer if {a∗} = arg maxa∈A f(a).

We generalize the best-response potentials by means of the ‘nested construction’ proposed in

Uno (2007) as follows: firstly, for a partition T of N , we define the T -best-response potentials:9

Definition 3.2 Let T be a partition of N . A best-response T -potential of gN is a tuple

(T , (AT )T∈T , (fT )T∈T ), where, for each T ∈ T , fT : A → R satisfies that, for each i ∈ T ,

7Whether or not the converse holds is an open question.
8There are three versions of best-response potential in the literature. The best-response potential of Morris

and Ui (2005) is a cardinal version of the pseudo-potentials introduced in Dubey et al. (2006). The one of
Morris and Ui (2004) is a version of best-response potential where the inclusion in the definition is replaced by
the equality. The one of Voorneveld (2000) is an ordinal version of best-response potential of Morris and Ui
(2004).

9The idea of games with partition T -potentials is same as that of q-potential games defined by Monderer
(2007) independently and earlier than Uno (2007): a game gN is a q-potential game if and only if gN has a
partition T -potential, where q refers to the number of elements in T . For convenience to define nested potentials
we use the partition T -potentials.
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BRfT
i (λi) ⊆ BRgi

i (λi) for all λi ∈ ∆(A−i).

We denote such a T -best-response potential (T , (AT )T∈T , (fT )T∈T ) by fT := (fT )T∈T since

action sets (AT )T∈T can be derived from the partition T of N and the set A of action profiles

in the original game gN . Note that any game has a best-response T -potential for the finest

partition T = {{i}|i ∈ N}. Note also that a game with a best-response potential is equivalent

to a game with a best-response T -potential for the coarsest partition T = {N}.

Notice that we can regard each T -best-response potential fT as a strategic form game, where

T is the player set; for each T ∈ T , AT is the action set of T ; and for each T ∈ T , fT is the

payoff function of T . The idea underlying the notion of the nested best-response potentials is

to construct such games iteratively:

Definition 3.3 A function f : A→ R is a nested best-response potential of gN if there exist a

finite sequence {T k}Kk=0 of partitions of N and a sequence (fT
k
)Kk=0 = ((fkT )T∈T k)Kk=0 of tuples

such that

• {T k}Kk=0 is a nested sequence of partitions of N : {T k}Kk=0 is an increasingly coarser se-

quence of partitions of N with T 0 = {{i}|i ∈ N} and T K = {N};

• fT
0

= (f 0
T )T∈T 0 is the original game gN : for each i ∈ N , f 0

{i}(a) = gi(a) for all a ∈ A;

• for each k = 1, 2, . . . , K, fT
k

= (fkT )T∈T k is a T k-best-response potential of fT
k−1

=

(fk−1
T )T∈T k−1 , where fT

k−1
is regarded as a strategic form game as above: for each T k ∈ T k

and for each T k−1 ∈ T k−1 with T k−1 ⊆ T k,

arg max
a
Tk−1∈ATk−1

∑
a−Tk−1∈A−Tk−1

λTk−1(a−Tk−1)fkTk(aTk−1 , a−Tk−1)

⊆ arg max
a
Tk−1∈ATk−1

∑
a−Tk−1∈A−Tk−1

λTk−1(a−Tk−1)fk−1
Tk−1(aTk−1 , a−Tk−1) (1)

for all λTk−1 ∈ ∆(A−Tk−1); and

• fT
K

= (fKN ) is such that fKN (a) = f(a) for all a ∈ A.

An action profile a∗ is a nested BRP-maximizer if {a∗} = arg maxa∈A f(a).
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It is clear that if a game has a BRP-maximizer, then it has a nested BRP-maximizer.

Nvertheless, even if a game has a nested BRP-maximizer, it may not have a BRP-maximizer as

shown later (Example 5.1).

4 Nested potentials and robust equilibria

This section provides a new sufficient condition for the robustness of equilibria in terms of nested

BRP-maximizers.

Theorem 4.1 If gN has a nested BRP-maximizer a∗, then the action distribution µ ∈ ∆(A)

such that µ(a∗) = 1 is robust to canonical elaborations in gN .

We can show this theorem by arguments similar to those of Theorem 6 in Morris and Ui

(2005). Indeed, we replace Lemma 6 of Morris and Ui (2005) by Lemma 4.3 below. Let (P,u)

be a canonical δ-elaboration of gN and consider the set of i’s strategies of (P,u) such that each

committed type θi ∈ Θi\Θ̄i chooses the strictly dominant action aθii :10

Ξi := {ξi : Θi → Ai|ξi(θi) = aθii for θi ∈ Θi\Θ̄i}.

Let Ξ :=
∏

i∈N Ξi = {ξ : Θ→ A|ξ(θ) = (ξi(θi))i∈N for all θ ∈ Θ, and ξi ∈ Ξi for all i ∈ N}. For

T ⊆ N , ΞT :=
∏

i∈N Ξi.

Note that if (P,u) is canonical then Ξ is nonempty (Morris and Ui, 2005, Lemma 4).

Let (P,u) be a canonical δ-elaboration of a complete information game gN with a nested

best-response potential f : A→ R. Define a function V : Ξ→ R such that

V (ξ) :=
∑
θ∈Θ

P (θ)f(ξ(θ))

for all ξ ∈ Ξ and consider the set of its maximizers Ξ∗ := arg maxξ∈Ξ V (ξ).

10Indeed, we set a domain A of generalized potential of Morris and Ui (2005) to
∏

i∈N{{ai}|ai ∈ Ai}.
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The function V is constructed in a similar way to that of generalized potentials in Morris

and Ui (2005). We can show the following lemma by an argument similar to Lemma 5 in Morris

and Ui (2005).

Lemma 4.2 If Ξ is nonempty then Ξ∗ is nonempty. If ξ∗ ∈ Ξ∗ then

∑
θ∈Θ,ξ∗(θ)=a∗

P (θ) ≥ 1− δκ,

where κ is a positive constant.11

We show that there exists an equilibrium of (P,u) assigning probability 1 to a maximizer

ξ∗ ∈ Ξ∗ of V , which corresponds to Lemma 6 in Morris and Ui (2005).

Lemma 4.3 Suppose gN has a nested best-response potential f and (P,u) is a canonical δ-

elaboration of gN . For ξ∗ ∈ Ξ∗, (P,u) has an equilibrium σ∗ ∈ Σ such that σ∗(·|θ) assigns

probability 1 to the action ξ∗(θ) for all θ ∈ Θ, i.e., σ∗(ξ∗(θ)|θ) = 1 for all θ ∈ Θ.

Proof. Let ξ∗ ∈ Ξ∗. We want to show that, for each i ∈ N and for each θi ∈ Θi,

∑
θ−i∈Θ−i

P (θ−i|θi)[ui(ξ∗(θ), (θi, θ−i))− ui((ai, ξ∗−i(θ−i)), (θi, θ−i))] ≥ 0 (2)

for all ai ∈ Ai. Fix any i ∈ N and θi ∈ Θi. If θi ∈ Θi\Θ̄i, then (2) is true, since ξ∗i (θi) is the

strictly dominant action aθii of θi.

Suppose that θi ∈ Θ̄i. Let a positive integer K and sequences (fT
k
)Kk=0 and (T k)Kk=0 be such

that, for each k = 0, 1, . . . , K, {i} = T 0 ⊆ T 1 ⊆ · · · ⊆ TK−1 ⊆ TK = N , T k ∈ T k and, f = fKTK ,

so that f is a nested best-response potential.

Firstly, since ξ∗ ∈ arg maxξ∈Ξ

∑
θ∈Θ P (θ)f(ξ(θ)) = arg maxξ∈Ξ

∑
θ∈Θ P (θ)fTK (ξ(θ)), we have

∑
θ∈Θ

P (θ)[fKTK (ξ∗(θ))− fKTK (ξTK−1(θTK−1), ξ∗−TK−1(θ−TK−1))] ≥ 0

11Or, κ > 0 is independent to δ. For example, κ = [f(a∗)−mina∈A f(a)]/[f(a∗)−maxa∈A\{a∗} f(a)].
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for all ξTK−1 ∈ ΞTK−1 . It is equivalent to, for each θTK−1\{i} ∈ ΘTK−1\{i} with PTK−1(θi,

θTK−1\{i}) > 0,

∑
θ−TK−1∈Θ−TK−1

P (θ−TK−1 |θTK−1)[fKTK (ξ∗(θ))− fKTK (aTK−1 , ξ∗−TK−1(θ−TK−1))] ≥ 0

for all aTK−1 ∈ ATK−1 . Since fT
K

is a T K-best-response potential of fT
K−1

, by (1), for each

θTK−1\{i} ∈ ΘTK−1\{i} with PTK−1(θi, θTK−1\{i}) > 0, we have

∑
θ−TK−1∈Θ−TK−1

P (θ−TK−1 |θTK−1)[fK−1
TK−1(ξ

∗(θ))− fK−1
TK−1(aTK−1 , ξ∗−TK−1(θ−TK−1))] ≥ 0 (3)

for all aTK−1 ∈ ATK−1 .

Next, (3) is equivalent to

∑
θ∈Θ

P (θ)[fK−1
TK−1(ξ

∗(θ))− fK−1
TK−1(ξTK−1(θTK−1), ξ∗−TK−1(θ−TK−1))] ≥ 0 (4)

for all ξTK−1 ∈ ΞTK−1 . Since TK−2 ⊆ TK−1, we have TK−1 = TK−2 ∪ TK−1\TK−2, and so

(ξTK−2 , ξ∗TK−1\TK−2) ∈ ΞTK−1 for all ξTK−2 ∈ ΞTK−2 . Thus, (4) implies that

∑
θ∈Θ

P (θ)[fK−1
TK−1(ξ

∗(θ))− fK−1
TK−1(ξTK−2(θTK−2), ξ∗−TK−2(θ−TK−2))] ≥ 0

for all ξTK−2 ∈ ΞTK−2 , where ξ∗−TK−2(θ−TK−2) = (ξ∗TK−1\TK−2(θTK−1\TK−2), ξ∗−TK−1(θ−TK−1)) for

all θ−TK−2 ∈ Θ−TK−2 . By arguments similar to those given above, we have, for each θTK−2\{i} ∈

ΘTK−2\{i} with PTK−2(θi, θTK−2\{i}) > 0,

∑
θ−TK−2∈Θ−TK−2

P (θ−TK−2 |θTK−2)[fK−2
TK−2(ξ

∗(θ))− fK−2
TK−2(aTK−2 , ξ∗−TK−2(θ−TK−2))] ≥ 0

for all aTK−2 ∈ ATK−2 .
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By applying the arguments above to K − 3, K − 4, . . . , 0, iteratively, we have

∑
θ−T0∈Θ−T0

P (θ−T 0|θT 0)[f 0
T 0(ξ∗(θ))− f 0

T 0(aT 0 , ξ∗−T 0(θ−T 0))] ≥ 0

for all aT 0 ∈ AT 0 . Since T 0 = {i} and fT 0 = gi, we have

∑
θ−i∈Θ−i

P (θ−i|θi)[gi(ξ∗(θ))− gi(ξi(θi), ξ∗−i(θ−i))] ≥ 0

for all ai ∈ Ai. Since θi ∈ Θ̄i, we have (2).

Lemma 4.2 and 4.3 imply that (P,u) has an equilibrium σ∗ ∈ Σ such that σ(ξ∗(θ)|θ) = 1

for all θ ∈ Θ, where ξ∗ ∈ Ξ∗, and

∑
θ∈Θ

P (θ)σ∗(a∗|θ) ≥
∑

θ∈Θ,ξ∗(θ)=a∗

P (θ)σ∗(a∗|θ)

=
∑

θ∈Θ,ξ∗(θ)=a∗

P (θ) ≥ 1− δκ.

Thus, for each ε > 0, if we choose δ̄ = ε/κ > 0, then, for each δ ≤ δ̄, every canonical

δ-elaboration (P,u) of gN has an equilibrium σ∗ such that 1 −
∑

θ∈Θ P (θ)σ∗(a∗|θ) ≤ ε, which

completes the proof.

5 Related literature

The remaining of the paper shows the relationships between our condition (Theorem 4.1) and

the other sufficient conditions in the literature.

5.1 BRP-maximizer versus nested BRP-maximizer

Morris and Ui (2005) shows that a BRP-maximizer is robust to canonical elaborations. Our

condition strictly generalizes the condition in terms of BRP-maximizers as shown in the following

example.
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T L C R
U 5, 5, 5 0, 0, 0 3, 3, 0
M 0, 0, 0 0, 0, 2 4, 4, 0
D 3, 3, 0 4, 4, 0 0, 0, 0

B1 L C R
U 4, 4, 4 0, 0, 0 2, 2, 2
M 2, 2, 2 3, 3, 0 0, 0, 2
D 0, 0, 0 0, 0, 2 3, 3, 0

B2 L C R
U 4, 4, 4 0, 0, 2 3, 3, 0
M 0, 0, 0 0, 0, 0 2, 2, 0
D 3, 3, 2 2, 2, 0 0, 0, 2

Table 1: A game (g1, g2, g3)

U,L U,C U,R M,L M,C M,R D,L D,C D,R
T 5, 5 0, 0 0, 3 0, 0 2, 0 0, 4 0, 3 0, 4 0, 0
B1 4, 4 0, 0 2, 2 2, 2 0, 3 2, 0 0, 0 2, 0 0, 3
B2 4, 4 2, 0 0, 3 0, 0 0, 0 0, 2 2, 3 0, 2 2, 0

Table 2: A partition {{3}, {1, 2}}-potential (f 1
{3}, f

1
{1,2})

Example 5.1 Consider the three-person game g{1,2,3} = (g1, g2, g3) represented in Table 1,

where player 1 chooses the row, player 2 chooses the column, and player 3 chooses the matrix.12

The game g{1,2,3} has no BRP-maximizer. Indeed, note that g{1,2,3} has a strict best-response

cycle (M,C, T ) → (M,R, T ) → (M,R,B1) → (M,C,B1) → (M,C, T ). Since games with a

pseudo-potential cannot have strict best-response cycles as shown by Kukushkin (2004), then

games with a best-response potential, which is a special form of pseudo-potentials, cannot have

either. Thus g{1,2,3} has no BRP-maximizer.

Nevertheless, the game g{1,2,3} has a nested BRP-maximizer (U,L, T ). Indeed, (f 1
{3}, f

1
{1,2})

represented in Table 2 is a {{3}, {1, 2}}-best-response potential of g{1,2,3}, where f 1
{3}(·) =

g3(·) and f 1
{1,2}(·) = g1(·) = g2(·), and considering the {{3}, {1, 2}}-best-response potential

(f 1
{3}, f

1
{1,2}) as a two-person game, we can show that f{1,2,3} = (f) represented in Table 3 is

a {{1, 2, 3}}-best-response potential of (f 1
{3}, f

1
{1,2}). Thus g{1,2,3} has a nested best-response

potential f and (U,L, T ) is a nested BRP-maximizer.

Remark 5.2 In fact, Morris and Ui (2005) define a more general form of best-response po-

tentials, a P-measurable best-response potential for a partition P of the set A, and provide a

sufficient condition in terms of P-measurable BRP-maximizers. If P is the finest partition, i.e.,

P =
∏

i∈N{{ai}|ai ∈ Ai}, then a P-measurable best-response potential is given by Definition

12g{1,2,3}|T restricted by T has a payoff structure similar to the game in Ui (2001, p.1376).
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U,L U,C U,R M,L M,C M,R D,L D,C D,R
T 5 0 0 0 2 0 0 0 0
B1 4 0 2 2 0 2 0 2 0
B2 4 2 0 0 0 0 2 0 2

Table 3: A nested potential f

3.1. We can show that, for any partition P , (U,C, L) is not a P-measurable BRP-maximizer.

See Appendix A.1.

Remark 5.3 Ui (2001) shows that an exact potential maximizer (P-maximizers) defined by

Monderer and Shapley (1996) is robust to canonical elaborations. By Example 5.1, our condition

strictly generalizes the condition in terms of P-maximizers, since the best-response potentials

strictly generalize the exact potentials.13

5.2 Iterated MP-maximizer versus nested BRP-maximizer

Oyama and Tercieux (2009) introduce the iterated MP-maximizer and provide a sufficient con-

dition for the robustness of equilibria in terms of iterated MP-maximizers.

For i ∈ N , let Ai = {0, . . . ,mi}.14 For i ∈ N , we endow ∆(A−i) with the sup norm: |λi| =

maxa−i∈A−i
λi(a−i) for λi ∈ ∆(A−i). For ε > 0, denote Bε(λi) = {λ′i ∈ ∆(A−i)| |λ′i − λi| < ε}

and write Bε(∆(A−i)) =
∏

λi∈∆(A−i)
Bε(λi).

Definition 5.4 (Morris and Ui, 2005; Oyama and Tercieux, 2009) LetX∗ andX be in-

tervals such that X∗ ⊂ X ⊂ A. X∗ is an MP-maximizer set of gN relative to X if there exist

a function v : A → R and a real number ε > 0 such that X∗ = arg maxa∈A v(a), and for each

i ∈ N and all λi ∈ Bε(∆(X−i)),

minBRv
i (λi|[minXi,minX∗i ]) ≤ minBRgi

i (λi|[minXi,maxX∗i ]), and

maxBRv
i (λi|[maxX∗i ,maxXi]) ≥ maxBRgi

i (λi|[minX∗i ,maxXi]).

13See Morris and Ui (2004).
14In fact, we can consider a more general case such that Ai is a linearly ordered set for i ∈ N .
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Definition 5.5 (Oyama and Tercieux, 2009) An action profile a∗ ∈ A is an iterated MP-

maximizer of gN if there exists a sequence of intervals A = X0 ⊃ X1 ⊃ · · · ⊃ XK = {a∗} such

that Xk is an MP-maximizer set of gN relative to Xk−1 for each k = 1, . . . , K.

A game gN is said to be supermodular for i ∈ N if, ai, a
′
i ∈ Ai with ai < a′i and for

a−i, a
′
−i ∈ A−i with a−i ≤ a′−i, gi(ai, a−i)− gi(a′i, a−i) ≤ gi(ai, a

′
−i)− gi(a′i, a′−i).

Theorem 5.6 (Oyama and Tercieux, 2009) Suppose that gN has an iterated MP-maximizer

a∗ with associated intervals (Xk)Kk=0 and monotone potentials (vk)Kk=0. If, for each k = 0, . . . , K,

gN |Xk−1
i ×A−i

or vk|Xk−1
i ×A−i

is supermodular for each i ∈ N then a∗ is robust to all elaborations

in gN .

We provide a necessary condition for MP-maximizer sets.15

Lemma 5.7 If an interval X∗ ⊆ A is an MP-maximizer set of gN relative to an interval X ⊆ A

then, for each i ∈ N , for each λi ∈ ∆(X∗−i), BRgi
i (λi|Xi) ∩X∗i 6= ∅.

Proof. Suppose that gN has an MP-maximizer set X∗ relative to X with an associated mono-

tone potential v but there exist i ∈ N and λi ∈ ∆(X∗−i) such that BRgi
i (λi|Xi)∩X∗i = ∅. Assume

maxBRgi
i (λi|Xi) < minX∗i . Then minBRgi

i (λi|[minAi,maxX∗i ]) = minBRgi
i (λi|Xi). Since v is

a monotone potential, we have minBRv
i (λi|[minAi,minX∗i ]) ≤ minBRgi

i (λi|[minAi,maxX∗i ]).

Since minBRv
i (λi|[minAi,minX∗i ]) ≤ minBRgi

i (λi|[minAi,maxX∗i ]) = minBRgi
i (λi|Xi) ≤

maxBRgi
i (λi|Xi) < minX∗i , we have minBRv

i (λi|[minAi,minX∗i ]) < minX∗i . Since X∗ is an

MP-maximizer, minBRv
i (λi|[minAi,minX∗i ]) = minX∗i , a contradiction. By the similar argu-

ments, if maxBRgi
i (λi|Xi) > maxX∗i , we also have a contradiction.

For a fixed order on A, even if our condition applies to a game, Theorem 5.6 may not apply

to the game, as shown in Example 5.8.

Example 5.8 Consider the game g{1,2,3} represented as in Table 1 again. Assume g{1,2,3} has

ordered action sets such that U < M < D, L < C < R, and T < B1 < B2. Theorem 5.6 does not

apply to g{1,2,3}. Indeed, note that g{1,2,3} is not supermodular for i ∈ N . We will show that A is

15I am grateful to Olivier Tercieux for his suggestion. Discussion in Examples 5.8 and 5.17 was more compli-
cated before his suggestion.
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a unique iterated MP-maximizer such that an associated monotone potential is supermodular.

By Lemma 5.7, it is easy to show that only A, {U} × {L} × {T}, {U} × {L} × {T,B1},

{U}×{L}×{T,B2}, or {U}×{L}×{T,B1, B2} may be MP-maximizer sets relative to A. Fix

any X3 ∈ {{T}, {T,B1}, {T,B2}, {T,B1, B2}}. Now, suppose that there exists a supermodular

monotone-potential v with MP-maximizer {U} × {L} × X3. Let λ1 ∈ ∆(A−1) be such that

λ1(L, T ) = λ1(C, T ) = 1/2. Then we have {D} = BRg1
1 (λ1). Since v is a monotone-potential,

we have maxBRv
1(λ1) = {D}. That is, we have

v(D,L, T ) + v(D,C, T ) ≥ v(U,L, T ) + v(U,C, T ). (5)

Similarly, let λ2 ∈ ∆(A−2) be such that λ2(U, T ) = λ2(M,T ) = 1/2. Then we have {R} =

BRg2
2 (λ2). Since v is a monotone-potential, we have maxBRv

2(λ2) = {R}. That is, we have

v(U,R, T ) + v(M,R, T ) ≥ v(U,L, T ) + v(M,L, T ). (6)

Since v is supermodular, we have

v(U,C, T )− v(U,R, T ) ≥ v(D,C, T )− v(D,R, T ), (7)

v(M,L, T )− v(D,L, T ) ≥ v(M,R, T )− v(D,R, T ). (8)

By summing up inequalities (5)-(8), we have 2v(D,R, T ) ≥ 2v(U,L, T ), which contradicts to the

assumption {U}×{L}×X3 is an MP-maximizer. Thus, the game has a unique MP-maximizer

set A relative to A. Hence we does not apply Theorem 5.6 to the game under the ordered action

sets.

Remark 5.9 It is not sure whether or not our condition, as well as that in terms of BRP-

maximizers, implies the conditions in terms of iterated MP-maximizers and MP-maximizers.

In fact, consider the game g{1,2,3} represented as in Table 1 again. If g{1,2,3} has other ordered

action sets such that U < D < M , L < R < C and T < B1 < B2, we can find an MP-maximizer

(U,L, T ) such that an associate monotone potential is supermodular. Such a monotone potential

v is given by Table 4. Thus Theorem 5.6 applies to the game.
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T L R C
U 50 4 −195
D −50 4 5
M −65 27 28

B1 L R C
U 40 23 −175
D −30 24 25
M −45 47 48

B2 L R C
U 40 24 −174
D −29 25 26
M −44 48 49

Table 4: A supermodular monotone potential v

Remark 5.10 Morris and Ui (2005) introduce GP-maximizers and provide a sufficient con-

dition in terms of GP-maximizers. The condition generalizes the condition in terms of MP-

maximizers. So, it is also not sure whether our condition does not imply the condition in terms

of GP-maximizers, as well as that in terms of MP-maximizers.

Remark 5.11 Our condition has advantages over the conditions in terms of (iterated) MP-

maximizers and GP-maximizers in practical aspects. Generally, finding an (iterated) MP-

maximizer or a GP-maximizer is a hard task because no simple characterization for monotone

potentials or generalized potentials is known. If a game is not supermodular, it becomes a

harder task to apply the condition in terms of (iterated) MP-maximizers because we need to

find an (iterated) MP-maximizer such that an associated (iterated) monotone potential is su-

permodular. Moreover, whether an (iterated) MP-maximizer exists or not depends on an order

over the set A of action profiles, which is shown in Example 5.8 and Remark 5.9; and whether a

GP-maximizer exists or not also depends on a covering over the set A of action profiles, which

is a domain of generalized potentials. However, how to choose an order for existence of an

(iterated) MP-maximizer and a partition for existence of a GP-maximizer are unknown.

On the contrary, finding a P-maximizer or a BRP-maximizer, if exist, may be an easier

task since the literature provides simple characterizations of exact potentials and best-response

potentials.16 In order to construct a nested best-response potential, we can use these charac-

terizations. And, we can apply the conditions in terms of P-maximizers, BRP-maximizers, and

nested BRP-maximizers regardless of an order and a partition of action sets.

16For example, Slade (1994), Monderer and Shapley (1996), Ui (2000), Uno (2007), Hino (2009), and Sandholm
(2010) for exact potentials; Morris and Ui (2004) for best-response potentials.
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5.3 Iterated LP-maximizer versus nested BRP-maximizer

Oyama and Tercieux (2009) introduce the iterated LP-maximizer as a specific and tractable

form of iterated MP-maximizer.

Definition 5.12 (Morris and Ui, 2005; Oyama and Tercieux, 2009) An interval X∗ of

A is an LP-maximizer set of gN if there exist a function v : A→ R such thatX∗ = arg maxa∈A v(a)

and, for each i ∈ N , each ai ∈ Ai and any λi ∈ ∆(A−i), ai < minX∗i and

∑
a−i∈A−i

λi(a−i)v(ai + 1, a−i) ≥
∑

a−i∈A−i

λi(a−i)v(ai, a−i)

implies

max
a′i∈Z

+
i

∑
a−i∈A−i

λi(a−i)gi(a
′
i, a−i) ≥

∑
a−i∈A−i

λi(a−i)gi(ai, a−i),

where Z+
i = {ai + 1} if ai + 1 < minX∗i and Z+

i = X∗ if ai + 1 = minX∗i ; and ai > maxX∗i and

∑
a−i∈A−i

λi(a−i)v(ai − 1, a−i) ≥
∑

a−i∈A−i

λi(a−i)v(ai, a−i)

implies

max
a′i∈Z

−
i

∑
a−i∈A−i

λi(a−i)gi(a
′
i, a−i) ≥

∑
a−i∈A−i

λi(a−i)gi(ai, a−i),

where Z−i = {ai − 1} if ai − 1 < minX∗i and Z−i = X∗ if ai + 1 = minX∗i . Such a function v is

called a local potential. If X∗ is singleton {a∗} then a∗ is called an LP-maximizer. If the above

weak inequalities are replaced with strict ones, X∗ is called a strict LP-maximizer set, and v is

called a strict local potential.

Definition 5.13 (Oyama and Tercieux, 2009) An action profile a∗ ∈ A is an iterated strict

LP-maximizer of gN if there exists a sequence of intervals A = X0 ⊃ X1 ⊃ · · · ⊃ XK = {a∗}

such that Xk is a strict LP-maximizer set of gN |Xk−1 for each k = 1, . . . , K.
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A game gN is said to have diminishing marginal returns for i ∈ N if, for ai ∈ Ai\{0,mi}

and a−i ∈ A−i, gi(a)− gi(ai − 1, a−i) ≥ gi(ai + 1, a−i)− gi(a).

Proposition 5.14 (Oyama and Tercieux, 2009) If a∗ is an iterated strict LP-maximizer

of gN with associated intervals (Xk)Kk=0 and strict local potentials (vk)Kk=0, and if, for each

k = 0, . . . , K, gN |Xk−1
i ×A−i

or vk|Xk−1
i ×A−i

has diminishing marginal returns for each i ∈ N then

a∗ is an iterated strict MP-maximizer of gN with monotone potentials (vk)Kk=0.

Corollary 5.15 Suppose that gN has an iterated strict LP-maximizer a∗ with associated in-

tervals (Xk)Kk=0 and strict local potentials (vk)Kk=0. For each k = 0, . . . , K, if gN |Xk−1
i ×A−i

or

vk|Xk−1
i ×A−i

is supermodular for each i ∈ N , and if gN |Xk−1
i ×A−i

or vk|Xk−1
i ×A−i

has diminishing

marginal returns for each i ∈ N then a∗ is robust to all elaborations in gN .

Our condition does not imply the condition in terms of iterated LP-maximizers. To demon-

strate it, we use the following characterization of LP-maximizers provided by Morris and Ui

(2005).

Lemma 5.16 (Morris and Ui, 2005) An action profile a∗ is an LP-maximizer of gN if, and

only if, there exist a function v : A → R and a collection (wi(ai))ai∈Ai
of nonnegative numbers

for i ∈ N such that X∗ = arg maxa∈A v(a) and, for each i ∈ N and each a ∈ A, ai < minX∗i

implies

wi(ai)[v(a)− v(ai + 1, a−i)] ≥ gi(a)− gi(ai + 1, a−i); and

ai > maxX∗ implies

wi(ai)[v(a)− v(ai − 1, a−i)] ≥ gi(a)− gi(ai − 1, a−i).

Example 5.17 Consider the game represented as in Table 1 again. Corollary 5.15 does not

apply to the game. For any order on A, note that g{1,2,3} is not supermodular for i ∈ N and

does not have diminishing marginal returns for i ∈ N . By Lemma 5.7 and Proposition 5.14,

only A, {U}×{L}×{T}, {U}×{L}×{T,B1}, {U}×{L}×{T,B2}, or {U}×{L}×{T,B1, B2}
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can be LP-maximizer sets. Clearly, A is an LP-maximizer set of gN such that an associated

local potential is supermodular for i ∈ N and has diminishing marginal returns for i ∈ N .

We show that A is such a unique LP-maximizer set of gN . To show by contradiction, suppose

firstly that {U} × {L} × {T} is an LP-maximizer set such that an associated local potential

v is supermodular for i ∈ N and has diminishing marginal returns for i ∈ N . For i ∈ N , let

(wi(ai))ai∈Ai
be an associated collection of nonnegative numbers. Fix any order on A3. We

consider cases of orders on A1 × A2 as in Table 5.

L < C < R L < R < C C < L < R C < R < L R < L < C R < C < L
U < M < D case 1 case 1 case 1 case 1 case 1 case 1
U < D < M case 2 case 3 case 4 case 4 case 1′

M < U < D case 5 case 6 case 7 case 1′

M < D < U case 2 case 3 case 1′

D < U < M case 5 case 1′

D < M < U case 1′

Table 5: cases of orders on A

Case 1 Since {U}×{L}×{T} is an LP-maximizer set we have 0 > v(M,L, T )−v(U,L, T ). Since

v has diminishing marginal returns we have v(M,L, T )− v(U,L, T ) ≥ v(D,L, T )− v(M,L, T ).

Since v is a local potential we have w1(D)[v(D,L, T )−v(M,L, T )] ≥ g1(D,L, T )−g1(M,L, T ) =

3. This implies w1(D) > 0 and v(D,L, T )− v(M,L, T ) ≥ 3/w1(D). These inequalities implies

0 > 0, a contradiction.

Case 1’ Since {U}×{L}×{T} is an LP-maximizer set we have 0 > v(U,C, T )−v(U,L, T ). Since

v has diminishing marginal returns we have v(U,C, T ) − v(U,L, T ) ≥ v(U,R, T ) − v(U,C, T ).

Since v is a local potential we have w2(R)[v(U,R, T )−v(U,C, T )] ≥ g1(U,R, T )−g1(U,C, T ) = 3.

This implies w2(R) > 0 and v(D,L, T ) − v(M,L, T ) ≥ 3/w2(R) > 0. Thus, we have 0 > 0, a

contradiction.

Case 2 Since v is a local potential we have w1(D)[v(D,C, T ) − v(U,C, T )] ≥ g1(D,C, T ) −

g1(U,C, T ) = 4, w1(M)[v(M,R, T )−v(D,R, T )] ≥ g1(M,R, T )−g1(D,R, T ) = 4, w2(R)[v(M,R, T )−

v(M,L, T )]≥ g2(M,R, T )−g2(M,L, T ) = 4, and w2(C)[v(D,R, T )−v(D,C, T )] ≥ g2(D,R, T )−

g2(D,C, T ) = 4. These inequalities imply that w1(D), w1(M), w2(R), w2(C) > 0 , and v(D,C, T )−

v(U,C, T ) ≥ 4/w1(D), v(M,R, T )−v(D,R, T ) ≥ 4/w1(M), v(M,R, T )−v(M,L, T ) ≥ 4/w2(R),
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and v(D,R, T )−v(D,C, T ) ≥ 4/w2(C). Moreover, we have v(D,L, T )−v(U,L, T ) ≥ −2/w1(D),

v(M,L, T ) − v(D,L, T ) ≥ −3/w1(M), v(U,R, T ) − v(U,L, T ) ≥ −2/w2(R), and v(U,C, T ) −

v(U,R, T ) ≥ −3/w2(C), since v is a local potential and w1(D), w1(M), w2(R), w2(C) > 0. By

summing up these inequalities, we have 2[v(D,C, T ) + v(M,R, T )− v(D,R, T )− v(M,C, T )] ≥

2/w1(D)+1/w1(M)+2/w2(R)+1/w1(C) > 0. Since v is supermodular we have 0 ≥ v(D,C, T )+

v(M,R, T )− v(D,R, T )− v(M,C, T ). Thus we have 0 > 0, a contradiction.

Case 3 Since v is supermodular we have v(D,L, T ) − v(U,L, T ) ≥ v(U,L, T ) − v(U,C, T ).

Since v is a local potential we have w1(D) > 0 and v(D,C, T ) − v(U,C, T ) ≥ 4/w1(D). Then

we have v(D,L, T )− v(U,L, T ) ≥ 4/w1(D). Since v has diminishing marginal returns we have

v(D,R, T )−v(U,R, T ) ≥ v(M,R, T )−v(D,R, T ). Since v is a local potential we have w1(M) > 0

and v(M,R, T ) − v(D,R, T ) ≥ 4/w1(M). Then we have v(D,R, T ) − v(U,R, T ) ≥ 4/w1(M).

Moreover, we have w2(R) > 0, v(M,L, T )−v(D,L, T ) ≥ −3/w1(M), v(M,R, T )−v(M,L, T ) ≥

4/w2(R), v(U,R, T ) − v(U,L, T ) ≥ −3/w2(R), v(M,R, T ) − v(D,R, T ) ≥ 4/w1(M) since v

is a local potential. Summing up these inequalities, v(D,L, T ) − v(U,L, T ) ≥ 4/w1(D) and

v(D,R, T )−v(U,R, T ) ≥ 4/w1(M), we have 2[v(M,R, T )−v(U,L, T )] ≥ 4/w1(D)+5/w1(M)+

2/w2(R) > 0. Since {U}×{L}×{T} is an LP-maximizer set we have 0 > v(M,R, T )−v(U,L, T ).

Thus, we have 0 > 0, a contradiction.

Case 4 Since {U} × {L} × {T} is an LP-maximizer set we have 0 > v(U,R, T ) − v(U,L, T ).

Since v is supermodular we have v(U,R, T )− v(U,L, T ) ≥ v(M,R, T )− v(M,L, T ). Since v is a

local potential we have w2(R) > 0 and v(M,R, T )− v(M,L, T ) ≥ 4/w2(R) > 0. Thus, we have

0 > 0, a contradiction.

Case 5 Since {U} × {L} × {T} is an LP-maximizer set we have 0 > v(D,L, T ) − v(U,L, T ).

Since v is supermodular we have v(D,L, T )− v(U,L, T ) ≥ v(D,C, T )− v(U,C, T ). Since v is a

local potential we have w1(D) > 0 and v(D,C, T )− v(U,C, T ) ≥ 4/w1(D) > 0. Thus, we have

0 > 0, a contradiction.

Case 6 Since {U}×{L}×{T} is an LP-maximizer set we have 0 > v(U,R, T )−v(U,L, T ). Since

v has diminishing marginal returns we have v(U,R, T ) − v(U,L, T ) ≥ v(U,C, T ) − v(U,R, T ).

Since v is supermodular we have v(U,C, T )− v(U,R, T ) ≥ v(D,C, T )− v(D,R, T ). Since v is a

local potential we have w1(D) > 0 and v(D,C, T )− v(U,C, T ) ≥ 4/w1(D) > 0. Thus, we have
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0 > 0, a contradiction.

Case 7 Since v is a local potential we have w1(M) ≥ 0 and w1(M)[v(M,R, T )−v(U,R, T )] ≥ 1.

This implies w1(M) > 0. Since w1(M) > 0 and v is a local potential, we have v(M,C, T ) −

v(U,C, T ) ≥ 0, or equivalently, 0 ≥ v(U,C, T ) − v(M,C, T ). Since v has diminishing marginal

returns we have v(U,C, T )− v(M,C, T ) ≥ v(D,C, T )− v(U,C, T ). Since v is a local potential

we have w1(D) > 0 and v(D,C, T ) − v(U,C, T ) ≥ 4/w1(D) > 0. Thus, we have 0 > 0, a

contradiction.

Other cases Since players 1 and 2 have symmetric payoffs, we can apply the above arguments

to the other cases. Hence, g{1,2,3} has no LP-maximizer set {U} × {L} × {T} such that an

associated local potential v is supermodular for i ∈ N and has diminishing marginal returns for

i ∈ N .

In the above arguments, we use only information on payoffs of players 1 and 2. So, we can

apply the same arguments to show that g{1,2,3} has no LP-maximizer set {U} × {L} × {T,B1},

{U} × {L} × {T,B2}, or {U} × {L} × {T,B1, B2} such that an associated local potential v

is supermodular for i ∈ N and has diminishing marginal returns for i ∈ N . Therefore, A is

a unique LP-maximizer set of gN such that an associated local potential is supermodular for

i ∈ N and has diminishing marginal returns for i ∈ N . Hence, Corollary 5.15 does not apply to

the game.

Remark 5.18 In fact, Morris and Ui (2005) define a more general form of local potentials, a

P-measurable local potential for a partition P over the set A of action profiles, and provide a

sufficient condition in terms of P-measurable LP-maximizers. It is not sure whether or not our

condition implies the condition in terms of P-measurable LP-maximizers. Consider the game

in Table 1 again. Assume an order on A such that U < D < M , L < R < C, and T < B1 < B2.

Let P = {{U}, {D,M}}×{{L}, {R}, {C}}×{{T}, {B1}, {B2}}. We can find an LP-maximizer

(U,L, T ) such that an associate P-measurable local potential is supermodular for i ∈ N and

has diminishing marginal returns for i ∈ N . Such a local potential v is given by Table 6. Thus,

the condition in terms of P-measurable LP-maximizers by Morris and Ui (2005) applies to the

game.

On the other hand, since a simple characterization for P-measurable LP-maximizers is un-
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T L R C
U 5 2 −43
D −16 −1 0
M −16 −1 0

B1 L R C
U 4 1 −40
D −13 2 3
M −13 2 3

B2 L R C
U 4 1 −39
D −12 3 4
M −12 3 4

Table 6: A P-measurable local potential v with supermodular and diminishing marginal returns

known, finding a P-measurable LP-maximizers is a hard task, as we pointed out in Remark

5.11.

5.4 The other conditions

Our condition does not imply the other sufficient conditions in the literature. Kajii and Morris

(1997a) show that a unique correlated equilibrium is robust to all elaborations. Kajii and

Morris (1997a) also show that a p-dominant equilibrium with low p is robust to all elaborations.

Tercieux (2006) shows that a unique correlated equilibrium whose support is p-best-response set

with low p introduced by Tercieux (2004) is robust to all elaborations. The condition in terms

of p-best-response sets unifies two conditions of Kajii and Morris (1997a). Oyama and Tercieux

(2009) introduce the iterated strict p-best-response equilibrium and show that an iterated strict

p-best-response equilibrium with low p is robust to all elaborations.

Our condition does not imply the above conditions. Indeed, our condition applies to the

game in Table 1 as shown in Example 5.1. However, by Example 5.17, the conditions in terms

of unique correlated equilibria, p-dominant equilibria, p-best-response sets, and iterated strict

p-best-response equilibria, does not apply to the game since the above conditions are special

cases of condition in terms of iterated LP-maximizers (Corollary 5.15).17

Remark 5.19 The conditions in terms of unique correlated equilibria and p-dominant equilib-

ria, LP-maximizers, MP-maximizers, p-best-response sets, iterated strict p-best-response equi-

libria, iterated LP-maximizers, and iterated MP-maximizers does not imply our condition. In-

deed, in these conditions note that the conditions in terms of unique correlated equilibria and

17Note that g{1,2,3} has multiple correlated equilibria µ ∈ ∆(A) such that µ(U,L, T ) = 1 and µ′ ∈ ∆(A)
such that µ′(M,C, T ) = 3/14, µ′(M,R, T ) = µ′(D,C, T ) = 3/28, µ′(M,C,B1) = 2/7, and µ′(M,R,B1) =
µ′(D,C,B1) = 1/7.
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in terms of p-dominant equilibria are the strongest. The condition in terms of unique cor-

related equilibria applies to matching pennies games but our condition does not apply to it,

since the game has a best-response cycle. We can also show that the conditions in terms of

p-dominant equilibria, as well as the conditions in terms of LP-maximizers, MP-maximizers,

p-best-response sets, iterated strict p-best-response equilibria, iterated LP-maximizers, and it-

erated MP-maximizers, apply to the game in Table 7 but our condition does not apply to

it. Indeed, the game has no nested BRP-maximizer since it has a strict best-response cycle

(M,C) → (D,C) → (D,R) → (M,R) → (M,C), and for two-person games, a best-response

potential is equivalent to a nested best-response potential. On the other hands, we can show

that (U,L) is p-dominant equilibrium for p1, p2 > 1/6.

L C R
U 5, 5 0, 0 0, 0
M 0, 0 0, 1 1, 0
D 0, 0 1, 0 0, 1

Table 7: (g1, g2) has no nested BRP-maximizer

5.5 Iterative construction versus nested construction

At a general level the “nested construction” by Uno (2007) is related to the “iterative construc-

tion” by Oyama and Tercieux (2009). Both constructions are defined by applying a concept

in the literature iteratively. To compare between these constructions, we apply the iterative

construction to BRP-maximizer. To do this, we define the BRP-maximizer sets.

Definition 5.20 For i ∈ N , let X∗i ⊆ Ai, and let X∗ :=
∏

i∈N X
∗
i . X∗ is a BRP-maximizer set

of gN if there exists a function f : A→ R such that X∗ = arg maxa∈A f(a) and, for each i ∈ N

and all λi ∈ ∆(A−i), Xi ⊆ BRf
i (λi) implies Xi ∩BRgi

i (λi) 6= ∅.

Definition 5.21 An action profile a∗ is said to be an iterated BRP-maximizer if there exists

a sequence of subsets of action profile A = X0 ⊃ X1 ⊃ · · · ⊃ XK = {a∗} such that, for each

k = 1, . . . , K, Xk is a BRP-maximizer set in the game restricted Xk−1.
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T L R
U 3, 3, 3 0, 0, 0
D 0, 0, 1 1, 1, 0

B L R
U 0, 0, 0 2, 2, 2
D 1, 1, 0 0, 0, 1

Table 8: A game (g1, g2, g3)

Remark 5.22 It is not sure that an (iterated) BRP-maximizer of Definitions 5.20 and 5.21 is

robust to canonical elaborations since we cannot apply the proofs by Morris and Ui (2005) and

Oyama and Tercieux (2009) directly.

The condition in terms of iterated BRP-maximizers neither implies nor is implied by the

condition in terms of nested BRP-maximizers.

Example 5.23 Consider the game g{1,2,3} represented as Table 8. The game has a unique BRP-

maximizer set A. Indeed, note that if X∗ is a BRP-maximizer then it is an MP-maximizer. By

Lemma 5.7 only {(U,L, T )}, {(U,R,B)}, or A may be a BRP-maximizer. Suppose that f is

a best-response potential with a BRP-maximizer set {(U,L, T )}. Let λ2 ∈ ∆(A−2) be such

that λ2(D,T ) = 1, let λ′2 ∈ ∆(A−2) be such that λ′1(D,B) = 1, let λ3 ∈ ∆(A−3) be such that

λ3(D,L) = 1, and let λ′3 ∈ ∆(A−3) be such that λ′3(D,R) = 1. Then we have BRg2
2 (λ2) = {R},

BRg2
2 (λ′2) = {L}, BRg3

3 (λ3) = {T}, and BRg3
3 (λ3) = {B}. Since f is a best-response potential,

we have f(D,L, T ) = f(D,R, T ) = f(D,L,B) = f(D,R,B). And, since {(U,L, T )} is a BRP-

maximizer set, we have f(U,L, T ) > f(U,R, T ). Let λ′′2 ∈ ∆(A−2) be such that λ′′2(U, T ) = 1/6

and λ′′2(D,T ) = 5/6. Since [f(U,L, T ) + 5f(D,L, T )]/6 > [f(U,R, T ) + 5f(D,R, T )]/6 we

have BRf
2(λ′′2) = {L}. On the other hand, we have BRg2

2 (λ′′2) = {R}. Since f is a best-

response potential we must have {R} ∩BRf
2(λ′′2) 6= ∅, a contradiction. Thus, {(U,L, T )} is not

a BRP-maximizer set. By the similar arguments, we can show that {(U,R,B)} is also not a

BRP-maximizer set. Thus, the game has a unique BRP-maximizer set A. This implies that

there is no iterative BRP-maximizer in the game.

However, g{1,2,3} has a nested best response potential. Indeed, (f 1
{3}, f

1
{1,2}) represented in

Table 9 is a {{3}, {1, 2}}-best response potential of g{1,2,3}, where f 1
{3}(·) = g3(·) and f 1

{1,2}(·) =

g1(·) = g2(·), and then considering the {{3}, {1, 2}}-best response potential (f 1
{3}, f

1
{1,2}) as a

two-person game, we can show that f{1,2,3} = (f) represented in Table 10 is a {{1, 2, 3}}-best
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U,L U,R D,L D,R
T 3, 3 0, 0 1, 0 0, 1
B 0, 0 2, 2 0, 1 1, 0

Table 9: A partition {{3}, {1, 2}}-potential
(f 1
{3}, f

1
{1,2})

U,L U,R D,L D,R
T 3 0 1 0
B 0 2 0 1

Table 10: A nested potential f

response potential of (f 1
{3}, f

1
{1,2}). Thus g{1,2,3} has a nested best response potential f .

Example 5.24 Consider the game in Example 5.19 again. The game has an (iterated) BRP-

maximizer (U,L) of Definitions 5.20 and 5.21 such that an (iterated) best-response potential is

represented as in Table 11. But it has no (nested) BRP-maximizer of Definitions 3.1 and 3.3,

which is shown in Example 5.19.

L C R
U 5 0 0
M 0 1 1
D 0 1 1

Table 11: An (iterated) best-response potential

A Appendix

A.1 P-mesurable BRP-maximizer versus nested BRP-maximizer

Morris and Ui (2005) introduce a generalized version of best-response potential. Let Pi ⊆ 2Ai\∅

be a partition of Ai. We write P = {
∏

i∈N Xi|Xi ∈ Pi for i ∈ N}. A function v : A → R is

P-measurable if, for X ∈ P and for a, a′ ∈ X, v(a) = v(a′).

Definition A.1 (Morris and Ui, 2005) A P-measurable function v : A → R is a best-

response potential of gN if, for each i ∈ N , Xi ∩ BRgi
i (λi) 6= ∅ for all Xi ∈ Pi and λi ∈ ∆(A−i)

such that Xi ⊆ BRv
i (λi). A partition element X∗ ∈ P is a BRP-maximizer if v(a∗) > v(a) for

all a∗ ∈ X∗ and a ∈ X\X∗.
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Remark A.2 If P =
∏

i∈N{ai|ai ∈ Ai}, the P-measurable best-response potentials are given

by Definition 3.1 as mentioned in Morris and Ui (2005).

It is clear that a P-measurable function v : A→ R is a best-response potential of gN if and

only if, for each i ∈ N , Xi ∈ Pi, and λi ∈ ∆(A−i), Xi∩BRgi
i (λi) = ∅ implies that Xi 6⊆ BRv

i (λi).

For i ∈ N and a function f : A→ R, let denote BRf
i (a−i) := arg maxai∈Ai

f(a) for a−i ∈ A−i
by abuse of notation. We provide a necessary condition for existence of P-measurable-best-

response potential.

Lemma A.3 Assume that for each i ∈ N and each a−i ∈ A−i, there exists ai ∈ Ai such that

{ai} = BRgi
i (a−i). If gN has a P-measurable best-response potential then, for each i ∈ N , for

each X−i ∈ P−i, for each a−i, a
′
−i ∈ X−i, there exists a Xi ∈ Pi such that Xi ∩ BRgi

i (a−i) 6= ∅

and Xi ∩BRgi
i (a′−i) 6= ∅.

Proof. Suppose that there is i ∈ N , X−i ∈ P−i and a−i, a
′
−i ∈ X−i such that, for each Xi ∈ Pi,

Xi ∩BRgi
i (a−i) = ∅ or Xi ∩BRgi

i (a′−i) = ∅. Assume that gN has a P-measurable best-response

potential v. Let λi, λ
′
i ∈ ∆(A−i) be such that λi(a−i) = 1 and λi(a

′
−i) = 1. Since i’s best

responses against a−i and a′−i is singleton respectively and for each Xi ∈ Pi, Xi∩BRgi
i (a−i) = ∅

or Xi ∩ BRgi
i (a′−i) = ∅, we have Xi, X

′
i ∈ P such that Xi 6= X ′i, Xi ∩ BRgi

i (λi) 6= ∅ and

X ′i ∩ BR
gi
i (λ′i) 6= ∅. Since v is a P-measurable best-response potential and i’s best responses

against a−i and a′−i is singleton, for each X ′′i ∈ Pi\Xi, X
′′
i 6⊆ BRv

i (a−i); and for each X ′′i ∈ Pi\X ′i,

X ′′i 6⊆ BRv
i (a
′
−i), or equivalently, Xi = BRv

i (a−i) and X ′i = BRv
i (a
′
−i). Since v is a P-measurable,

v(a′′i , a−i) = v(a′′i , a
′
−i) for every a′′i ∈ A−i. Then we have Xi = BRv

i (λi) = BRv
i (λ
′
i) = X ′i, which

contradicts to Xi 6= X ′i.

Example A.4 Consider the game in Example 5.1 again. We can show that for only the parti-

tion P = {A} in 125 possible partitions the game has a P-measurable best-response potential.

Indeed, first, let consider P = {{U}, {M}, {D}} × {{L}, {C}, {R}} × {{T}, {B}}. The P-

measurable best-response potentials is given by Definition 3.1 as mentioned in Morris and Ui

(2005). By Example 5.1 there is no P-measurable best-response potential.

Next consider P = {{U}, {M}, {D}} × {{L}, {C}, {R}} × {{T,B1, B2}}. Let i = 1, X−i =

{C}×{T,B1, B2}, a−i = (C, T ), a′−i = (C,B1). Since {D} = BRgi
i (a−i) and {M} = BRgi

i (a′−i),
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there does not exist a Xi ∈ Pi such that Xi ∩ {D} 6= ∅ and Xi ∩ {M} 6= ∅. By Lemma A.3, gN

has no P-measurable best-response potential. By the similar arguments, for the other partitions

except the partition {A}, we can show that gN has no P-measurable best-response potential.

Thus, for only the partition P = {A} the game has a P-measurable best-response potential.
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