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I.Introduction. 

This article considers the theory of the estimation 

and testing of a model with one endogenous variable end one 

exogenous variable. where the structure of the model assumes 

e simple rational expectations hypothesis for the 

determination of the endogenous variable. The model used here 

essumes thet a set of entrepreneurs are determining their 

actions by minimising expected costs where for simp[licity 

costs ere approximated by a quedratic function of the 

variables. Such models have been considered by .for example. 

Muellbauer and Winter(1980) 

The theory of such models is slightly simplified by 

considering the special case where there is only one 

exogenous variable since it is then not necessary to consider 

the theory of matrix polynomials. Two methods of estimation 

ere considered. the first the method of Maximum Likelihood, 
, 

end the second the method of Instrumentel Variables. The 

first is asymptotically efficient, the second may be 

relatively less asymptotically efficient. The first elso has 

the advantage of suggesting suitable tests for the general 

form of the rational expectations model. 
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2. The Model Formulation. 

Zt is used to denote the exogenous variable and yt is 

used to denote the endogenous variable. The exogenous 

variable is assumed to be generated by an autoregressive 

equation of the form 

p 

Zt = L <Pi Zet-i) + vt 
i=l 

( 2 . 1 ) 

The equation determining yt is then of the form 

yt =bl ye t - 1) +b*l E[ye t + 1 ) It] + co zt +C*l E[ ze t + I) It ]+Ut (2.2) 

This is an equation of the type 

derived in Appendix A from a minimising model. Using the 

arguments of my paper~ [('1~4) ], it can be shown that the 

yt satisfy an equation of the form 
p 

yt = Alyet-I) + L gi Zet+l-i) 
i=l 

where the AI and gi are determined by the following 

equations, and u*t = (1 + AIA2)ut. 

(2.3) . 

AI and 1/A2 are the two roots of the quadrat ic 

equation 

- x + bl = 0 ( 2.4 ) 

Both AI and A2 should be real and of modulus less than 

one. This requires that quadratic equation <2.4) should have 

two real roots ,one with modulus less than one and the other 

with modulus greater than one, and this in turn ensures that 
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AI and A2 I!!Ire both unique continuous functions of the 

parameters of the original model. Conversely b*1 I!!Ind bl I!!Ire 

defined as functions of AI and A2 by the equl!!ltions 

bl = AI / (1 + AI A2 ), b.1 = A2/ (1 + AI A2 ) , 

Then it is convenient to define h = 1 + AIA2 and 

P 
It>(A2) = :r q>j A2 j - 1 

j=l 
so that 

and defining 

d 

= (co + It> (A2 ) ) / (1 - A2 It> (A2 ) ) 

p 
= dh :r A2. - k It>. 

s=k 

( 2 .5) 

( 2 . 6 ) 

(2.7) 

(2.8) 

In estimating this model by maximum likelihood it is 

convenient to write Xt for the vector of variables whose 

elements are yt-I and Zt-i, i = 0 to p-l, in thl!!lt order. 

Define the vector 1jI to have elements AI and gi ,i = 1 to p, so 

that the equation (2.3) can be written 

yt = Xl '., + Ut (2.9) 

and the equations (2.4),(2.6),(2.7) and (2.8) can be 

summarised as equivalent to the statement that the elements 

of the vector 1jI I!!Ire functions of the vector e, whose elements 

are the parameters bl, bl., co, and Cl. respectively. Note 

that 1jI depends also on the parameters q> ,so thl!!lt we can 

write 



• = .<8,cp). 

If cp were known then asymptotically efficient 

estimates of 8 would be obtained by estimating equation (2.9) 

by non-linear least squares. With cp unknown it would be 

necessary to first estimate cp by least squares and then to 

estimate. from equation (2.9) by non-linear least squares. 

These are not asymptotically efficient estimates and the 

standard errors of the estimates of 9 must al low for the 

extra error caused by having to estimate cp. Alternatively we 

can obtain efficient estimates of both 8 and cp by maximising 

a suitable likelihood function with respect to both sets of 

parameters simultaneously. This was discussed in an earlier 

paper (Sargan,1984), and this method wil I not be discussed in 

this paper. It is convenient to have mnemonics for al I the 

different methods of estimation of this paper and the method 

of non-linear least squares when ~ is assumed to be known 

wil I be denoted by NLS and if ~ is assumed to be estimated 

wi I I be denoted by FNLS. 

These estimation methods can be compared with various 

methods of Instrumental Variable estimation.The equation to 

be estimated must first be converted to the form 

yt = blyt-I +bl*yt+1 + co Zt +CI Zt + I + Ut 

since 

and 

several ways 

yt+1 

z t + I 

-bl*ut+l* -(bt*gl+cI*)Vt+1 <2.10) 

= E (yt + I It) + bt * (u*t + I + gt Vt + t ) 

= E ( z t + I It) + Vt + I . 

Equation 2.10 can be estimated by IV in 

First consider the case where ~i are known a 
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priori.ln this case Vt+l is an observable variable and can be 

used as an IV. Since optimal predictors of all the variables 

in 2.10 can be expressed as linear combinations of yt-l and 

of Zt-j, j = 0 to p-l,(except for Vt+l ,which is discussed 

below) the set of IV listed above is the set of Instrumental 

variables which wi 11 be discussed first and will be denoted 

in the subsequent theory by the p+lxT matrix Z.The 

corresponding IV estimators wil 1 be referred to as simple IV 

estimators. Note that all these instrumental variables are 

uncorrelated with Vt+l, so that its coefficient cannot be 

estimated consistently by this set of IV but the term in Vt+l 

is inclu~ed in the overall error in the equation. The error 

on equation (2.10) is of moving average form, but the errors 

on the prediction equations (2.3) and (2.4) are serially 

independent, so that there is no need to introduce serially 

transformed instrumental variable estimators. A direct proof 

of the efficiency of IV estimators of the Sargan type(Sargan 

1988b), where the variables in the equation are transformed 

but not the Instrumental Variables wi 11 be given below. 

These simple IV estimators can be modified in several 

ways. If the coefficient of Vt+l is denoted by d in equation 

2.10, then it improves the efficiency of the IV estimates to 

include Vt+l in the equation whi le retaining the constraint 

( 2 . 11) . 

This leads to non-linear IV estimators, which will be 

denoted by constrained or CIV estimators. These wi 1 1 be shown 

to be fully efficient asymptotice\ Iy,provided that the 
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equation (2.11) is suitablj transformed by an inverse MA 

transformation so that the error on the transformed equation 

is Ut and so is a white noise error(this type of estimator 

wil I be denoted by SCI~. Simpler computations are obtained by 

ignoring the constraint 2.11, but adding Zt+l to the set of 

IV, These wi I I be denoted extended or SEIV estimates. These 

are as efficient as SCIV and also al low an asymptotically 

powerful test for the constraint 2.11 which provides one good 

test of the rational expectations model, 

Unfortunately these results are of only theoretical 

interest since the ~i are not known and must be estimated by 

OLS. If' for Vt + 1 is substituted its OLS estimator the 

efficiency of estimation is reduced. Denoting these feasible 

estimators by FCIV and FEIV it wil I be shown that both are 

equally efficient, with an efficiency equal to that of the 

FNLS estimators. 

From these estimators tests for the restrictions 

implied by the rational expecta~ions model wil I be derived. 

3.A Comparison of NLS and CIV estimators. 

Writing y for the vector wirh elements yt, t=1 to 

T,and Z for the Tx(p+1) matrix defined in the previous 

section, whose row vectors are the Xt defined by equation 

2.g,and u* for the vector of errors on that equation,and 

considering u* as a function of the parameters 9 the first 

order conditions for the NLS estimators obtained by 

minimising u.'u* as a function of 9 is 
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= o. (3.0) 

which when divided by (1 + ~1~2) gives 

Now if w is the vector whose elements are Ut -~2Ut+l, 

this is the vector of errors on equation (2.10), and if A is 

the TxT matrix 

-~2 0 0 0 .............. 0 

o -~2 0 0 .............. 0 

o 0 O ...•...•...... 0 

o o 1 - ~2 ••.••.••••.•.• 0 

o o 0 0 ........... 1 -~2 

then u = A- 1 w. 

Thus 3.0 is equivalent to 

o",'/oS(Z'A-1w) = 0 ( 3 • 1 ) 

or writing X for the Tx5 data matrix with elements 

(yt - 1 ,yt + 1 ,Zt ,Zt + 1 ,Vt + 1 ), and y. = A- 1 y, X. = A- 1 X, 

Equa t ion 3. 1 is then 

These are similar in form to the nonlinear IV estimators of 

equation 2.10 which would be obtained by minimising 

w'A'-1 [Z<Z'Z>-IZ' lA-lw, 

or 

(S.'X.'Z - y.'Z>(Z'Z>-l (Z'X.S. - Z'y> 

with first order conditions 
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(3.2) . 

Now considering for al I values of 9 the identity 

Z'A-l (X •• - y) = Z'u = Z'u./(l + A1A2). 

Considered as functions of e with the observed variables y,X 

and Z treated as constants these identities can be 

differentiated to give 

O(Z'A-l (X •• -y»/oe' 

= ditto +(1/(1 +A1A2»Z'Z(oll'/09').(3.3) 

Dividing this equation by T and taking plims on e~ch side, 

since Plim(Z'u./T) =0. Then 

Plim{~(9.'X.'Z -y.'Z)/Oe (Z'Z)-lo(Z'x.e. -Z'y.)/09'/T}= 

(1+AIA2)-2Plim (o.'/Oe (Z'Z) Olfl'/Oe'/T). 

The white noise error on equation 2.10 is Ut with standard 

deviation o,say, and the error on equation (2.3) is u*t with 

standard deviation 0* = 0(1 + AIA2).Then 

02Plim{0(e.'X.'Z -y.'Z)/oe (Z'Z)-lo(Z'x.e. -Z'y.)/oe'/Tl-I 

which is the AVM of the SCIV estimator and is equal to 

0* 2 P I i m { 0" ' I 0 e ( Z ' Z) 0", I 0 e ' } - 1 , 

which is the AVM of the NLS estimator. 

An alternative proof, using the methods of 

Sargan(1988b) p.l02, can show from equation 3.3 that the 

di fference between the two est imators is Q( 1 IT), again 

meaning that both estimators are asymptotically equivalent. 

4.A Comparison with the SEIV Estimator. 

If the constraint 2.11 is no longer used, and d is 

estimated by IV the number of unknown parameters is now 5, 
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and the number of instrumental variables must then clearly .be 

at least 5. If p>3 or Zt-i and yt-j with i)p or j>1 are used 

as instrumental variables, these have the property of being 

asymptotically independent of Vt+l, so that the coefficient 

of Vt+l cannot be identified by using this set of IV. One 

simple way of dealing with this problem is then to treat the 

term in Vt+l as an addition to the random error on the 

equation. Since al I the IV are independent of the new 

combined error it is possible to estimate the equation 2.10 

omitting the variable Vt+l from the equation. This leads to a 

simple linear IV estimator which wil I be label led the SLIV 

estimator. On the other hand when ~i are assumed known then 

Vt+l is observable and can be used as an IV (giving the SEIV 

estimator). This then leads to an estimate of d that allows 

the constraint 2.11 to be tested. 

The SLIV estimator can be defined by writing XI for 

the Tx4 matrix obtained by omitting the last column of X and 

Xt. for the corresponding serially transformed variables, and 

writing ett for the SLIV estimator 

Xl.'Z(Z'Z)-tz'Xt.ett = Xl.'Z(Z'Z)-lZ'y. ( 4 . 1 ) 

This can alternatively be written 

[(Xt.'Z(Z'Z)-lZ'Xl.)/TJTll(Stt -S)=Xl.'Z(Z'Z)-IZ' (u +d vl.)T-ll 

(4 .2) 

where Vt. represents the vector of serially transformed 

elements equal to Vt+l .Note that all the factors have been 

written so that they are of order one. Then T-ll(Z'u) and 



page 10 

T-~(Z'Vt.) ere esymptotical Iy independent since the series Ut 

and the series Vt+l are completely independent 

stochastically. It follows that the AVM of 

can be written 

Plim (Z'Z/T)cr2 + d2 Plim (Z'A'-lA-tZ/T)cry 2. 

The second term can be simplified since AA' = 0, where 0 is 

the variance matrix of the first order MA stochastic process 

with moving average coefficient -\2. Then using Cremer's 

general linear transformation theorem and defining the 

following symbols; V = [Plim Xt.'Z(Z'Z)-tZ'Xl./TJ, 

Q = P 1 i'm ( X t • ' Z ( Z ' Z ) - 1 ), B = P 1 i m ( Z ' 0- t Z IT) ; 

the variance of the SLIV estimators can be written 

cr2 V- t + d2 cry 2 V- t QBQ" V- t . ( 4.3 ) 

It is easily seen that the first term here is the AVM of the 

SCIV estimator when account is taken that Plim(Z'vt.)/T) = 0, 

and the second term represents the loss of efficiency from 

treating the effect of Vt+l as a addition to the error term 

on the equation 2.10 rather then including it as a variable 

in the equation, However this comparison is not very 

interesting since normally the <Pi are not known so that it is 

necessary to consider feasible estimators such as FEIV or 

Ft!LS estimators, 

Consider for example the FNLS estimators equation 3.1 

defines the estimators but now in the next transformation in 

defining the set of variables in X, Vt+1 is replaced by 
~kr--

vtt+l,where this denotes the OLS"of Vt+l, and using VI and vt 
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to denote the corresponding Tx1 vectors and ZI for the Txp 

matrix with elements Zt-i, t = 1, .. ,T, i= 0, .. ,p-1, 

vt = VI - ZI (ZI 'ZI ) - 1 ZI 'VI 

Then the equivalent of the equation following (3.1) is 

O'!"/09(Z'X.9. -Z'y.) -d.{(Z'A-1Zl )(ZI 'ZI )-1 (ZI'Vl )}]=o 

and combining the arguments following equation 3.1 with the 

arguments of the last section it fol lows that the AVM of the 

FNLS estimator can be written 

0'2 V- 1 (4.4) 

where C = Plim(Z'A-IZ1 )(ZI 'ZI )-1 (ZI 'A'-IZ)/TJ. 

The difference in the two AVMs is 

d 2 0'v 2 V-1Q(B-C)Q'V-l 

where B -C = Plim {(Z'A-l)[I -Zl(Zl 'Zl)-lZl'](A'-tZ)/T}. 

Since the matrix in square brackets above is an 

idempotent matrix of rank one B-C is always non-negative 

definite. This shows that FNLS estimators, in general, are 

more efficient than the SLIV estimators. 

Now consider the simpler IV estimators where the 

equations are not linearly transformed to obtain a serially 

independent error.The estimators where no attempt is made to 

restrict d wil I be written 9t2 and satisfies the equation 

(Xl 'Z)(Z'Z)-1 (Z'XI )9t2 = (Xl 'Z)(Z'Z)-1 <Z'y) ( 4 . 5 ) . 

This simple linear estimator wil I be denoted by LIV. Finally 

a more efficient untransformed IV estimator may be obtained 

by taking estimators where vtt+l is included in the set of 

variables in the equation and Zt+! is included in the set of 
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IV, but no serial transformation is carried out. This will be 

denoted the EIV estimator. 

The wel I known inequalities for IV estimators with 

serially correlated errors shows that the LIV estimator is 

worse than the SLIV, and that the EIV estimator is worse 

tha~the SEIV. 

To summarise this section the order of asymptotic 

efficiency for these various estimators is as fol lows:- NLS 

would be fully efficient if the ~i were known. Among the 

feasible estimators FNLS,FCIV,FEIV are all equally efficient, 

SLIV and EIV are less efficient, and LIV is least efficient. 

2.Testing the Model. 

One method of testing this model depends upon the comparison 

of the estimation of the NLS estimates of equation 2.3 with 

the corresponding unconstrained equation of this form.ln fact 

a simple test of these constraints, depending on the 

difference btween the constrained and unconstrained estimates 

of the sum of squares of the errors Ut is not valid since the 

constrained estimate depends on the estimated ~i. If the 

constraints on the gi were capable of explicit formulation 

then it would not be difficult to compute an appropriate Wald 

test provided that the influence of the estimated ~i was 

taken into account in computing the AVM of the constraints. 

Explicit constraints are only available when p=3, and if p>3 

some approximation technique for the constraints would yield 

an approximation to the Wald test. 
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A simpler test for mispecification would test that Zt-i 

with i>p-l have zero coefficients in equation 2.3 by using an 

appropriate F-ratio test. A more specific test would test the 

validity of the constraint 2.11 when equation 2.10 has been 

estimated by an estimation procedure such as SEIV which 

al lows unconstrained estimates of d to be made. After some 

algebraic manipulation it can be shown that this test is 

equivalent to testing that u*t is uncorrelated with Vt+t, and 

that with this model it is permissible to replace these 

errors with their estimated values from the NLS estimates of 

equation 2.11 and the OLS estimates of equation 2.1. Denoting 

these e'stimates in vector form by ut and vtt then the 

criterion 

td = T-lt (ut 'vtt )/suSy 

is asymptotically distributed as a t-ratio on the null 

hypothesis,where Su and Sy are the usual estimates of the 

standard deviations of u*t and Vt. 

Finally it is possible t? test the restriction that the 

MA coefficient in the equation 2.11 is equal to -A2. (This 

follows since bt*ut+t* = A2ut+t, and it is possible to 

replace the resulting forward moving average representation 

by an alternative backward moving average representation with 

the same coefficient. The most asymptotically powerful test 

against the alternative of a different MA coefficient is 

obtained by defining a vector of errors 

UA = A-tut - ut, 

whose t th element is equal to 
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1: ),,2 It ut t t It t I 

The criterion 

T~ ( ut' UA ) / rr.. uti ut) ( UA--; UA ) • 

is asymptotically distributed as a t-ratio on the null 

hypothesis, and is asymptoiclly powerful. An alternative 

criterion which tests for the same alternative hypothesis but 

is not so powerful is the first order autocorrelation of ut. 

A suitable criterion is the Sargan modification of the Durbin 

test statistic, defined by taking uti as the vector of 

elements utt-I.The criterion ils then defined by 

. T~ ( uti I ut) / .(Tu t 'Ut-) (u t I I uti - uti I Z ( Z ' Z ) - 1 Z ' uti ) . 

This version of the Durbin criterion has the advantage that 

the expression under the square root sign is always non­

negative so that the criterion is always wel I-defined, and 

asymptotically is distributed as at-ratio. 

5_ A Monte-Carlo Simulation. 

In order to consider the finite sample properties of 

these estimators and test statistics some simple models were 

simulated. To take advantage of the storage capacities of 

personal computers with hard discs a special program was 

written which would store the second moments of the data 

generated from a model consisting of the two equations 2.1 

and 2.10. For greater efficiency it was arranged that the 

program generated a continuous stream of variables Xt and yt 

using a standard ~uasi-normal deviate generating sub-routine 
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for t = 0 to infinity, and this was cut up into appropriate 

lengthed samples for which second moments were calculated. In 

practice it was decided to consider sample of length 20, 50 

and 100 observations. In addition it was decided to omit at 

least 30 observations between each sample so as to minimise 

the autocorrelation between successive samples. 

The stream of data was thus cut up into lengths of 

1,040 observation, each of these was cut up into both 8 

lengths of 130 observation and 13 lengths of 80 

observations.From each length of 130 obsevations one sample 

of length 100 observations was extracted, and from each 

length of 80 observations a sample of length 50 and a sample 

of length 20 observations was extracted.The total number of 

simulations was chosen by taking 3,846 of the lengths of 

1,040 observations. This meant that the total number of 

replications of sample size 20 and 50 was 13x3,846= 49,998, 

and the total number of replications of samples of size 100 

was 30,768. These proved of adequate size to give sufficient 

accuracy in the estimation of the empirical frequency 

distribution functions. In order to save space on the hard 

disc it was decided to store the moments as rescaled 

integers, thus requiring only 2 bytes or 32 bits to store 

each moment. ( If they had been stored as single-length 

floating point real numbers 4 bytes would have been 

required.) In order to carry out a reasonable truncation the 

moments were multiplied by 3,000 before being set to the 

value ±31,500 if the scaled value lay outside the limits 
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±30,000. This was a crude attempt to give a representative 

value for the moments lying outside the limits ±10.0, 

whenever the original moments lay outside these limits. In 

order that such truncation was only very rarely required it 

was necessary to provide that if some variable had a second 

moment which had a statistical expectation greater than 3.0 

then this variable was scaled down by an adequate factor.In 

practice it proved unnecessary to scale down the Xt variable 

but necessary to scale down the yt variables in the models 

which were studied here. 

The program was written in a general form suitable for 

a form of equeton 2.10 with general p and the possibilty of 

more than one lag on the yt variable. For the models studied 

in this paper only one lag on the yt variable is required for 

generating the data but the IV estimating procedures require 

the use of moments involving more than one time lag. Thus the 

second moments stored were the covariance for any two 

variables from the following sets of variables; yt-i ,i=0,1,2, 

and Xt-i ,i=O, .. ,5. This makes 45 covariances for each sample. 

The moments were stored as covariances since it was regarded 

as more appropriate to assume that an unconstrained constant 

term was included on each equation. The total storage space 

required for each sample size was 4.3M for sample sizes 20 

and 50, and 2.6M for sample size 100. 

In this study only the case p = 3 is reported. This is 

because if p>3 then the NLS estimators require numerical 

optimisation methods for calculation whereas when p=3 
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optimum estimates of • are obtained by taking unconstrained 

OLS estimates of equation 2.3 and optimum estimates of ~ by 

OLS estimates of equation 2.1. Then corresponding estimates 

of 9 are obtained by solving .(9,~) = V for 9. Conversely if 

9 is estimated by some form of IV then the corresponding 

estimates of 9 are obtained directly from the same equation. 

A program was written which read the covariances from 

the hard disc, used sub-routines to calculate the values of 

various statistics expressed as functions of these 

covariances, and then calculated simulation means 

variances, and standard deviations of these sample statistics 

and also the standard errors of these simulation statistics. 

It also produces empirical distribution functions, recording 

the proportions of the simulation samples which lie between 

given limits, these corresponding to given probability limits 

on the corresponding statistic's asymptotic distribution. 

This makes possible a direct comparison between the 

statistic's estimated distributIon function and its 

theoretical asymptotic distribution function. For this study 

where it is desired to compare the efficiency of various 

estimators two sets of subroutines were written. The first 

computed the estimates of V and 9 using first NLS and then 

using LIV. This gives 16 different statistics, since each 

vector has 4 components. The second set of subroutines 

calculates the EIV estimates of 9, then t-ratios for the NLS 

estimators of V and 9, and t-ratios for the LIV estimators of 

9, and finally the two specification test statistics to and 
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the Sargan/Ourbin test for serial correlation. This gives 

simulation of a further 18 statistics. 

6.A Model and some Results. 

It proved a little difficult to choose 

suitable models for simulation. In order to make it possible 

to estimate the parameters of the model at al I accurately and 

to be able to discriminate between different forms of the 

model and to test specification powerfully it is necessary to 

have coefficients sufficiently large compared with their 

standard errors of estimation. In particular both ~3 and g2 

should be relatively large say. greater than .3 in absolute 

value since otherwise it wil I often be found to give large 

errors for the estimated 9. But in the case of third order 

autoregressive equations the last coefficient, being the 

product of the latent roots of the autoregressive latent 

roots equation, must be smal I unless at least one of these 

roots is large. For example if al I the latent roots have 

moduli less than .7 then ~3 < .343. But if the latent roots 

have large moduli then it is to be expected that the variance 

of Zt will be large, and especially in the likely case where 

all the periods of oscillation are large compared with the 

unit time period and only slightly damped,i.e. the case where 

all the roots are close to one. In such models the various 

lagged values of Zt-i for different are highly correlated 

and the standard errors of the estimated gi are relatively 

high. Al I these characteristics were found in the first model 

which was simulated, resulting in al I methods of estimation 
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being poor end heving semple veriences much greeter then thet 

predicted by esymptotic sempling theory. So the model 

discussed in this paper was chosen so that sI I latent roots 

have modulus about 0.75 or more but not near one. The 

equat ion determining Zt is 

Zt = -.4 Zt-l .5 Zt-2 .5 Zt - 3 + Vt ( 6 • 1 ) 

where Vt - IIN(0,1). 

Then the structurel equation wes chosen so that \1 = .5 end 

\2 = .8. The corresponding coefficients of the structurel 

equetion ere: bl = .3571. and bl- = .5714. co=!., end Cl- =1. 

Ut- - IIN(0,1). 

From these parameters it fol lows thet the vector. has 

elements \1 = .5, end gi -.0886,-1.196,-.664. In storing the 

covariances yt were scaled down by a fector 3.0. Thus the 

resceled y*t wes genereted by the equetion 

= .5 y*t-l -.0295 Zt .399 Zt-l -.222 Zt-2 +u**t (6.2) 

where the standard deviation of u-*t is .333. 

Equetions 6.1 and 6.2 genereted the moments for 

s tor age. I n a n a I y sing the res u Its i t i s c I ear the t for the I V 

estimators and for the NLS estimates of 9 no moments exist 

since the IV estimetors ere of the just identified type where 

the number of instrumentel variebles is equel to the number 

of estimated coefficients. end the 9 estimators ere 

functional trenformetions of the direct estimetors(see Sergan 

1988). Thus when the meen end veriences of these statistics 

were calculated they were found to be very large. end to be 

increasing proportionelly with the size of the simulation 
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sample. So the means and variances are only reecorded here 

for the NLS estimates of ., and the means are in fact 

recorded in the following table as biases, by subtracting the 

true values of the coefficients.The figures in brackets are 

the corresponding standard errors. 

Table 6.1 .NLS Estimator of •. Biases and S.Oeviations. 

T B SO B SO B SO B SO 

20 -.052 .170 .019 .246 .028 .246 -.029 .240 

<. 001) (.001) (,001 ) (.001) (.001) (,001 ) (,001 ) (.001 ) 

50 -.019 .096 .009 .139 .011 .138 -.010 .139 

(.0'00) (.000) (,001) (.000) (.001) (,000) ( .001 ) (.000) 

100 -.010 .066 .004 .095 .006 .094 -.006 .096 

( .000 ) (.000) ( .001 ) (,000) (,001) (,000) ( .001 ) (,000) 

These biases are not large and although the standard 

deviations are somewhat above the asymptotic standard errors 

of the estimators the discrepancy is not large. 

Turning now to the other estimators study of their 

empirical distribution functions shows that the spread of the 

distributions is larger than might be expected from the 

asymptotic standard errors. To summarise this compactly is 

difficult so that the following tables merely records the 

probabilities of being below a certain limit, denoted by L, 

and of being above a certain limit,denoted by U. These lower 

and upper limits are chosen to be the lower and upper limits 

corresponding to lower and upper tail probabilities of 2~~ in 
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the asymptotic distributions of the appropriate NLS 

estimators. 

Table 6.2 Tail Probabilities for Estimators of 8. 

T FNLS 

L 

20 91 .136 

92 . 164 

93 . 1 12 

94 .060 

5091 .037 

92 .134 

93 ,093 

94 .010 

10091 ,019 

92 .102 

93 ,072 

94 .006 

No standard 

,003. 

U 

.096 

.075 

. 106 

, 173 

,090 

,019 

,042 

. 155 

,068 

.012 

.024 

, 122 

errors are 

LIV 

L 

.280 

,203 

. 1 12 

.139 

,202 

.180 

. 101 

,054 

,154 

, 145 

.079 

.028 

quoted but 

U 

· 188 

, 143 

· 133 

.188 

, 103 

,060 

.063 

· 183 

,089 

.033 

,029 

, 152 

they 

FEIV 

are 

L 

.202 

. 125 

.088 

.130 

,148 

,083 

.039 

,035 

,177 

.042 

.010 

.006 

ell 

U 

.095 

.154 

.815 

.626 

less 

.058 

. 130 

.920 

.824 

,029 

.182 

.977 

.942 

than 

On this criterion it is clear that LIV is rether worse then 

FNLS and that FEIV has strong biases for 93 and 94.Compering 
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the NLS and the FEIV estimators of • the NLS estimators have 

finite moments summarised in table 6.1 whereas the FEIV 

estimators have infinite moments, end large probailities on 

the tei Is, for example for T=100 ~1 had lower end upper tail 

probabilities equal to .380 and .278 respectively. There is 

no doubt for this model that NLS give better estimates of •. 

Considering the t-ratio statistics, for all of these 

the second moments of the statistics exist, and so a summary 

in terms of the means end standard deviations is given in 

teble 6.3. Note that the t-ratios are ell given in the form 

the estimator divided by its estimated standard error, so 

that if 'the true value of the coefficient is non- zero then 

the esymptotic distributionOf the t-ratio has a non-zero 

mean. This type of t-ratio was studied to get some indicetion 

of the relative powers of the different estimator's t-ratios 

to reject a non-valid null hypothesis. The t-ratios were 

calculeted for the NLS estimators of •• end the FNLS 

estimators end the LIV estimators of 8. 
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Table G.3.t-Retios for Different Estimetors. 

T M SO M SO M SO M SO 

20 NLS. 3.31 1 .63 -.35 1 .23 -6.14 2. 10 -3.63 1 .62 

FNLSe 2.48 1 .68 1 .48 1 .70 2.38 1 .80 1.28 .91 

LIVe .51 .57 .50 .70 2. 12 2.37 .57 .64 

50 NLS. 5.43 1 .52 -.62 1 .08 -9.46 1 .87 -5.27 1 .47 

FNLSe 4.86 1 .85 2.23 1 .82 3.84 2.04 2.10 .81 

LIve 1 . 21 .83 .94 .93 4.42 3.54 1 . 15 .74 

100NLS. 7.78 1 .49 -.93 1 .04 -13.34 1 .83 -7.31 1 .37 

FNLSe 7.51 1 .91 3. 19 1 . 91 5.60 2.18 3.04 .76 

LIve 2.04 .98 1 .48 1 .07 6.78 4.32 1 .82 .76 

The stenderd errors of these means and stenderd 

devietions ere not quoted but ere ell less then .01. 

Note thet since these ere t-retios their asymptotic 

stenderd devietions should be one. elthough for non-centrel 

t-retios the stenderd deviations mey be somewhat greeter then 

one. The bieses upwards ere lergest for small semples end 

high non-centraiities. If the symmetric 95Yo esymptotic 

confidence intervel is used to eccept the null hypothesis 

that the coefficient is zero. then the probabi lity of 

accepting an incorrect null hypothesis cen be compered for 

the FNLS end LIV estimetors of S. 
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Table 6.4.Probability of Accepting the Zero Coefficient 

Hypothesis. 

91 92 93 94 

T FNLS LIV FNLS LIV FNLS LIV FNLS LIV 

20 .410 .975 .681 .953 .444 .604 .789 .963 

50 .065 .818 .489 .861 .196 .300 .439 .864 

100 .005 .506 .282 .705 .059 . 1 19 .073 .603 

Clearly the probability of accepting the invalid null 

hypothesis is greater for the LIV t-ratio than for the FNLS 

t-ratio for all coefficients and sample sizes, 50 that the 

latter is a more powerful test for all cases simulated here. 

Finally the distributions of the two specification 

test statistics seem to be wel I approximated by their 

esymptotic distributions. Their means and standard deviation! 

are summarised in table 6.5. 

Table 6.5. Means and Standard Deviations for td and Serial 

correlation Test Criterion. 

T = 20 T = 50 T = 100 

M SO M SO M SO 

-.084 1.126 -.032 1.043 -.021 1. 016 

SO -.002 1.125 .001 1.039 -.003 1. 0 11 

I 
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and the probability of being outside the asymptotic 95% 

confidence interval is given below. 

Table 6.6.Tail Probability for the Test Statistics. 

T=20 

.082 

.081 

T=50 

.060 

.059 

T=100 

.054 

.052 

Clearly both test statistics give tests of the expected size 

rather accurately even in samples of size 20 for this model. 

7.General Conclusions. 

Although this paper only reports results for one model 

these results support the general statement that the greater 

asymptotic efficiency of NLS estimators of this type of model 

compared with the efficiency of' IV estimators is realised in 

these models even for sample sizes down to 20 observations. 

Of course to validate this for a wider range of models 

requires the study of models with p>3 and possibly with more 

than one exogenous variables. But programs have now been 

written which are relatively efficient for studying 

simultaneously a large number of statistics generated from 

the sam~e model, which could be used advantageously for 

further studies. 
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Appendix A.- Some Optimal Control Models. 

There are many alternative models which can be used as simple optimal control 

models for business management or economic behaviour. In order to achieve a general form 

suppose that we have an exogenous variable Zt generated by a general autoregressive equation 

k 

Zt= L <l>iZt-i +vt 
i=l 

(Al) 

and Yt is a variable which it is costly to change, and which is used to control some third 

variable Xt. There is also a lag in the determination of~, which is also partly determined by 

Zt-l, and also by a further variable Wt-l (which will be discussed later), so that 

It is desired to equate Xt to a target x' t which in turn is determined by 

Then a loss function is set up as 

T 

LKt[(Xt_x~)2+A(Yt-Ye_l)2l . 
eEl 

W t is also regarded as an exogenous variable. 

Then the FOe give the equations 

[a (ay t + bYt - 1 + cz t _1 - ez t + d+ w t - l ) 

+A(yt-yt - l ) +Kb(ayt + 1 + by t + cZ t 

- eZ t +l + d + Wt) - KA(Yt+l- Ye) 1 

= [a 2+Kb2+A (l+K)] yt+K(ab-A) Y t +1 

+ (ab-A) Yt-l + (Kbc-ae) Zt- (Kbe) Zt+l 

+aczt _l + (a+Kb) d+Kbw t +aw t-l = 0 

(A2 ) 

(A3 ) 



It is assumed that the Wt variables are exogenous and known to the decision taker both 

in period t and t-l, but that Yt+l and Zt+l are replaced by their expectations in period t, and 

the working equation is 

and 

b =- K(ab-A) 
1 

(a 2+Kb2+A (1+K) ) 

b;=-
(ab-A) 

(a 2+Kb2+A(1+K) ) 

Co 
(ae-Kbc) 

(a 2 + Kb2 + A (1 + K) ) 

Cl 
-ac 

(a 2 + Kb2 + A ( 1 + K) ) 

* Kbe 
Cl 

(a 2+Kb2+A (1 +K) ) 

and 

u =-
(KbwC+aw C- l ) 

C ( a 2 + Kb2 + A ( 1 + K) ) 

If we treat Wt as white noise then llt is a moving average error, but it is probably 

simplest to assume that llt is a white noise error. 

This is of the form of equation estimated if ac = 0, and, since a = ° does not make 

much sense, it is appropriate to put c = 0, which gives a possible form of the model. 

An alternative generalized model has a loss function of the form 

T 

L K1 (xc-x;) 2+A(yt -yt _l ) 2+B(Xt-X~) (Yt-Yt - l )] 

t=l 

which leads to FOe equations of much the same form. 

As an application a firm is deciding on the employment of labour which is denoted 



by y" Zt is the demand for product, and x t is an output variable partly determined by Yt and 

Yt-l-

The model allows Xt to be partly determined by lagged Zt (this may be thought of as 

some external variable which is affected by the general level of demand in the economy. The 

same form of structural equation is obtained by allowing ~. to depend on Zt-l' 


