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Abstract

This paper provides a method to prove existence of solutions to some moral hazard
problems with infinite set of outcomes. The argument is based on the concept of
nondecreasing rearrangement and on a supermodular version of Hardy-Littlewood’s
inequality. The method also provides qualitative properties of solutions. Both the
cases of wage contracts and of insurance contracts are studied.
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1 Introduction

Since Mirrlees’ early work [Mirrlees (1975)], the principal-agent problem when
there is moral hazard has received a lot of attention. Under the assump-
tion that the agent chooses an action from a real interval, a first line of re-
search on the subject has focused on the so-called ”first-order approach” (see
[Holmstrom (1975)], [Jewitt (1988)], [Rogerson (1985)]) which involves relax-
ing the constraint that the agent chooses an action which is utility maximiz-
ing to require only that the agent chooses an action at which his utility is a
stationary point. Rogerson [Rogerson (1985)] and Jewitt [Jewitt (1988)] have
given sufficient conditions for the first-order approach to be valid. By this,
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they mean that, the original problem (that we shall from now on call the
second-best problem) and the relaxed problem have the same solutions (with-
out taking into account extreme efforts). Rogerson [Rogerson (1985)] and Je-
witt [Jewitt (1988)] prove the monotonicity of the optimal solutions of the
relaxed problem, a fundamental result for the validity of the first-order ap-
proach and deduce the monotonicity of second-best solutions (modulo extreme
efforts). However, their results depend heavily on whether there exist solutions
to the second-best problem and to the relaxed problem. This is by no mean a
restriction if the set of outcomes is finite since under mild continuity assump-
tions on the datas of the model, there exist solutions to these problems. This
fact has been noticed by Grossman and Hart [Grossman and Hart (1983)] who
under the assumption that there were a finite number of outcomes, proved di-
rectly the existence of solutions to the second-best problem and gave sufficient
conditions for their monotonicity using first-order arguments.

When the set of outcomes is infinite, a standard weak-compactness argument
may not be applied to prove existence of solutions because of the lack of con-
vexity (hence of weak upper semicontinuity) of the problem studied. A second
line of research, starting with Page [Page (1987)] has developed an existence
theory to principal-agents problems, in a general abstract framework. Exis-
tence is proven under mild topological assumptions provided that the set of
admissible contracts fulfills, ex ante, some compactness property. In partic-
ular, Page ([Page (1987)], [Page (1991)]) gives several examples of contract
sets containing optimal contracts, including the case of bounded monotone
contrats.

Our paper lies in between these two streams of reseach. As in [Balder (1996)],
[Page (1987)], and [Page (1991)], we deal with the issue of existence of second-
best solutions. Our framework is that of [Jewitt (1988)] and [Rogerson (1985)]
with a continuum of monetary outcomes and we also use the first-order ap-
proach. It is well-known that, under the monotone likelihood ratio hypothe-
sis (MLRC), the optimal solutions to the relaxed problem, if they exist, are
monotone. This fact in itself, however, does not allow to restrict the study
of the relaxed problem to nondecreasing admissible contracts. Our specific
contribution is to show that under (MLRC), any admissible contract for the
relaxed problem is dominated by a nondecreasing admissible contract. This
is obtained by using the concept of nondecreasing rearrangement and on a
supermodular version of Hardy-Littlewood’s inequality. This property allows
us to assume without loss of generality, that admissible contracts are non-
decreasing and to obtain existence of solutions to the relaxed problem by a
standard compactness argument (Helly’s theorem). We then use the convexity
of the distribution function hypothesis (CDFC) to prove existence and mono-
tonicity (modulo boundary cases) of second-best contracts. While the MLRC
hypothesis is essential to our rearrangement argument, the CDFC hypothesis
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is only used for sake of simplicity.

We study two cases:

• wage contracts which are assumed to be unconstrained and such that the
observation of a higher level of output allows the inference that the agent
worked harder in the sense of stochastic dominance,

• insurance contracts that are assumed to be constrained by liabilities and
such that the observation of a higher loss allows the inference that the
agent did less effort in the sense of stochastic dominance.

In section 2, we recall a standard model of wage contracts with moral hazard
with a real interval of actions and an infinite number of outcomes. The second-
best problem is introduced as well as some assumptions. Section 3 is devoted
to the study of a relaxation of the second-best problem. Using rearrangement
techniques, we first prove that any contract admissible for the relaxed problem
is dominated by a nondecreasing admissible contract and that without loss of
generality, admissible contracts for the relaxed problem may be assumed to be
nondecreasing. We then deduce existence of optimal solutions to the doubly-
relaxed problem. In section 4, combining those results with standard results in
the first-order approach literature, we prove existence of second-best contracts
and fully characterize them. Section 5 is devoted to the special case of a risk-
neutral principal and section 6 to that of insurance contracts.

2 The model

We consider a standard principal-agent model with moral hazard with a con-
tinuum of actions and a continuum of outcomes. Agents choose an effort e
from R+ that is unobservable to the principal. The outcome x belongs to the
given segment [0, x]. The probability law of outcome when the agent’s effort
is e is given by a density f(x, e). Let w(x) be the wage paid to the agent if
outcome x occurs.

The agent’s utility function is assumed to be von Neumann-Morgenstern and
quasi-linear:

U(w, e) :=
∫ x

0
u(w(x))f(x, e)dx− e. (1)

The principal’s utility function is von Neumann-Morgenstern:

V (w, e) :=
∫ x

0
v(x− w(x))f(x, e)dx. (2)
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A contract (w, e) is incentive-compatible if:

U(w, e) = max
e′≥0

U(w, e′) (3)

and individually rational if:
U(w, e) ≥ u (4)

where u is a minimum expected utility level the agents must be guaranteed.

The principal’s second-best problem then reads as:

sup{V (w, e) : e ≥ 0, (w, e) satisfies (3) and (4)}.

We introduce the following assumptions on the data.

(H1): The utility functions u and v : R → R are strictly concave, increasing,
twice continuously differentiable, and there exists α ∈ (0, 1) such that

lim
y→+∞

u(y)

yα
= lim

y→+∞

v(y)

yα
= 0.

(H2): (i) The density function f(., .) is continuous on [0, x]× R+,
(ii) there exist constants b > a > 0 such that f(x, e) ∈ [a, b] for all (x, e),
(iii) for all x, f(x, .) is twice continuously differentiable and the first and sec-
ond partial derivatives of f with respect to e, fe and fee are jointly continuous
and bounded on [0, x]× R+.

As in [Rogerson (1985)], let us introduce the relaxed condition:

Ue(w, e) =
∫ x

0
u(w(x))fe(x, e)dx− 1 ≥ 0. (5)

Let A be the set of pairs (w, e) that fulfill (4) and (5):

A := {(w, e) : e ≥ 0, (w, e) satisfies (4) and (5)}.

(H3): The set A is nonempty and there exists (w, e) ∈ A such that V (w, e) >
−∞.

(MLRC): For all e ≥ 0, the function LR(., .) : x 7→ LR(x, e) := fe(x, e)/f(x, e)
is nondecreasing on [0, x].

We shall sometimes use the stronger assumption:

(MLRCstrong): For all e ≥ 0, the function LR(., .) : x 7→ LR(x, e) :=
fe(x, e)/f(x, e) is increasing on [0, x].
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3 The doubly-relaxed problem

Following [Rogerson (1985)], we define the principal’s doubly-relaxed problem
as:

sup{V (w, e), (w, e) ∈ A}.
This section is devoted to the study of this program. We shall prove existence
and monotonicity of solutions. This will follow from rearrangement inequalities
that we recall in the next paragraph.

3.1 Rearrangements and supermodularity

For the proofs of the results given in this paragraph and some applications, we
refer the interested reader to [Lorentz (1953)], see also [Carlier and Dana (2002)]
and the references listed therein.

Let µ be a probability measure on [0, x]. Assume that µ is absolutely contin-
uous with respect to Lebesgue’s measure and that it admits a continuous and
positive density f on [0, x].

Definition-Property 1 Two Borel functions on [0, x], v and w are equimea-
surable with respect to µ if and only if they fulfill one of the following equivalent
conditions:

(1) µ(v−1(B)) = µ(w−1(B)) for every Borel subset B of R,
(2) for every bounded continuous function g:∫ x

0
g(v(x))dµ(x) =

∫ x

0
g(w(x))dµ(x),

Proposition 1 Let w be any real-valued Borel function on [0, x]. Then there
exists a unique right-continuous nondecreasing function, w̃, which is equimea-
surable to w.

In the previous statement w̃ is called the nondecreasing rearrangement of w
(with respect to the probability µ). One may similarly define the nonincreasing
rearrangement of w with respect to µ as the unique right-continuous nonin-
creasing function which is equimeasurable to w.

A crucial feature of rearrangements lies in rearrangement inequalities, essen-
tially discovered by Hardy and Littlewood and extended since. Such inequal-
ities state that integral expressions of the form:∫ x

0
L(v(x), w(x))dµ(x)
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increase when one replaces the arbitrary functions v(.) and w(.) by their
nondecreasing rearrangements ṽ(.) and w̃(.) when the integrand L satisfies
a Spence-Mirrlees type or supermodularity condition (see [Lorentz (1953)]).

Definition 1 Let L be a function : R × R → R. L is called supermodular
(respectively strictly supermodular) if, for all (v, h) ∈ R× R∗

+:

w 7→ [L(v + h,w)− L(v, w)] is nondecreasing (respectively increasing) on R.

If L is of class C2 a necessary and sufficient condition for L to be supermodular
is that the cross-derivative ∂2

vwL remains nonnegative. Classical examples of
supermodular functions are L(v, w) = vw, L(v, w) = U(v−w) with U concave
or L(v, w) = g(v + w) with g convex.

Proposition 2 Let L be a continuous and supermodular function. Let v and
w be two real-valued Borel functions defined on [0, x] and ṽ and w̃ be their
nondecreasing rearrangements with respect to µ. We then have:∫ x

0
L(ṽ(x), w̃(x))dµ(x) ≥

∫ x

0
L(v(x), w(x))dµ(x), (6)

provided that the rightmost member of this inequality is well-defined.

If L is strictly supermodular, we further have:

Proposition 3 Let L be a continuous and strictly supermodular function. Let
w be a real-valued Borel function defined on [0, x] and w̃ be its nondecreasing
rearrangement with respect to µ. If one has:∫ x

0
L(x, w̃(x))dµ(x) =

∫ x

0
L(x, w(x))dµ(x),

then w = w̃ µ-a.e..

In insurance models, we shall deal with limited liability constraints. The fol-
lowing result gives conditions under which those constraints are closed under
rearrangements.

Lemma 4 Let w be any real-valued Borel function defined on [0, x] and let
w̃ be its nondecreasing rearrangement with respect to µ. Let f and g be two
nondecreasing functions: [0, x] → R. If f ≤ w ≤ g µ-a.e, then f ≤ w̃ ≤ g
µ-a.e.

3.2 Existence of a solution

Using rearrangement techniques recalled above, we first obtain:
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Lemma 5 Assume (H1), (H2), (H3) and (MLRC). Let (w, e) ∈ A and
let w̃ be the nondecreasing rearrangement of w with respect to the probability
measure f(x, e)dx. Then, (w̃, e) ∈ A and V (w̃, e) ≥ V (w, e). Moreover the
previous inequality is strict unless w is nondecreasing.

Proof: Let (w, e) ∈ A and let w̃ be the nondecreasing rearrangement of
w with respect to the probability measure f(x, e)dx. By equimeasurability,
U(w̃, e) = U(w, e) ≥ u and by (MLRC) and Hardy-Littlewood inequality,
one has:

Ue(w, e) =
∫ x

0
u(w(x))LR(x, e)f(x, e)dx

≤
∫ x

0
u(w̃(x))LR(x, e)f(x, e)dx = Ue(w̃, e).

This proves that (w̃, e) ∈ A.

By strict concavity of v, the function (x, w) 7→ v(x−w) is strictly supermod-
ular. Hence

V (w, e) =
∫ x

0
v(x− w(x))f(x, e)dx ≤

∫ x

0
v(x− w̃(x))f(x, e)dx = V (w̃, e)

and by Proposition 3, the inequality is strict unless w = w̃ a.e..

From Lemma 5, monotonicity is a necessary optimality condition for the
doubly-relaxed problem. We may thus assume, without loss of generality, in
the doubly-relaxed problem that w is nondecreasing. It should be noted that
this monotonicity result is not based on a first-order argument.

Theorem 1 Under assumptions (H1), (H2), (H3) and (MLRC) the
doubly-relaxed problem has a solution, (w, e) with w nondecreasing on [0, x].
Moreover, any solution to the doubly-relaxed problem is nondecreasing.

The proof can be found in the appendix.

4 The second-best problem

Let us now introduce the condition:
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(CDFC): For all x ∈ [0, x], the function e 7→ F (x, e) :=
∫ x
0 f(s, e)ds is convex

on R+.

The following concavity result is proved in the appendix.

Lemma 6 Assume (CDFC). If w is nondecreasing and such that u ◦ w is
integrable on [0, x], then the function e 7→ U(w, e) is concave on R+.

The next result is classical, a proof is given in the appendix for the sake of
completeness.

Proposition 7 Assume (H1), (H2), (H3), and (MLRC). Let (w, e) be a
solution to the doubly-relaxed problem, then:

Ue(w, e) = 0.

To be able to solve the second-best problem, we need an additional assumption:

(H4): The problem:

sup{V (w, 0) : (w, 0) satisfies (3) and (4) } (7)

has a solution w∗ provided its admissible set is nonempty.

Sufficient conditions for assumption (H4) to be satisfied will be given in Lem-
mas 8 and 9. Furthermore, we shall see in the next section that, if the principal
is risk-neutral, then (H4) is satisfied.

We may now state an existence result for the second-best problem:

Theorem 2 Assume (H1), (H2), (H3), (H4), (MLRC) and (CDFC).
Then the second-best problem has a solution. Furthermore, we have the fol-
lowing alternative:

• either there exists an optimal solution to the second-best problem of the form
(w∗, 0) and w∗ solves (7),

• or the doubly-relaxed problem and the second-best problem have the same
solutions.

Proof:

If there exists an optimal solution to the second-best problem of the form
(w∗, 0) (so that w∗ solves the program (7)) there is nothing to prove. Let us
assume then that there exists no second-best solution with e = 0 and let us
prove in this case that the second-best and the doubly-relaxed problems have
the same solutions.
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Let (w, e) be a solution to the doubly-relaxed problem (Theorem 1 ensures
the existence of such a solution and that w is nondecreasing). Lemma 6 and
Proposition 7 imply that (w, e) is incentive-compatible. Let us prove that:

if (w, e) satisfies (3) and (4), then V (w, e) ≥ V (w, e).

Let (w, e) satisfy (3) and (4). If e > 0, then (w, e) ∈ A, hence V (w, e) ≥
V (w, e). If e = 0, by (H4), there exists a solution w∗ to (7) and V (w∗, 0) ≥
V (w, 0). Since by assumption (w∗, 0) is not a second-best solution, there exists
(w′, e′) satisfying (3) and (4) with e′ > 0 and V (w′, e′) > V (w∗, 0). Since
(w′, e′) ∈ A, V (w, e) ≥ V (w′, e′) > V (w, 0). This proves that (w, e) is a
solution to the second-best problem.

Conversely, let (w∗, e∗) solve the second-best problem. Since e∗ > 0, (w∗, e∗) ∈
A, hence V (w∗, e∗) = V (w, e). This establishes that (w∗, e∗) solves the doubly-
relaxed problem.

Let us now give conditions that ensure that (H4) is satisfied. Proofs are given
in the appendix.

Lemma 8 Assume (H1), (H2), (MLRC), (CDFC). If, in addition:

fe(x, 0) = 0 for all x ∈ [0, x], (8)

then (H4) is satisfied.

Remark. An example of parametrized cumulative distribution functions sat-
isfying (MLRC), (CDFC) and (8) is:

F (x, e) :=
(

x

x

)α(e)

, for all e ≥ 0 (9)

where α(.) is any positive convex, differentiable, increasing function such that
α′(0) = 0

Lemma 9 Assume (H1), (H2), (MLRC). If, in addition, for all e ≥ 0,
the function:

(x, y) 7→ u(x− y)

(
1− f(x, e)

f(x, 0)

)
is supermodular on [0, x]× R, (10)

then (H4) is satisfied.
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Remark. Contrary to condition (8), condition (10) depends on u. It is tightly
related to the absolute risk aversion index of the agent. Indeed, condition (10)
reads as:

−u′′(x− y)

u′(x− y)

(
1− f(x, e)

f(x, 0)

)
+

∂

∂x

(
f(x, e)

f(x, 0)

)
≥ 0.

By (MLRC), the second term is nonnegative (see [Milgrom (1981)] for de-
tails) whereas the first changes sign and is weighted by risk aversion index.
For instance, if u is a CARA function u(z) = − exp(−ρz), and if (MLRC) is
strengthened to

∂

∂x

(
f(x, e)

f(x, 0)

)
≥ δ > 0

then (10) is satisfied if ρ is small enough (or more generally when the risk
aversion index is bounded by a small enough constant).

5 Risk-neutral principal

In this section we study the case of a risk-neutral principal and of risk-averse
agents. More precisely, we assume:

(H1’): The principal is risk neutral i.e. v(x) = x for all x ∈ R. The agents’
utility function u : R → R is strictly concave, increasing, twice continuously
differentiable, and there exists α ∈ (0, 1) such that

lim
y→+∞

u(y)

yα
= 0.

We shall see that the linearity of v simplifies the problem since assumption
(H4) is always satisfied in this case. As previously, we define the principal’s
second-best and doubly-relaxed problems. In the risk-neutral case the princi-
pal’s utility takes the form:

V (w, e) :=
∫ x

0
(x− w(x))f(x, e)dx.

We first have:

Proposition 10 Under assumptions (H1’), (H2), (H3) and (MLRC)
the doubly-relaxed problem has a solution), (w, e) with w nondecreasing on
[0, x]. If furthermore (MLRCstrong) is fulfilled, then any solution to the
doubly-relaxed problem is nondecreasing.
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The proof is essentially the same as that of Theorem 1. Monotonicity of solu-
tions is no more a necessary optimality condition but, due to linearity, some
limiting arguments are simpler. It may be found in the appendix.

The next result is proved in the appendix. It states that (H4) is always sat-
isfied in the risk-neutral case.

Lemma 11 Assume (H1’), (H2), (H3) and (MLRC), then:

sup{V (w, 0) : (w, 0) satisfies (3) and (4) } (11)

has a nonincreasing solution w∗ provided its admissible set is nonempty.

Theorem 3 Assume (H’1), (H2), (H3), (MLRC) and (CDFC). Then
the second-best problem has a solution. More precisely, the following holds:

• either there exists an optimal solution to the second-best problem of the form
(w∗, 0) and w∗ solves (11),

• or the doubly-relaxed problem and the second-best problem have the same
nondecreasing solutions and any solution (w∗, e∗) to the second-best problem
is such that (w̃∗, e∗) with w̃∗ the nondecreasing rearrangement of w∗ with
respect to f(x, e)dx is a solution to the second-best problem.

Assume furthermore (MLRCstrong), then we have the following alternative:

• either there exists an optimal solution to the second-best problem of the form
(w∗, 0) and w∗ solves (11),

• or the doubly-relaxed problem and the second-best problem have the same
solutions.

The proof is similar to that of Theorem 2 and therefore left to the reader.

It is well-known that the drawback of the previous approach is that the CDFC
assumption has no obvious economic interpretation. [Jewitt (1988)] proposed
alternative conditions under which, in the risk-neutral case, the first-order
approach is valid. We mention without proof that our results remain true if
one replaces the CDFC assumption by those introduced by Jewitt.
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6 The case of Insurance

We end the paper by an application of our method to an insurance frame-
work. Since the main arguments are similar to those given above 1 , proofs are
omitted.

6.1 The model

An agent with initial wealth w0 may incur a random loss X whose density func-
tion f(x, e) over the interval [0, x] depends on the agent’s effort e in avoiding
the loss. It is assumed that the agent’s utility (which depends on wealth and
effort) is von Neumann Morgenstern in wealth and quasi-linear in effort:

U(W, e) =
∫ x

0
u(W (x))f(x, e)dx− e.

where W (x) is the agent’s wealth if a loss x occurs. The insurer offers a contract
(Π, I) consisting of an indemnity scheme I : R+ → R+ such that 0 ≤ I(x) ≤ x
and of a premium Π ≥ 0. Whenever he buys a contract, the agent’s random
wealth is

W (X) = w0 − Π + I(X)−X.

The agent chooses his effort before uncertainty is revealed subject to achiev-
ing a reservation level and an incentive compatibility constraint. The insurer
assumed here to be either risk neutral or risk-averse, then chooses the opti-
mal contract so as to maximize his profit. Equivalently he solves the following
problem:

sup
W,e

V (W, e) :=
∫ x̄

0
v(−(W (x) + x))f(x, e)dx subject to :

U(W, e) = max
e′≥0

U(W, e′), (12)

U(W, e) ≥ u, (13)

e ≥ 0, Π ≥ 0, (14)

w0 − Π−X ≤ W (X) ≤ w0 − Π. (15)

6.2 Assumptions

(H1b): The agent’s utility function u: R → R is strictly concave, increasing
and twice continuously differentiable. The insurer’s utility function v: R → R
1 A previous version of the present paper with detailed proofs for the insurance case
can be downloaded at: http://www.ceremade.dauphine.fr/Publications.php.
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is concave, increasing and twice continuously differentiable.

(H2b): The density function f(., .) is continuous on [0, x] × R+. For all x,
f(x, .) is continuously differentiable and the first partial derivatives of f with
respect to e, fe is jointly continuous on [0, x]× R+.

Let us introduce the relaxed condition:

Ue(W, e) ≥ 0. (16)

(H3b): Let A := {(Π, W, e) that satisfies (13), (14), (15), (16)}. Then A 6= ∅.

(MLRCb): For all e ≥ 0, the function LR(., .) : x 7→ LR(x, e) := fe(x, e)/f(x, e)
is nonincreasing on [0, x].

(MLRCbstrong): For all e ≥ 0, the function LR(., .) : x 7→ LR(x, e) :=
fe(x, e)/f(x, e) is decreasing on [0, x].

(CDFCb): For all x ∈ [0, x], the function e 7→ F (x, e) :=
∫ x
0 f(s, e)ds is

concave on R+.

As in the previous model, the doubly-relaxed problem is defined by:

sup{V (W, e), (Π, W, e) ∈ A}.

To be able to solve the second-best problem, we need the additional assump-
tion:

(H4b): The problem:

sup {V (W, 0), (Π, W, 0) satisfies (12), (13), (14), (15)} (17)

has a solution provided its admissible set is nonempty.

6.3 Existence of second-best solutions

We may now state an existence result for the second-best problem:

Theorem 4 Assume (H1b), (H2b), (H3b), (H4b), (MLRCb) and (CD-
FCb). Then the second-best problem has a solution. More precisely, the fol-
lowing holds:
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• either there exists an optimal solution to the second-best problem of the form
(Π∗, W ∗, 0) and (Π∗, W ∗) solves (17),

• or the doubly-relaxed problem and the second-best problem have the same
nonincreasing solutions and any solution (Π, W, e) to the second-best prob-
lem is such that (Π, W̃ , e) with W̃ the nonincreasing rearrangement of W
with respect to the measure f(x, e)dx is a solution to the second-best prob-
lem.

Assume furthermore either (MLRCbstrong) or v strictly concave, then we
have the following alternative:

• either there exists an optimal solution to the second-best problem of the form
(Π∗, W ∗, 0) and (Π∗, W ∗) solves (17)

• or the doubly-relaxed problem and the second-best problem have the same
solutions.

Let us finally give sufficient conditions for (H4b) to hold.

Lemma 12 Assume either,

• (H1b), (H2b), (MLRCb), (CDFCb) and fe(x, 0) = 0 for all x ≥ 0, or
• (H1b), (H2b), (MLRCb) and that for all e ≥ 0, the function: (x, y) 7→

u(−x + y)
(
1− f(x,e)

f(x,0)

)
is supermodular on [0, x]× R

then (H4b) is satisfied.

7 Appendix

7.1 Proof of Theorem 1

Proof: In what follows, to shorten notations, we shall sometimes write
∫

w
instead of

∫
w(x)dx.

Let us first check that the value of the doubly-relaxed is finite. By (H3), A 6= ∅.
Let (w, e) ∈ A. By assumptions (H1) and (H2), there exists constants C > 0
and C ′ > 0 such that

u ≤
∫ x

0
u(w(x))f(x, e)dx− e ≤ C

(
1 +

∫ x

0
w(x)dx

)
(18)

V (w, e) ≤ C ′
(

1 +
∫ x

0
xdx−

∫ x

0
w(x)dx

)
. (19)
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Hence, by (18), (19) and (H3), the value of the doubly-relaxed problem is
finite.

Let us now consider a sequence (wn, en) ∈ AN such that V (wn, en) converges
to this finite value. By the estimates (18), (19), and the fact that en ≥ 0 we
deduce that all the following sequences are bounded:

∫ x

0
wn,

∫ x

0
u(wn(x))f(x, en)dx,

∫ x

0
v(x− wn(x))f(x, en)dx, and en. (20)

By Lemma 5, we may assume that each wn is nondecreasing.

Let us now prove that wn is bounded in L1. By assumption (H1), there exists
constants b > c > 0 and b′ > c′ > 0 and (a, a′) ∈ R2 such that for for all
x ∈ [0, x] and all w ∈ R, one has:

u(w) ≤ a− bw− + cw+, v(x− w) ≤ a′ − b′w+ + c′w−.

Furthermore, it follows from (20) that there exists γ ∈ R and ε ∈ (0, 1) such
that: ∫ x

0
wn− ≤ γ + (1− ε)

∫ x

0
wn+,∫ x

0
wn+ ≤ γ + (1− ε)

∫ x

0
wn−.

Hence the sequence wn is bounded in L1. Since each wn is nondecreasing,
it follows from Helly’s Theorem (see for instance [Natanson (1967)]) that a
subsequence of wn (again denoted wn) converges pointwise to a nondecreasing
function w. Similarly, taking a subsequence if necessary, we may also assume
that en converges to some e ≥ 0.

Let us now prove that (w, e) is a solution to the doubly-relaxed problem. From
assumption (H1), there exists a constant A > 0 such that for all (x, w) ∈
[0, x]× R:

u(w) ≤ A(1 + |w|α), v(x− w) ≤ A(1 + |x− w|α). (21)

Since |wn|α is bounded in L1/α which is reflexive, we may assume that |wn|α
converges weakly to |w|α in L1/α. This implies in particular that

lim
n

∫ x

0
|wn(x)|αf(x, en)dx =

∫ x

0
|w(x)|αf(x, e)dx. (22)

By Fatou’s Lemma, (21) and (22), we obtain

U(w, e) ≥ limnU(wn, en) ≥ u.
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A similar argument yields

V (w, e) ≥ limnV (wn, en). (23)

Finally, applying Fatou’s Lemma and (21) to the sequence (A(1+|wn|α)|fe(x, en)|−
u(wn(x))fe(x, en)), we obtain:

Ue(w, e) ≥ 0.

Hence (w, e) ∈ A and from (23), (w, e) is a solution to the doubly-relaxed
problem.

The fact that any solution to the doubly-relaxed problem is nondecreasing
follows from Lemma 5.

7.2 Proof of Lemma 6

Proof:

Let us first assume that w is bounded. Since u ◦ w is nondecreasing and of
bounded variation, the quantity

U(w, e) :=
∫ x

0
u(w(x))f(x, e)dx− e

can be integrated by parts:

U(w, e) := −
∫ x

0
F (x, e)dµ(x) + u(w(x))− e

where µ is a nonnegative measure (the derivative of u◦w). From the (CDFC)
assumption, F is convex with respect to e. Hence e 7→ U(w, e) is concave. This
proves that, if w is bounded, then e 7→ U(w, e) is concave.

If w is not assumed to be bounded, let us consider the sequence wn defined
for n large enough, by:

wn(x) =


w(1/n) if x ∈ [0, 1/n)

w(x) if x ∈ [1/n, x− 1/n]

w(x− 1/n) if x ∈ [x− 1/n, x].
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By the preceding, argument, for all n, the function e 7→ U(wn, e) is concave.
By Lebesgue’s Dominated Convergence Theorem and the fact that u(w) is in
L1, for every e ≥ 0:

lim
n

U(wn, e) = U(w, e)

which proves the desired concavity result.

7.3 Proof of Proposition 7

Proof: Let us first prove that Ue(w, e) = 0. We already know that Ue(w, e) ≥
0. The Lagrangian of the doubly-relaxed problem is:

L(w, e, λ, µ, ν) := V (w, e) + λe + µU(w, e) + νUe(w, e)

Kuhn and Tucker necessary conditions (it is easy to check that the constraints
of the doubly-relaxed problem are qualified at (w, e)) yield that for nonnega-
tive multipliers (λ, µ, ν):

Ve(w, e) + λ + µUe(w, e) + νUee(w, e) = 0 (24)

v′(x− w(x)) = µu′(w(x)) + νu′(w(x))LR(x, e) (25)

Assume now by contradiction that Ue(w, e) > 0. Then the complementary
slackness condition in Kuhn and Tucker Theorem implies that ν = 0 and (25)
yields

v′(x− w(x)) = µu′(w(x))

so that µ > 0 and x 7→ x− w(x) is nondecreasing. Now (24) implies:

Ve(w, e) ≤ −µUe(w, e) < 0. (26)

As

Ve(w, e) =
∫ x

0
v(x− w(x))LR(x, e)f(x, e)dx

and as the correlation with respect to the probability measure f(x, e)dx of the
two nondecreasing functions v(x−w(x)) and LR(x, e) is nonnegative, we have

Ve(w, e) ≥
∫ x

0
v(x− w(x))f(x, e)dx

∫ x

0
LR(x, e)f(x, e)dx.

As the second factor in the rightmost member of this inequality is zero, we
get a contradiction with (26). Hence Ue(w, e) = 0.
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7.4 Proof of Lemma 8

Proof: If the admissible set of (7) is empty, there is nothing to prove. Let
w be admissible for (7) and w̃ be the nondecreasing rearrangement of w with
respect to f(x, 0)dx. As in the proof of Theorem 1, one has, V (w̃, 0) > V (w, 0)
and U(w̃, 0) = U(w, 0) ≥ u. Let us check that (w̃, 0) is incentive-compatible.
By Lemma 6,

e 7→ U(w̃, e) is concave on R+

and from (8), Ue(w̃, 0) = −1. Thus (w̃, 0) is incentive-compatible. hence mono-
tonicity is a necessary optimality condition for (7). The existence proof may
then be done exactly as in the proof of theorem 1.

7.5 Proof of Lemma 9

Proof: If the admissible set of (7) is empty there is nothing to prove. Let w
be such that (w, 0) satisfies (3) and (4) and let

ŵ(x) := x− ỹ(x)

where y(x) := x− w(x) and ỹ denotes the nondecreasing rearrangement of y
with respect to f(x, 0)dx. By equimeasurability of x − ŵ and x − w, we first
have V (ŵ, 0) = V (w, 0). From (6), on the one hand, we obtain:

U(ŵ, 0) ≥ U(w, 0) ≥ u.

On the other hand, from (3) and (10), we have that, for all e ≥ 0:

∫ x

0
u(ŵ(x))(f(x, 0)− f(x, e))dx =

∫ x

0
u(x− ỹ(x))(1− f(x, e)

f(x, 0)
)f(x, 0)dx

≥
∫ x

0
u(w(x))(f(x, 0)− f(x, e))dx ≥ −e.

Hence (ŵ, 0) is incentive-compatible.

The previous argument shows that there exists a a maximizing sequence (wn)
of (7) such that, for every n, x 7→ x − wn(x) is nondecreasing and we end
the proof, by the same estimates and convergence arguments as in Theorem
1 (applying Helly’s theorem to x − wn which does not change the arguments
of the proof).
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7.6 Proof of Proposition 10

Proof: We still denote by A the admissible set of the doubly-relaxed prob-
lem. By (H3), A 6= ∅. Let (w, e) ∈ A. By assumptions (H1’) and (H2) there
exists a constant C > 0 such that

u ≤
∫ x

0
u(w(x))f(x, e)dx− e ≤ C

(
1 +

∫ x

0
w(x)dx

)
. (27)

By linearity of V , there exists a constant C ′ such that

V (w, e) ≤ C ′ for all (w, e) ∈ A. (28)

Hence, by (28) and (H3), the value of the doubly-relaxed problem is finite.

Let us now consider a sequence (wn, en) ∈ AN such that V (wn, en) converges
to this finite value. By the estimates (27), (28), and the fact that en ≥ 0, we
deduce that the following sequences are bounded:∫ x

0
wn,

∫ x

0
u(wn(x))f(x, en)dx, V (wn, en), and en. (29)

By Lemma 5, we may also assume that each wn is nondecreasing.

Let us now prove that wn is bounded in L1. By assumption (H1’), there exists
constants a ∈ R and b > c > 0 such that for all x ∈ [0, x] and all w ∈ R, one
has:

u(w) ≤ a− bw− + cw+.

Hence, it follows from (29) that there exists γ ∈ R and ε ∈ (0, 1) such that:∫ x

0
wn+ ≥ γ + (1 + ε)

∫ x

0
wn−.

Thus: ∫ x

0
wn =

∫ x

0
wn+ −

∫ x

0
wn− ≥ γ + ε

∫ x

0
wn−

since
∫ x
0 wn is bounded so are

∫ x
0 wn− and

∫ x
0 wn+. This shows that wn is

bounded in L1. Since each wn is nondecreasing, some subsequence of wn (again
denoted wn) converges pointwise to a nondecreasing function w. Similarly,
taking a subsequence if necessary, we may also assume that en converges to
e ≥ 0.
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Since wn is bounded in L1 (again up to a subsequence) we may assume that the
sequence of Radon measures µn defined by dµn := wndx converges weakly ∗ (in
the sense of the duality between continuous functions and Radon measures)
to some measure µ. Since wn converges pointwise to w, one obviously has
dµ = wdx and since f(x, en) converges uniformly to f(x, e), we get:

lim
∫ x

0
wn(x)f(x, en)dx =

∫ x

0
f(x, e)dµ(x) =

∫ x

0
w(x)f(x, e)dx.

This implies that:

lim
n

V (wn, en) = V (w, e). (30)

Finally we prove exactly as in the proof of Theorem 1 that

U(w, e) ≥ limnU(wn, en) ≥ u and Ue(w, e) ≥ 0.

Hence (w, e) ∈ A and from (30) we deduce that (w, e) is a solution to the
doubly-relaxed problem.

It remains to prove the second assertion under (MLRCstrong). Assume that
(w, e) is a solution to the doubly-relaxed problem, then so is (w̃, e) (where w̃ is
the nondecreasing rearrangement of w with respect to the probability measure
f(x, e)dx). By the same arguments as in the proof of Proposition 7, one has
Ue(w̃, e) = 0. On the other hand, by Proposition 3, (MLRCstrong) implies
Ue(w̃, e) ≥ Ue(w, e) ≥ 0 and the inequality is strict unless w = w̃ a.e., so that
w is nondecreasing.

7.7 Proof of Lemma 11

Proof: If the admissible set of (11) is empty, there is nothing to prove. Let
us therefore assume that it is nonempty. Let w be such that (w, 0) satisfies
(3) and (4), and let ŵ be the nonincreasing rearrangement of w with respect
to f(x, 0)dx. By equimeasurability, one first gets:

U(ŵ, 0) = U(w, 0) ≥ u and V (ŵ, 0) = V (w, 0)

Let us prove that (ŵ, 0) is incentive-compatible. For all e > 0, from (MLRC)

one has x 7→ f(x,e)
f(x,0)

is nondecreasing. Hence, by Hardy-Littlewood’s inequality,
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we get:

∫ x

0
u(ŵ(x))

(
1− f(x, e)

f(x, 0)

)
f(x, 0)dx

≥
∫ x

0
u(w(x))

(
1− f(x, e)

f(x, 0)

)
f(x, 0)dx ≥ 0,

which proves that (ŵ, 0) is incentive-compatible. The existence proof may then
be done exactly as in the proof of theorem 1.
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