Explaining the Perfect Sampler

George Casella Michael Lavine
Cornell University Duke University
Dept. of Biometry ISDS

Christian Robert
CREST, Insee, Paris
and
Université Paris 9 — Dauphine

November 15, 2000

Abstract

In 1996, Propp and Wilson introduced Coupling from the Past
(CFTP), an algorithm for generating a sample from the exact stationary
distribution of a Markov chain. In 1998, Fill proposed another so—
called perfect sampling algorithm. These algorithms have enormous
potential in Markov Chain Monte Carlo (MCMC) problems because they
eliminate the need to monitor convergence and mixing of the chain.
This article provides a brief introduction to the algorithms, with an
emphasis on understanding rather than technical detail.

1 Setting

A Markov chain is a sequence of random variables {X;} that can be thought
of as evolving over time, and where the distribution of X;; depends on Xy,
but not on X;_1, Xy _2,... . When used in Markov chain Monte Carlo (MCMC)
algorithms, Markov chains are usually constructed from a Markov transition
kernel K, a conditional probability density on a state space X such that
Xi41| Xt ~ K(Xy,-). Interest is usually in the stationary distribution of the
chain, the distribution 7 that satisfies

/ K(z,B)dr(x) = w(B) for any measurable subset B of X.
X

Thus, if Xy ~ 7 then X1 ~ m. In a common application 7 is the pos-
terior distribution from a Bayesian analysis and K is constructed to have
stationary distribution .

Here is an example that we follow throughout the article.

Beta-Binomial. Following Casella and George (1992), and for
some suitable parameters n, a and 3, let # ~ Beta(a,3) and
X |6 ~ Bin(n, #), leading to the joint density

71'(28, 0) x (n) 9w+a—1(1 _ e)n—w-f-,@—l
X

and the conditional density 0|z ~ Beta(a + z, 5+ n —).

We can construct a Markov chain, in fact a Gibbs sampler,
having 7 as its stationary distribution by using the following
transition rule for (X, 6;) — (X411, 0141):

1. choose 641 ~ Beta(a + x¢, 5 +n — x¢), and
2. choose X411 ~ Bin(n, 0i41).

This transition rule has transition kernel

K((zt,0t), (xt41,0t41)) = f((wt41, Oe41) (21, 01))

n Tir1t+atzi—1 M — g — 1
> (>9tfil T = Gy)P E L
Tt41

For future reference we note that the subchain ..., Xy, X¢i1,. ..

is a Markov chain with X;.1|z; ~ BetaBin(n, a + x4, 8 +n —)
and transition kernel

K(zt,x41) = f(@e1]me) o
(n) T(la+ B+ n)T(a+ x4+ x441)T(B + 2n — x4 — T441)
Dla+z)T(B+n —z)T(a+ B+ 2n)

Ti+1

Theorems about stationary distributions and ergodicity apply when the
Markov chain satisfies the three properties of irreducibility, reversibility
and aperiodicity, defined in Appendix 6.1. See Robert and Casella (1999,
Chap. 4) for a brief description or Meyn and Tweedie (1993) and Resnick
(1992) among others for book-length treatments. These properties are as-
sumed true for the rest of this article.

The stationary distribution of the Markov chain is also a limiting dis-
tribution: X converges in distribution to X ~ w. For MCMC purposes two
useful consequences of our assumptions are that 7 Z]]Vil h(X;) — Ez[h(X)]
(sometimes called the ergodic theorem) and that a central limit theorem
holds.

It is typical in practice to have MCMC algorithms begin from an arbi-
trarily chosen state at time ¢t = 0, say, and run for a long time T, say, in
the hope that X is a draw approximately from 7. One typically discards
Xo, ..., Xr_1 and estimates E;[h(X)] as 57 E]TIZ,M_I h(X;). A serious prac-
tical problem is determining the “burn-in” time 7. A second practical prob-
lem is determining the correlation between X; and X1, which is used to
calculate the variance of the estimate. Perfect sampling avoids both prob-
lems because it produces independent draws having distribution 7 precisely.

Indeed, the major drawback with using MCMC methods is that their
validity is only asymptotic: if we run the sampler kernel until the end of
time, we are bound to explore the entire distribution of interest; but, since
computing and storage resources are not infinite, we are bound to stop the
MCMC sampler at some point. The influence of this stopping time on the
distribution of the chain is not harmless and in some cases may induce
serious biases (Roberts and Rosenthal, 1998). Perfect sampling alleviates
this difficulty by producing exactly the same chain as one running an infinite
number of steps, by simply replacing the starting time with —oco and oo with
0. And, at no additional cost, it also removes the dependence on the starting
value! In other words, the burn-in time becomes infinite and the chain is
indeed in the stationary distribution at time 0.

2 Coalescence

The first step in obtaining a perfect sample is to find a way to make X; in-
dependent of the starting value. The answer is to work with transition rules.
Let {U;} be a collection of mutually independent random variables, one for
each value of t. A transition rule ¢ determines X;y1 as a function of X; and
Uiy1- A common and convenient choice is to let Upyq ~ Uniform(0, 1) and
take Xy11 = ¢(x, up1) = F);tl-i—1|$t (ug41), the inverse-cdf function of X4 1|z
determined by the kernel K and a linear ordering on X. For illustration we
return to the Beta-Binomial example.

Beta-binomial, continued. Counsider the subchain {X; : ¢ >
0} from the previous example, and let n =2, @ = 2 and § = 4.

2. 2
1\1
0>=0

ugg1 < .278 Ut 41

2. 2
1>=1
0—0

upp1 € (417,.583)

2—2
1—1

O/O

Ut4+1 € (.722, .833)

2—s 2
171
0" 0

Ut+1 € (.833, .917)

2. 2
1 s 1
0—=0
€ (278, .417)

20 2
1>=1

0/0

ugy1 € (.583,.722)

22— 2
17"1
0 0

U1 > 917

Figure 1: All possible transitions for the Beta-Binomial(2,2,4) example

The state space is X = {0, 1,2}. The transition probabilities are

given by the transition matrix

583 .333
P =417 .417
278 .444
and the cdf matrix
583 .917
C =1 .417 .833
278 722

in which p;; = Pr[Xy =j — 1|X; =
J—1X

.083
167
278

1.0
1.0
1.0

T — 1] and Cij = PI‘[XH_l <

i — 1]. The entries of C' are the break points at
which the behavior of the chain changes.

Thus we can draw

Ui+1 ~ Uniform(0,1) and make the transitions illustrated by

Figure 1.

Figure 1 shows that if there is ever a time ¢ such that Uy < .278, then
X; = 0, regardless of the value of Xj. Likewise, if U; € (.583,.722) then

X; = 1or if Uy > 917 then X; = 2. The event that the value of X;
does not depend on the value of Xy is called coalescence. More formally,
let Cy, t,, coalescence between time t¢; and time ¢, be the event that X,
does not depend on Xj,. For a given transition rule ¢, Cj, 4, is a function
of {Uy : t € (t1,t2]}. Conditional on Cy, 1,, X3, is a deterministic function
of {Uy : t € (t1,t2]} and {Xs : s > to} is independent of {X, : r < t;}.
And because the Uy’s are mutually independent coalescence is guaranteed
to happen eventually. These facts are collected in the next theorem.

Theorem 1

(a). The minimum time T such that Co 1 occurs is a random variable that
depends only on Uy, Us,....

(b). The random variable X, the value at coalescence, is independent of
Xp.

Proof: Part (a) is immediate by construction, and part (b) follows since X
is a function only of Uy, ..., Ur and not of Xj.

Conclusion (b) of Theorem 1 says that T is a time at which the initial
state of the chain has “worn off”. One might therefore hope that Xt is
a draw from the stationary distribution 7. This hope is false. It is true
that if T is a fized time, and X7+ is independent of Xy, then X7« ~ 7.
Unfortunately, T is a random time and in general, X7 + 7, as the following
example illustrates.

Two-state. Consider the Markov chain with state space {1,2}
and transition kernel K(1,1) = K(1,2) = .5; K(2,1) = 1;
K(2,2) = 0. The stationary distribution is w(1) = 2/3; 7(2) =
1/3. A little thought shows that coalescence can occur only in
X7 =1 and therefore X7 o4 7.

3 Propp and Wilson

Propp and Wilson (1996) explained how to take advantage of coalescence
while sampling the chain at a fixed time, thereby producing a random vari-
able having distribution 7, exactly. Their algorithm is called Coupling from

the Past (CFTP), and is based on the two ideas (a) that if a chain were started
at time ¢t = —oo in any state X_, it would be in equilibrium by time ¢ = 0,
so Xy would be a draw from 7 and (b) that C_, ¢ would have occurred, so
we can calculate Xy without knowing X .. These two things would happen
because the chain would have run for an infinite length of time.

To implement CFTP in an algorithm, we use the coalescence strategy. We
first find a time —7" such that C_r occurs, hence C_ o also occurs, and
then we calculate Xj.

CFTP goes as follows.

(1). Generate Uj.

(2). Check for C_;1y by applying the transition rule ¢ to X. That is,
calculate I_; = {¢(z,Up) : € X}. I_; is the image of X under one
application of ¢ using the random number Uy. If I_; is a singleton,
then C_1 has occurred, =T = —1 and Xj is a draw from 7.

(3). Otherwise, move back to time ¢ = —2, generate U_1, and calculate
I = {¢(éd(x,U_1),Up) : € X}. I_5 is the image of X under two
applications of ¢, using the random numbers U_; and Uy. If I_5 is a

singleton then C'_ 3 has occurred, —T' = —2 and X is a draw from
.
(4). Otherwise, move back to time ¢ = —3 and continue.

The algorithm continues backward through time until coalescence oc-
curs. We check for C_; o by computing I_;, the image of X" obtained by ¢
applications of ¢, using U_;11, ..., Ug successively. It is important, when
taking a backward step, to keep the U,’s that have already been drawn.

Theorem 2 The CFTP algorithm returns a random variable distributed ex-
actly according to the stationary distribution of the Markov chain.

Proof: Our proof of CFTP depends on the existence of random variables
{X;:t <0} and {U; : t <0} such that

(). Xy ~ 7 for all ¢;

). Xet1|Xe ~ K(Xy,-) for all ¢

(iii). X1 = ¢(X¢, Upyr) for all ¢; and
)

. the Uy’s are mutually independent.

We know such random variables exist both from abstract considerations
and because we can simulate them by the following steps (assuming we can
simulate from).

1. Simulate Xy ~ .
2. For t € —1,-2,..., simulate Xy ~ K(Xy41,-) and Upy1|Xit1, Xy

CFTP works by simulating these random variables in a different order. It
begins by simulating U;’s, simulates a sufficient number of them so that
C_r,0 has occurred, and then calculates Xo. Appendix 6.2 verifies the detail
that 7T is finite with probability 1.

We use the Beta-Binomial example for illustration.

Beta-Binomial, continued. Begin at time ¢t = —1 and draw
Up. Suppose Uy € (.833,.917). The next picture shows the check
for 07170.

2—> 2

t=—-1 t=0
C_1, did not occur, so we go to time ¢t = —2 and draw U_;.
Suppose U_1 € (.278,417). The next picture shows the check for

C_2p.
2 2 2
NIt
N

0—0 0

t=—2t=-1 ¢t=0
C_2 did not occur, so we go to time ¢ = —3. Suppose

U_5 € (.278,.417). The next picture shows the check for C_3 .

2 2 2 2
1?:1\1 1
02029 g

t=-3t=-2t=-1 t=0

C_3, did occur. We accept Xg = 1 as a draw from 7 . Note:
even though C' 3 1 also occurred, we do not accept X 1 =0 as
a draw from .

In CFTP, T and X are dependent random variables. Therefore, a user
who gets impatient or whose computer crashes and who therefore restarts
runs when T gets too large will generate biased samples. Another algorithm,
due to Fill (1998), generates samples from 7 in a way that is independent
of the number of steps.

4 Fill’s algorithm

A simple version of Fill’s algorithm (Fill) is:

1.

2.

5.
6.

Arbitrarily choose a time T and state Xp = z.

Generate X7_1| X7, X7_o| X711, ..., Xo|X1-
Generate [UllX(),Xl], [UQle,XQ], ey [UT|XT71,XT:|
Check for Cop, 7.

If Cp,r has occurred, then accept Xy as a draw from 7

Otherwise begin again, possibly with a new T and z.

We note that all random variables are generated according to the kernel
K and transition rule ¢, conditional on X7 = z.

There are two ways to prove that Fill is correct. We present one here
and one in the appendix.

First proof: Fill delivers a value only if Cp 7 occurs, so we need to prove
Pr[Xo = z|Co,1, X7 = 2] = m(x). This probability is

Pr[Xy = z|Cr(z), X1 = 7]
_ Pr[Xp = 2|X7 = 2] Pr[Cor|Xo = 2, X7 = 2]
- Y Pr[Xo = /| Xy = 2] Pr[Cor| Xo = 2/, Xo = 2]
_ Pr[Xy = 2| Xr = 2] Pr[Co 1, X1 = 2| X = 2]/ Pr[X7 = 2|X(= 7]
Y Pr[Xo = @/| X7 = 2] Pr[Cor, X1 = 2| Xo = 2']/ Pr[Xr = 2| X = 2]
B KT(z, 1) Pr[Cor, X = 2]/ KT (x, 2)
- Y KT(z,3") Pr[Cor, X1 = 2]/ KT (', 2)
_ K'(z,2)/K"(z,2) w(2)/m(z)
TS KT K@) | S/
The first two equalities follow from the definition of conditional probability.
In the third equality we write K7 (-,-) for the T-step transition probabilities
and use reversibility to get Pr[Xy = z|X7 = 2] = K% (z,2). We also use
the fact that the event [Cor, X7 = 2] depends only on {Ui,...,Ur} and

is therefore independent of Xjy. The last line uses another implication of
reversibility, namely: K7 (z,z)/K” (z,z) = n(x)/m(z).

We follow the Beta-binomial (2,2,4) example through the steps in Fill.

Beta-Binomial, continued.

1. We arbitrarily choose T'= 3 and X7 = 2.

2. Our chain is reversible, so [X3|X3 = 2] = [X3|Xy = 2] =
BetaBin(2,4,4). The probabilities are given on page 4. We
generate Xo. Suppose it turns out to equal 1. Similarly,
X1|X2 = 1 ~ BetaBin(2,3,5); suppose we get X; = 2;
Xo|X1 = 2 ~ BetaBin(2,4,4); suppose we get Xy = 1.
The next picture shows the transitions we’ve generated.

2 2 2 2
1 1 1/ 1
0o 2o0-"0 0
t=0 t=1 t=2 t=3
3. X() = 1, X1 = 0, XQ =1and X3 =2 imply U1 ~ U(O, .417);
Us ~ U(.583,.917); and Us ~ U(.833,1). (See Figure 1.)

Suppose we generate Uy € (.278,.417), Uy € (.833,.917)
and Uz > .917.

4. Check for Cp3. The following picture illustrates the check.

t=0 t=1 t=2 t=3
5. Cp 3 occurred; so we accept Xg = 1 as a draw from .

Fill depends on an arbitrary choice of T and X7. To get some feeling
for how big T' needs to be and whether the choice of Xt is important, we ran
Fill on a Beta-binomial(16,2,4) example. For each of X7 = 0,2,...,16,
we ran Fill in a loop with 7" = 1,3,... successively until the algorithm
returned a value. The whole simulation was repeated 50 times. Figure 2 is
a boxplot, sorted by X7, of the T" for which coalescence was achieved. The
horizontal axis is the value of X7 which we fixed in advance. The vertical
axis is the value of T" for which coalescence occurred. The figure shows that
coalescence occurred much more quickly when we chose either X7 = 0 or
X7 = 16 than any other value of Xr.

5 Discussion

e A potentially troublesome point is detecting whether coalescence has
occurred. In general, starting and keeping track of chains from every
state is computationally infeasible. In (partially) ordered state spaces
with a monotone transition rule it is only necessary to keep track of
chains started from the maximal and minimal members. A monotone
transition rule is one in which Xy > Y; = Xy = ¢(Xy, upy1) > Vg =
&(Yi, ugt1). If we use an inverse-cdf function ¢ (with an appropriate
linear order) and the kernel K is stochastically monotone, then the
transition rule will be monotone.

This is the case in our example, where a chain started from state 1 is
sandwiched between chains started from states 0 and 2. Therefore it is
only necessary to keep track of chains started from 0 and 2 to determine
whether coalescence has occurred. In fact, if there exist maximal and

10

Time to Coalescence

ST

16

14

12

10

Figure 2: Time to coalescence for 50 runs of Fill’s algorithm, for each value

of XT.

11

minimal elements, coalescence is detectable even with a continuous
state space. Non-monotone transition rules or state spaces without
minimal and maximal elements require more sophisticated methods.
See Fill et al. (1999) or Green and Murdoch (1999) for details and

extensions.

In describing CFTP we set T successively equal to -1, -2, In fact,
any decreasing sequence would do as well. Propp and Wilson (1996)
argue that T = —1,—2,—4, —8,... is near optimal. In Fill, if X is
rejected, or if one is generating many realizations, one may wish to
choose new values of T and z for the next proposal. Figure 2 shows
that some combinations of (7, z) are more likely to lead to coalescence
than others. There is no general theory at present to guide the choice
of (T, z). In practice the results of early iterations may guide the choice
of (T, z) in later iterations.

In his original algorithm described here, when checking for coales-
cence, Fill used constrained uniform variables Uy, ..., Ur conditional
on Xy, ..., X, generating [U1|Xo, X1, [U2|X1, X2, - - - , [Ur|X7-1, XT].
This insures that the chain starting in x will end up in z. This is prac-
tical as long as sampling from the conditional distribution of the U;’s
given the X;’s is not too difficult.

An alternative to the algorithm described in Fill is to generate the
U;’s unconditionally. (Typically U; ~ U(0,1).) Use these U;’s to check
whether X goes to z under T applications of ¢. If yes, then also check
for Cpr and either accept or reject Xy accordingly. Otherwise, dis-
card both the X;’s and the U;’s and generate another set until finding
one that is suitable. Ultimately we will accept Xy with the desired
probability. However, the reader may quickly realize that the imple-
mentation of such an alternative is too impractical in real applications.

Some practical applications of Markov chains iterate between a discrete
X and a parameter 6 which might be either discrete or continuous. In
such cases we can obtain perfect samples from the joint distribution of
both X and #. For example, consider modeling the data Y as a mixture
of Normal distributions. The model is usually extended to include
indicator variables X, which are not observed but which indicate which
Y’s come from the same mixture components. Conditional on X, the
model is a straightforward collection of Normals. Let 6 denote all
unknown parameters other than X. The posterior is typically analyzed
through a Gibbs sampler that iterates between [X|f] and [6|X]. The

12

iterates of X form a subchain on a finite state space and are amenable
to perfect sampling. Given a perfect sample of X, one can simulate
from [#|X] to obtain a perfect sample of 6.

This remark extends to other latent variable models, but one must keep
in mind that the size of the finite parameter space of X in the mixture
example is k™, which rapidly gets unmanageable unless monotonicity
features can be exhibited, as in Hobert et al. (1999).

e To remove the difficulty with continuous state space chains, another
promising direction relies on slice sampling. This technique is a special
case of Gibbs sampling (See Robert and Casella 1999, Sect. 7.1.2) and
takes advantage of the fact that the marginal (in z) of the uniform
distribution on {(x,u); u < w(x)} is w(x). The idea, detailed in Mira
et al. (1999), is that, if «f is a variable generated from the uniform
distribution on {z; 7(z) > er(zg)}, it can also be taken as a variable
generated from the uniform distribution on {x; m(x) > en(x1)} for
all z1’s such that er(xg) < em(z1) < m(xy) by a simple accept-reject
argument. Therefore, assuming a bounded state space X, if one starts
with z; generated uniformly on X, a finite sequence zj, ... , 2z’ can
be used instead of the continuum of possible starting values, with
being generated from a uniform distribution on {z; 7(z) > n(z}_,)},
and T being such that m(z7.) > esupm(z). Moreover, slice sampling
exhibits natural monotonicity structures which can be exploited to
further reduce the number of chains. The practical difficulty of this
approach is that uniform distributions on {z; m(x) > er(x¢)} may be
hard to simulate, as shown in Casella et al. (1999) in the setup of
mixtures.

e Perfect sampling is currently an active area of research. David Wilson
maintains a web site of papers on perfect sampling at
http://dimacs.rutgers.edu:80/"dbwilson/exact.html. The in-
terested reader can find links to articles ranging from introductory
to the latest research.

References

G. Casella and E. I. George. Explaining the Gibbs sampler. The American
Statistician, 46:167-174, 1992.

13

G. Casella, K.L. Mengersen, C.P. Robert, and D.M. Titterington. Perfect
sampling for mixtures. Technical report, CREST, Insee, 1999.

J. A. Fill. An interruptible algorithm for perfect sampling via Markov chains.
Annals of Applied Probability, 8:131-162, 1998.

James Allen Fill, Motoya Machida, Duncan J. Murdoch, and Jeffrey S.
Rosenthal. Extension of Fill’'s perfect rejection sampling algorithm to
general chains. Technical report, The Johns Hopkins University, Dept. of
Mathematical Sciences, 1999.

P. J. Green and D. J. Murdoch. Exact sampling for Bayesian inference:
towards general purpose algorithms. In J. M. Bernardo, J. O. Berger,
A. P. Dawid, and A. F. M. Smith, editors, Bayesian Statistics 6, Oxford,
1999. Clarendon Press.

J.P. Hobert, C.P. Robert, and D.M. Titterington. On perfect simulation
for some mixtures of distributions. Statistics and Computing, 9:287-298,
1999.

S. P. Meyn and R. L. Tweedie. Markov Chains and Stochastic Stability.
Springer-Verlag, New York, 1993.

A. Mira, J. Mgller, and G. O. Roberts. Perfect slice sampler. Technical
Report R-99-2020, Dept. of Mathematical Science, Aalborg University,
1999.

J. G. Propp and D. B. Wilson. Exact sampling with coupled Markov chains
and applications to statistical mechanics. Random Structures and Algo-
rithms, 9:223-252, 1996.

S. I. Resnick. Adventures in Stochastic Processes. Birkhauser, Boston, 1992.

C. P. Robert and G. Casella. Monte Carlo Statistical Methods. Springer-
Verlag, New York, 1999.

G.0O. Roberts and J.S. Rosenthal. Markov chain monte carlo: Some practical
implications of theoretical results (with discussion). Canadian Journal of
Statistics, 26:5-32, 1998.

E. Thonnes. A primer on perfect sampling. Technical report, Department
of Mathematical Statistics, Chalmers University of Technology, 1999.

14

6 Appendix

6.1 A Markov Chain Glossary

We will work with discrete state space Markov chains. The following def-
initions can be extended to continuous state spaces as long as the usual
measurability complications are carefully dealt with.

A Markov chain X1, Xo, ..., is irreducible if the chain can move freely
throughout the state space; that is, for any two states x and z’, there exists
an n such that Pr[X,, = 2/|Xy = z] > 0. Moreover, as the chains we are

considering are all positive, that is, the stationary distribution is a proba-
bility distribution, irreducibility also implies that the chain is recurrent. A
recurrent chain is one in which the average number of visits to an arbitrary
state is infinite.

A state z has period d if P(X,4; = x| X; =) = 0 if n is not divisible
by d, d being the largest integer with this property. For example, if a chain
starts (¢ = 0) in a state with period 3, the chain can only return to that
state at times ¢ = 3,6,9,.... If a state has period d = 1, it is aperiodic. In
an irreducible Markov chain, all states have the same period. If that period
is d = 1, the Markov chain is aperiodic.

We then have the following theorems.

Theorem 3 Convergence to the stationary distribution If the count-
able state space Markov chain X1, Xa,... , is positive, recurrent and aperi-
odic with stationary distribution w, then from every initial state

Xp—> X~

A positive, recurrent and aperiodic Markov chain is often called ergodic,
a name also given to the following theorem, a cousin of the Law of Large
Numbers.

Theorem 4 Convergence of Sums If the countable state space Markov
chain X1, Xo, ... , is ergodic with stationary distribution w, then from every
wnitial state

LS) » B(x)

provided E.|h(X)| < co

15

Adding the property of reversibility will get us a Central Limit Theo-
rem. A Markov chain is reversible if the distribution of X;; conditional on
X190 = x is the same as the distribution of X;11 conditional on X; = z. For
any set B we have

ZZK(Z/VT) = ZZK(QT,Q/)

YyeEX xEB YyeEX z€B

so the transition probabilities are the same whether we go forward or back-
ward along the chain.

Theorem 5 Central Limit Theorem If the countable state space Markov
chain X1, Xo,..., is ergodic and reversible with stationary distribution ,
then from every initial state

=3I Eoh(X)] = N0,
=1

provided 0 < 0 = Var h(Xp) + Y2, Covr(h(Xo), h(X;)) < o0

6.2 Proof of Theorem 2

We will establish the detail mentioned in the proof of Theorem 2, that
coalescence occurs at some finite time with probability 1. We adapt the
proof presented in Thonnes (1999).

As {X;} is irreducible, there exists an n such that K™(x,y) > 0 for all
states x and y in X'. The use of a monotone transition rule ¢ implies (but is
not necessary for) ¢ = Pr[Cy] > 0. The events C_, 9, C_2,—p, ... all have
probability ¢ and are independent because C_(;;1)n,—in depends only on
U_(it+1)n+1, U_(i+1)n+2, - - - U—in, which are independent of all of the other
U’s.

Finally, we observe that

I
P(No coalescence after I blocks of size n) < H(l — Pr[C_iyn,—(i=1)n])
1

1—¢)f
— 0Oas I — oo,

%

AN

showing that the probability of coalescence is 1.

16

We can, in fact, make the stronger conclusion that the coalescence time
is almost surely finite by noting that

Z Pr[C_(i11)n,—in] = 00 = Pr[C_(i11)n,—in] infinitely often =1,

from the Borel-Cantelli Lemma, and therefore, with probability 1, there
exists a finite T" such that C_7 o occurs.

6.3 Alternate Proof of Fill

We can view Fill as a rejection algorithm: generate and propose Xg =
x; then accept x as a draw from 7 if Co7 has occurred. The proposal
distribution is the T-step transition density K7 (z,-). In this section we use
the notation Cr(z) to denote the event [Cy7U X7 = 2] and — 2 to denote
the event [Xo =z U X1 = z].

Fill is a valid rejection algorithm if we accept Xy = x with probability

1 w(x) m(x)
MKT(z,x) where M > sup KT (z.0)"

K1 (z,
From detailed balance we can write 7(x)/KT (2,7) = n(z)/K” (x,2) and,
since Pr[Cr(2)] < KT (2!, 2) for any 2/, and hence Pr[Cr(z)] < miny KT (2, 2),
we have the bound
@) _ w) _ we)_ a(2)
KT(z,z) KT(z,z) ~ ming KT (2',2) — Pr[Cp(2)]
7(z)

KT(z,x

=M.

So we accept Xg = x with probability ﬁ 7 which is quite difficult to

compute. However,

1 (@) _PrCr(x)] (&) _ PrCr(:)] () _ Pr{Cr(2)
M KT (z,x) m(z) K7T(z,x) m(z) KT(r,z) KT(z,2)’
where we have again used detailed balance. But now, because Cr(z) entails
PriCr()] — PrlCr(z)eoz] Pr[Cr(z)|z — z], exactly the

KT(z,2) — Prlz—z]
event that Fill simulates.

T — z, we have

Finally, note that the algorithm is more efficient if the acceptance proba-
bility 1/M is as large as possible, so choosing z to be the state that maximizes
Pr[Cr(z)]/7(2) is a good choice. This, also, will be a difficult calculation,
but in running the algorithm, these probabilities can be estimated.

17

