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Abstract

Given that it is quite impractical to use standard model selection criteria in a
nonlinear modeling context, the builders of nonlinear models often choose lag length
by setting it equal to the lag length chosen for a linear autoregression of the data.
This paper studies the performance of this procedure in a variety of circumstances,
and then proposes some new and simple model selection procedures, based on linear
approximations of the nonlinear forms. The idea here is to apply standard selection
criteria to these linear approximations, rather than to autoregressions that make
no provision for nonlinear behavior. A simulation study compares the properties of

these proposed procedures with the properties of linear selection procedures.
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1. Introduction

There has been considerable interest in nonlinear time series models in recent years, as
evidenced by a growing body of studies of asymmetries in business cycles and nonlinear-
ities in asset markets. Models that allow for state-dependent or regime-switching behav-
iour have been very popular, with well known examples including the Markov Switching
(MS) model (Hamilton, 1989), the Current Depth of Recession (CDR) model (Beaudry
and Koop, 1993), the Smooth Transition Autoregressive (STAR) model (Terisvirta,
1994) and the Threshold Autoregressive (TAR) model (Potter, 1995). At first blush,
such models have intuitive appeal and seem relatively easy to work with, although in
practice they are often quite difficult to specify and estimate.

One difficulty associated with nonlinear modelling is that the researcher usually
needs to determine the lag structure of the data before conducting nonlinearity tests or
estimating nonlinear specifications. Researchers often choose this lag length by setting
it equal to the lag length chosen for a linear autoregressive model of the data, where the
latter choice is based on the partial autocorrelation function, or standard lag selection
criteria such as those proposed by Akaike (1974), Hannan-Quinn (1979) or Schwartz
(1978). It is recognized that these lag selection techniques will only “work” if the main
features of the linear autocorrelation structure reflect the lag dependencies associated
with the underlying nonlinear process, but it is quite impractical to calculate and com-
pare model selection criteria for nonlinear specifications of different lag lengths, when
each calculation requires the maximization of a potentially ill-behaved likelihood.

There is a very large literature on lag selection (see the survey article by de Goojier et
al (1985)), but most of this is set in a linear context and there is comparatively little that
works within the more general nonlinear framework. There is a small body of research
that has used various dependence measures to construct analogues to the autocorrelation
and partial autocorrelation functions that are often used in linear settings. Auestad and
Tjestheim (1990) use nonparametric estimates of conditional means and variances for
this purpose, while Granger and Lin (1994) suggest the use of Pinsker’s (1964) mutual
information coefficients and Kendall’s (1938) partial correlation coefficients. Granger

et al (2001) have also worked with a dependence metric based on the Bhattacharya-



Matuisa-Hellinger measure of entropy. After simulating the distribution of this metric
under the null hypothesis of independence, they suggest that it be used for identifying
statistically significant lag lengths in potentially nonlinear settings.

The above procedures essentially mimic various aspects of the Box-Jenkins approach
for identification, and like the Box-Jenkins methodology, their reliance on the skill and
judgement of the researcher invites criticism. Another potential problem with the above
procedures is that with the exception of Kendall’s coefficient, they require nonparametric
estimation of density functions, which is difficult for the novice and often inappropriate
when dealing with small samples. The nonparametric final prediction error (FPE)
criterion proposed by Tjgstheim and Auestad (1994) offers a less subjective approach to
the lag selection problem, but it is nevertheless difficult to implement and impractical,
given the size of typical economic data sets.

This paper looks at the problem of lag selection for nonlinear models from the view-
point of an applied economist. It focusses on nonlinear autoregressive models because
these models are popular in applied work, and the goal is to study simple and practical
techniques that might be appropriate for relatively small samples of up to three hundred
observations. My suggestion is to work with linear approximations to nonlinear forms
and then to apply the usual lag selection criteria (for example AIC, HQ and BIC) to
discriminate between such approximations. Since these approximations are linear in pa-
rameters, the calculation of selection criteria for each lag length is very straightforward.
Naturally, the procedure relies on finding reasonable approximations for nonlinear func-
tional forms. I work with second order polynomial expansions and various subsets of
these expansions, and although I also experiment with neural network approximations,
I find that the former seem to work better for relatively small samples.

I study both linear and nonlinear data generating processes (DGPs), with short,
medium and long lag structures. These DGPs are all based on published models of
macroeconomic and financial data, so that my conclusions relate to the sorts of series
that econometricians actually encounter in practice. I find that when the underly-
ing DGP is nonlinear, standard model selection criteria tend to overestimate the true
lag-length. This problem is especially pronounced when AIC (which generally favours

overfitting) is used, but it is also evident when the Schwartz criterion (which generally



favours underfitting) is used. This suggests that when series are potentially nonlinear
and the selection criteria uses only one parameter to account for each lag, higher para-
meter penalties are needed to account for the fact that nonlinear DGPs will typically
have more than one parameter associated with each lag length. Given that “count-
ing” parameters in a nonlinear setting can be a problematic concept, because different
parameters can affect the data generating process at different points in time, I make
no attempt to suggest appropriate parameter penalties here. Instead, I focus on using
approximations that have a known number of parameters, and simply report on how
well the application of AIC, HQ and BIC to these approximations identifies the true
lag-length. My simulations suggest that lag selection based on approximations reduces
the tendency to overpredict lag-length, particularly for nonlinear DGPs. Further, this
reduced tendency to overpredict lag-length is accompanied by an increased tendency to
underpredict lag-length.

The organization of this paper is as follows. Section 2 sets up the lag selection
problem and outlines a general framework within which the researcher might tackle this
problem. Here, I discuss why standard selection criteria might not work, and suggest
a few approaches that might work better. In Section 3, I describe some simulation
exercises designed to assess the performance of my procedures within both linear and
nonlinear contexts, and then I report the results of the simulations in Section 4. Section

5 summarises and concludes.

2. Lag selection in a potentially nonlinear setting

I consider a univariate time series y, with history Y = (... y—2, y—_1, vo0, Y1, - -- Yt—1)
that has a DGP given by

ye =B+ BYEL + W(VEP,0) + e (1)

where Ytt__lp = (Yt—-1, Yt—2, --- Yt—p); Bo, B and O are parameters, and ‘Il(ﬁt__lp,e) is
a nonlinear function of its first and possibly second arguments. I assume that y¢ is
essentially stationary and weakly dependent as defined in Wooldridge (1994), and that

although the functional form of ¥ might be initially unknown to the researcher, it



satisfies conditions that will allow consistent estimation of § once this functional form
has been specified. I further assume that e¢ is a sequence of independent and identically
distributed zero mean random variables with E(c?) = o2 being a finite constant.

The class of models defined by (1) includes the large family of exponential autore-
gressive (EXPAR) models discussed by Haggan and Ozaki (1981), threshold autore-
gressive (TAR) models (see Tong (1990)), and closely related models such as smooth
transition autoregressive (STAR) models (see Teriisvirta (1994)) and current depth of
recession (CDR) models (see Beaudry and Koop (1993)). In the special case given by
0?2 = 0, model (1) also includes chaotic series such as the logistic map series for which
yt = 4yt—1(1 —ye—1). This series is especially interesting, because its autocorrelation and
partial autocorrelation functions are equal to zero at all lags. Model (1) does not allow
for autoregressive conditional heteroskedasticity (ARCH) processes, bilinear processes
or hidden Markov chains, but given the practical importance of pure autoregressive
processes in the applied econometrics literature, it is useful to start with these.

Our problem is to determine the lag length p, possibly prior to determining the
dimension of 6 and specifying the functional form of W. This situation often arises
when the researcher wants to test for nonlinearity, or wants to determine the type
of nonlinearity present in W, but the test assumes a knowledge of the lag length p.
Alternatively, we might not be able to specify U and estimate 3 and € until we have first
determined p. Even if we are willing to specify ¥ prior to determining p, we might want
to avoid estimating (1) using different lags lengths, simply because nonlinear estimation
is time consuming and difficult. Furthermore, the difficulty in estimating and comparing
nonlinear specifications for a set of different p can be compounded if the true model is
actually linear and various parameters in the specification are therefore unidentified.
See Davies (1977) or Engle (1984) for further discussion of this identification problem.

Standard lag selection criteria (such as AIC, HQ or BIC) applied to autoregressive
time series typically assume a linear process for ¢, and then solve an optimization prob-
lem for p that simultaneously rewards the fit of the AR(p) and penalises its complexity.
Higher p will improve the fit, but will also entail more complexity. The assumption that
the time series is linear is not innocuous when AR(p) models are being fitted, because it

implies that one of the options considered by the researcher will be the true model. The



reason why these standard procedures might not work in the nonlinear context given by
(1), is that by just considering linear AR(p) processes (for 0 < p < p™®) | the researcher
does not include the true model in his/her choice set. Tong (1990, p288) discusses this
issue very briefly, and notes that when the set of models under consideration does not
include the true model, the selected model may or may not be adequate, depending on
how close the likelihood of the chosen model is to the likelihood of the true model.

Akaike (1985) emphasizes that the researcher’s choice set of possible models should
reflect his/her particular way of looking at the data, and this suggests that when models
such as (1) are being considered, the family of AR(p) models might not necessarily
provide the most appropriate choice set for determining lag length. This leads to the
question of whether there are other families of models which might better account for the
nonlinearity in (1) and thus provide a more reliable selection of p. Since W is potentially
difficult to estimate for different lag lengths p, and its precise functional form isn’t
necessarily known, it seems sensible to focus on families of models that are both simple
and capture unspecified nonlinearities.

Tests for unspecified nonlinearity in the conditional mean are often based on simple
linear regressions. Various examples are studied and discussed in Granger and Terésvirta
(1993) and Lee et al (1993), who claim that these tests involve “specific functions of
Ytt:lp, that are chosen to capture essential features of possible nonlinearities”. Such
functions include the duals of Volterra expansions in Ytt__lp and neural networks in Ytt__lp,
and I discuss these further below. Two important features of each of these functions
are that they can be used to approximate ¥ in model (1) and that they are linear in
parameters. I use these features in the lag selection criteria that I suggest below.

Volterra expansions are discussed in Priestley (1981), and they approximate ¥ using

the formula

o ks k0 Bk ks=p Bk I
U(Ye 7,0) ~ Vo+ Wyt ok Yt—kYt—j+ Wakjivi—kYt—j Ye—it+- -
k=1 k=1j=1 k=1j=1 i=1
(2)

which includes squares, cross-products, cubic terms and other higher order terms to

capture the nonlinearities in W. When W is well behaved, these polynomial expansions



can be justified as Taylor series expansions around 7::?, but (2) can often provide a
good approximation of ¥ even when W is ill-behaved. Such expansions can become
unwieldy if p is large and the expansion includes high order terms, but expansions
involving just the squares and cross-products have often proven useful in practice. In
the latter case (1) is given by
ke I
yt ~ By + 5/*Ytt__1p + Wokjyt—kYt—j + €t (3)
k=1j=1
which is linear in (p+ 1) + 2p(p + 1) parameters.

Neural network approximations of ¥ are based on the intuition that any nonlinear
function of Ytt:f can be approximated arbitrarily well by a linear combination of ele-
mentary nonlinear transformations of ¢ indices of Ytt__lp (i.e. 'yf,Ytt__lp, r=1,..,q), for q
sufficiently large (Hornik et al 1989). The approximating model of y; is then given by:

X 3 -
n~ B+ Y L+ Uro (LY Fe (4)
r=1
where ¢ is a permissible elementary function', and the 7, are randomly chosen by
the econometrician, independently of y; and Ytt__lp. I include a constant in ¢ because
Teriisvirta et al (1993) found that this helped approximate certain types of nonlinearity.
Model (4) is linear in (1 + p + ¢) parameters. Lee et al (1993) note that elements in ¢
tend to be collinear with themselves and with Ytt__lp, but they resolve this difficulty by
using ¢* < ¢ principal components of the ¢ functions that are not collinear with Ytt:lp.

The lag selection procedures that I suggest involve choosing a maximum possible
lag length p™®*, fitting the approximations of the nonlinear forms to the data for each
of lags 0 to p™®*, and then choosing the lag length p* that minimizes AIC, HQ or BIC.
Given the explanator sets used in approximations (3) and (4), the parameter penalties
are (p+ 1) + 3p(p+ 1) in the calculations based on (3), and (1 + p + ) for calculations
based on (4). These penalties are larger than (p + 1) which is used when fitting linear

!The elementary function, which is called the “activation function” or the “squashing function” in the
neural network literature, can be any function that satisfies some continuity and denseness conditions

discussed in Hornik et al (1989). The most popular one is the logistic function ¢(z) = [1+ exp (2)]7* .



autoregressions of order p, but we are fitting more highly parameterized models to the
data. Since the approximating models can be potentially overparameterized for large p
and/or ¢, I experiment with various subsets of explanators. For instance, when working
with (3) I consider an approximation that includes just the squares (and not the cross
products) of Ytt:lp, so that the approximating model contains less parameters and the
relevant penalty drops to (14-2p). I also consider using just the first principal component
of the set of %p(p + 1) cross products, so that the approximating models use (2 + p)
parameters. Table 1 contains a list of the various approximating models that I consider,
together with a count of how many parameters are used for each approximation.

One could work with many different versions of approximation (4). I set ¢ = 30 and
then use the first ten principal components of the thirty squashing functions®. Although
Lee et al (1993) found that the first two principal components (out of ten generated)
were sufficient to give neural network based nonlinearity tests power against nonlinear
AR(1) and AR(2) alternatives, I suspected that more components might be needed to
capture nonlinearities that had potentially longer lag structures, and this led to my
choice of 10. However, to allow for more frugal approximations, I also used just the
first 2p principal components. A comparison between these two families of models is
potentially interesting, because the first keeps the number of variables in the explanator
set for the nonlinearity constant while lag length increases, while the second allows the
explanator set for the nonlinearity to expand with lag length.

The ability of these suggested procedures to choose a correct lag depends on whether
the approximation to ¥ is “close” to W, given the data. It is reasonable to expect
procedures based on (3) and (4) to outperform the AR based procedures if the data has
“strong” nonlinear characteristics, but that the AR based procedure might be better if
our time series has very subtle nonlinearities. It is also reasonable to expect that the
suggested procedures will cloud the choice of lag length when the time series is actually
linear, but here one can hope that the parameter penalties that are supposed to correct
for the overparameterization that occurs in this case will “do their job”. These issues

are studied by simulation below.

2T remove those components in the same basis space as the linear part of the model, prior to calcu-

lating the principal components.



3. Simulation Design

The simulation study is based on a set of DGPs that have been chosen from the applied
econometrics literature. These DGPs include specifications based on Teriisvirta and
Anderson’s (1992) models of industrial production, Beaudry and Koop’s (1993) model
of US output, Rothman’s (1998) models of unemployment, Anderson and Vahid’s (2001)
models of US output, and Martens et al’s (1998) data on mispricing errors associated
with S&P stocks and futures contracts. Industrial production indices, unemployment
and stock returns all exhibit strong evidence of nonlinearities, whereas the nonlinearities
in output are much weaker. Therefore the sample of DGPs includes processes with
“strongly” nonlinear behaviour, as well as processes that are “almost linear”. I also
include some linear DGPs in our study, some of which are published in the above papers,
and others which I obtained by estimating linear models for various economic/financial
data sets and then setting my DGP parameters equal to my estimated parameters.
I chose the DGPs so that they would be representative of the sorts of DGPs that
econometricians encounter in practice. Some have short lag structures, others have
longer lag structures, and I even include some lag structures with “holes” or “near-
holes”3 Full details of all DGPs are provided in Table 2, together with references and
notes on their properties.

The error terms for our DGPs and neural network random coefficients were generated
using Gauss. Error terms are drawn from the standard normal distribution and then
scaled according to the standard deviation of the error term of the relevant DGP. For the
neural network models I followed Lee et al (1993), rescaling all variables onto [0,1], and
then drawing the hidden weights from the uniform distribution on [-2,2]. T discarded the
first 1000 observations of the simulated DGPs to avoid initialization effects, and report
results based on 10000 replications of the relevant DGP. I studied samples of size 100,
150, 200, 250, 300, 500, 1000 and 5000, with the last three of these being included so
that I could obtain some idea of the asymptotic behaviour of the procedures. I note,

however, that the results for these larger samples would also be relevant for studies of

*By “holes” we mean zero (or very close to zero) coefficients on intermediate lags. It is typically very

hard to choose the correct lag structure, given these types of DGPs.



financial data, where samples are typically large. I report results on only a subset of
the samples to conserve space, but other results are available upon request. In total, I
studied five processes of order two, two of order 4, two of order five, two of order 7, and
two of order nine, and the lag selection procedures considered all possible lag lengths

from zero lags to ten.

4. Finite sample properties of the proposed procedures

Tables 3a, 3b, and 3c present detailed results on the performance of the AIC, Hannan-
Quinn and Schwartz procedures, and Figures 1 - 4 provide visual summaries of the main
patterns that seemed to emerge from these results.

Figure 1 illustrates how the standard procedures (based on the AR family of models)
work for each DGP. The top row relates to linear DGPs, and illustrates with the well-
known properties that (i) for small samples AIC usually dominates HQ, which usually
dominates BIC; but (ii) HQ and BIC improve with sample size and eventually dominate
AIC, because AIC is inconsistent, in contrast to HQ and BIC. For the AR(2) and AR(9)
DGPs, the large sample properties are beginning to show for samples of only 250 - 300,
while samples as small as 100 observations on the AR(5) are behaving like large samples.
The latter observation is due to the relatively large coefficient on the AR(5) term, which
is sufficiently large to be statistically significant in samples of 100.

Similar patterns are observed when the standard procedures are applied to nonlinear
DGPs (see the remaining two rows in Figure 1). However, the latter graphs also suggest
that the inconsistency of AIC becomes evident earlier (i.e. for smaller sample sizes) for
nonlinear processes relative to linear processes, while the improvement in HQ and BIC
with sample size seems to be more rapid.

Figure 2 illustrates the differences between standard procedures (based on the AR
family of models) and approximating procedures (based on other model families), when
the true DGP is linear. Since the true DGP is linear, one might expect that the for-
mer procedure will dominate, while the other procedures will have lower, but hopefully
non-trivial ability to choose lag length. This seems to occur for the AR(2) and AR(9)

processes, which are both “weak” in the sense that they do not generate signals that
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allow information criteria based on small samples to accurately select lag length. It also
occurs for the AR(5), when BIC based procedures are used. However, when AIC or HQ
based procedures are applied to the AR(5) process, the SQ, CR and PCC procedures
almost always perform better than the AR based procedures, except when samples are
very small. Given that the AR(5) process is “strong”, in the sense that large sample
behaviour is already evident for the AR versions of AIC and HQ when samples are
relatively small, this latter finding suggests that the better performance of the nonlin-
ear criteria is a large sample phenomenon. Possibly, this phenomenon arises because
the nonlinear families of models use more parameters at each lag length than do lin-
ear models, and this make it easier to discriminate between different lag lengths. It
is noteworthy that for larger samples, the nonlinear procedures also outperform linear
procedures for the AR(2) and the AR(9), and the BIC nonlinear procedures also out-
perform the linear BIC procedures. Differences between the AR and other lines on each
graph in Figure 2 measure the “cost” of applying nonlinear procedures to linear DGPs.
These can be very high, especially if BIC-CR is applied to a “strong” DGP. However,
this cost decreases with sample size and eventually becomes negative. The last panel in
Figure 2 provides an illustration of this.

Figure 3 illustrates the differences between standard procedures (based on the AR
family of models) and approximating procedures (based on other model families), when
the true DGP is nonlinear. Since the true DGP is nonlinear, the hope is that the
latter procedures will dominate, while the standard procedures based on the AR family
will have lower ability to choose lag length. This clearly occurs for the ESTAR(2),
TAR(2) and the LSTAR(5) processes illustrated in Figure 3(b), where the SQ CR and
PCC procedures almost always dominate the AR based procedures. It also occurs to
a lesser degree for samples of more than 200 of the CDR(2) and LSTAR(2) processes,
when AIC based procedures are used. The N10 and NM2 procedures outperform the
AR procedures only rarely, and while the CR procedure often dominates all others
(especially for “strong” DGPs and for larger samples (>500 observations)), it is usually
the worst for samples of 100. It is interesting to note that there is rarely any substantial
difference between the performances of the SQ and PCC procedures.

For samples of 100, there seems to be little advantage to using a nonlinear selection
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criterion, even when the DGP is nonlinear. The SQ and PCC procedures sometimes
work better when the true DGP is truly nonlinear, but this increase in accuracy is
never more than 5% in absolute value. Given that the SQ and PCC procedures use
fewer parameters to model the nonlinearity while the worst performers in small samples
(CR, N10 and NM2 procedure) use many more parameters, it seems that parsimony is
essential in small sample settings. Thus, AR based procedures seem best.

The picture starts to change once samples grow to about 200 observations, but this
depends on the relative “strength” of the nonlinear process, and how soon the asymptotic
properties of each selection procedure start to set in. Figure 3 has been roughly arranged
in order of “strength”, so that the “weaker” DGPs appear first in Figure 3a, and then the
“stronger” DGPs appear later in Figure 3b.* For weak processes, lag selection based on
HQ-AR or BIC-AR dominate selection based on nonlinear versions of AIC, even though
the latter dominate AIC-AR. Thus, although the nonlinear versions of AIC are now
working better than standard AIC, there is little point in using them, because linear
versions of HQ and BIC perform better still. The same is true for the stronger processes
illustrated in Figure 3b, where there can be up to a 20% improvement when AIC-CR
is used rather than AIC-AR. Once again, there is little point in “capitalizing” on these
relative benefits when the linear versions HQ and BIC outperform all versions of AIC,
but now several of the nonlinear versions of HQ and BIC perform even better. HQ-SQ),
HQ-PCC, BIC-SQ and BIC-PCC offer reliable but small improvements over HQ-AR and
BIC-AR. The improvements are small, simply because the latter have accuracy rates
of well over 80%. The HQ-CR and BIC-CR procedures can have even higher accuracy
rates of well over 99%, but the CR criterion seems to be quite unreliable, in that it
either works really well, or it doesn’t work at all. This is because the CR performance

curves are often shaped like a logistic curve® with a steep slope (), so that essentially

*Note, from Figure 1, that for the three processes in Figure 3a, (CDR(2), LSTAR(2) and ESTAR(9)),
that AIC-AR is still improving with sample size and HQ-AR and BIC-AR have only just started to
dominate AIC-AR. For the three processes in Figure 3b, (LSTAR(5), TAR(2) and ESTAR(2)), Figure
1 shows that HQ-AR and BIC-AR already dominate AIC-AR, which has already started to decrease
with sample size

5 A logistic function in sample size t is given by f(t) = (1 + exp{—~(t — c)})~* for v > 0.
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one has to pass a certain sample size threshold (¢) before good performance is observed.
For the weaker processes, this threshold has not yet been reached for samples of 300, so
that CR procedures hardly work at all. For the stronger processes, the threshold occurs
for samples of less than 100, so that we observe the flat part of the top of the curve,
and associated good performance.

The results for samples of 5000 are not reported, but the simulations show the usual
inconsistency associated with AIC in large samples. Some of this is already evident
in samples of 1000. This is particularly so for the “stronger” DGPs when AIC-AR is
used, but it is also observed for the CDR(2) and ES(9) processes. While the AIC-
AR procedure usually shows evidence of inconsistency first (i.e. for relatively smaller
samples), the performances of other nonlinear procedures based on AIC also decline
after a certain point. This is true for both linear and nonlinear DGPs. I found no
evidence that any of the HQ or BIC based procedures were inconsistent when applied
to linear DGPs, but the performance of both linear and nonlinear procedures based on
HQ or BIC became inconsistent for nonlinear DGPs. Thus, it appears that one cannot
rely on standard HQ or BIC when the true DGP is nonlinear. It seems possible that one
might be able to maintain consistency of HQ and BIC for nonlinear processes by using
higher order approximations as the sample size grows, but this issue is not explored any
further here.

Taken together, the accuracy results suggest using AIC or HQ based on AR models
for small samples (of less than 150 observations). Nonlinear procedures are generally not
working well for small samples, even if the true DGP is nonlinear. HQ and BIC based
on the SQ and PCC nonlinear approximations can be useful for moderate samples (of
150 -300), especially if the true DGP is nonlinear. Given that typical macroeconomic
data sets usually consist of forty to forty five years of quarterly observations (i.e 160 -
180 observations), this finding is potentially useful for applied macroeconomists. Un-
fortunately the practical question of whether these nonlinear procedures will work in
any given situation depends on whether the true DGP is nonlinear, and the practi-
tioner doesn’t generally know that in advance. However, if there are good reasons to
suspect nonlinearities (because, for instance, one is working with unemployment data

which often shows strong evidence of nonlinearity), then it seems sensible to use the
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procedures based on SQ and PCC approximations. However, if working with a series
that is unlikely to have strong nonlinearities (for instance GDP), then it seems best to
stay with the standard AR based procedures.

While accuracy is desirable when building time series models, we need to recognize
that mistakes will occur and consider whether certain types of mistakes are less costly
than others. For instance, over prediction of lag lengths is a problem if we wish to
forecast, while underprediction is a problem if we wish to test for and model nonlin-
earity. Tables 4a and 4b contain some statistics that cast light on these considerations.
The same general pattern characterizes both AIC and BIC procedures. Relative to
procedures based on AR models, the nonlinear criteria tend to under-predict lag length
more and over-predict lag length less, although under-prediction does not seem to be a
problem for many of the nonlinear models we studied. It is interesting to note that a
comparison of similar series (say the AR(2) and the LS(2) which were both based on
estimates from the same data) shows that underprediction is less likely when the true
DGP is nonlinear. This is perhaps comforting when considering nonlinear modelling,
because it is relatively easy to reduce a general nonlinear model to a more parsimo-
nious specification, but much harder to work out from a specific to a more general
specification.

The tables do not include results for the four DGPs based on financial series because
all criteria (linear and nonlinear, based on AIC, HQ or BIC) had great difficulty in
choosing the correct lag length. AIC based on the AR family performed best in each
case, but accuracy ranged from .0359 to .1568 for the AR(4), .0137 to .1446 for the
AR(7), .0355 to .1078 for the TAR(4), and .0168 to .1304 for the TAR(7), (where in
each case the first figure relates to samples of 100 and the second relates to samples of
1000). Results for samples of 5000 were considerably better (ranging between 45 and
65% for AIC), but BIC results for this sample size were still small (between 2% and
8%), indicating that much larger samples would be needed before asymptotic properties
become evident. In one sense, these findings are not unexpected, given the extremely
weak correlation structure that is typically found in financial data. However, the results
also illustrate how poorly our standard methods can work, when the true DGP has very

weak properties.
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5. Conclusion

This paper has studied the problem of lag selection for nonlinear models from the
viewpoint of an applied economist. Two common approaches include the application of
AIC, HQ or BIC to linear autoregressive models, or first specifying the nonlinearity and
then applying the same criteria to a sequence of nonlinear models. I argue against the
second of these because of its impracticality, but assess the first of these by means of
simulation. In general I find that AIC applied to AR models works quite well for small
samples even when the true model is nonlinear. In contrast, HQ and BIC perform quite
poorly, unless the sample size is large.

I propose and study several lag selection criteria that might be useful in nonlinear
settings. Some of these are based on polynomial approximations to the nonlinear DGP,
while others are based on neural network approximations. The SQ and PPC procedures
seems to improve lag selection performance, when applied to moderately small samples
and used in conjunction with HQ and BIC. This offers potential when working with typ-
ical macroeconomic data sets. All procedures work well for larger samples of data which
follow the sorts of nonlinear processes that are popular in macroeconomic modelling.
However, since standard versions of HQ and BIC are also working well in this case,
the nonlinear procedures improve lag selection only slightly. For large samples of data,
both linear and nonlinear procedures are easy to implement, but will be inconsistent.
Although harder to implement, non-parametric techniques (such as those suggested by
Tjostheim and Auestad (1994)) might improve accuracy.

The simulations show that the usual lag selection criteria are likely to have difficulty
with typical macroeconomic and financial data sets. While the proposed procedures
offer some improvement, this improvement is very limited. This leads to the conclusion
that more work is needed to develop other techniques that are practical, but more

helpful in small sample settings.
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Table 1. Families of models used to approximate the DGP

Family | Approximating Equation Parameters
AR |y B+ BV (1+p)
_ k=

Q=B+ VL + it Lk (1+2p)

* * — k= j=k
CR w B+ 8P+ S 1D Yagyen (14p)+ zplp+1)
PCC |y~ 85+ B"Yy 1 + foc{yewyejdor 1 < k,j <p} (2+p)
N10 ye =~ 35+ BV P+ fl0ope of {¢ féYtt__lp for 1 <r <30} | (11+p)
NM2 | ye =~ 85+ 8"V, L+ f(2p)opc of {¢ 7Y for 1 <r <30} | (1+3p)

Note 1: fpc is the first principal component of the bracketed explanator set.

Note 2: f10opc takes the first 10 principal components of the bracketed explanator set,
othogonal to the linear explanator set.

Note 3: f(2p)opc takes the first 2p principal components of the bracketed explanator

set, othogonal to the linear explanator set.
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Table 2: DGPs used in the simulation studies

AR(2) yt = 0.49 + 0.25y¢_1 + 0.13y¢_2 + &¢ with g¢ ~ N(0,0.89?)

AR(5) yt = 0.005+0.935y;_1 +0.055y¢_2 — 0.049y 3 — 0.609ys_4 + 0.417ys_s5 + ¢ with
et ~ N(0,0.027?)

AR(9) yt = 0.008 4 1.423yy_1 — 0.7347ye_2 + 0.337hyr_3 — 0.6423y_4 + 0.5348y;_5 —
0.1115y;_ + 0.0409y¢_7 — 0.2685y;_g + 0.1837y;_g + e¢ with e¢ ~ N(0,0.0220152).

CDR(2) yt = 0.3540.24yt—1+0.22y;_2+0.20C RDt_1+e¢ with CD Ry = max{CDR_1, yt}—
ye and ¢ ~ N(0,0.892).

ES(Z) Yt = 0.325yt_1 — 1.777yt_2 + ft X (1219yt_1 + 1124yt_2) + &t with ft = (1 —
exp{—10.230 x 200(y_1)?}) and ¢ ~ N(0,0.05762).

TAR(2) y = 0.0529 4 1.349y 1 — 1.665y_» + fr x (1.646y¢_1 — 0.733y¢_2) + ¢ with
fe= (1)(yt_1 < 0.062) and ¢ ~ N(0,0.0632)

LS(Z) Yt = —1.51 — 1.41yt_2 + ft X (204 + 0'26yt—l + 1.50yt_2) + €t with ft = (1 +
exp{—11(yt_» +0.55)})~1 and et ~ N(0,0.89?).

LS(5) yt = —0.030+0.64yt_1—0.29yt_2—0.64yt_a+ fi X (0.044-+0.49y_»+0.45y¢_s5) +¢t
with fr = (14 exp{—7.3 x 21.6(yt—1 + 0.015)})~! and et ~ N(0,0.02312).

ES(9) y = 0.0075 + 3.03y¢_1 — 131y — A0.49y¢_4 + fr X (—1.68y_1 + 0.8yt —
A0.30yt_g) + ¢ with fr = (1 — exp{—1.54 x 196(yt_1 + 0.082)?}) and & ~
N(0,0.01852).

AR(4) y = 0.0033 + 0.8679y_1 + 0.0429y;_» + 0.0228y_3 + 0.0348yt_4 + ¢ with
et ~ N(0,0.028562).

AR(7) yr = 0.00085+0.8976yt—1 —0.0142y_2 — 0.0073yt—3 —0.0002y_4 4+ 0.0121y;_5 +
0.0011%_g + 0.0372y¢_7 + ¢ with ¢ ~ N(0,0.0296240?).
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TAR®@) yt = I(yr1 < —0.090)(0.0031 4 0.6098y¢ 1 + 0.3577yr_2 — 0.1996y¢_3 +
0.1682yt_4) + I1(—0.090 < 11 < 0.062)(0.0025 + 0.8916yt_1 + 0.0124y;_» —
0.0061y;_3 + 0.0220y¢_4) + 1(0.062 < 1_1)(0.008 + 0.8547y_1 + 0.0142y_» —
0.0048y;_3 + 0.0251y¢_4) + ¢ with ¢ ~ N(0,0.02482).

TAR(7) yt = I(ye1 < —0.073)(—0.0161 + 0.6748y_1 — 0.0578yt_» + 0.0362y¢_3 +
0.10321y;_4—0.0244y_5+0.0182y¢_g-+0.114Tye_7)+1(—0.073 < ye_1 < 0.072)(0.0002+
0.9311yt_1 — 0.0048y¢_» — 0.0154y¢_3 + 0.02119y_4 + 0.0003y 5 + 0.0016y¢_g +
0.01641_7) + 1(0.072 < y¢_1)(0.0159 + 0.8185y¢_1 — 0.0292y;_2 — 0.004275y;_3 —
0.06951¢_4 + 0.0803y;_5 — 0.0222_g + 0.060y;_7) + et with ¢ =~ N(0,0.02942).

Notes and Sources:

The AR(2), CDR(2) and LS(2) are based on AlnGDP for USA (see Anderson and Vahid
(2001)). These DGPs are “weak” in that coefficients and/or evidence of nonlinearity

don’t become statistically significant until the sample is large.

The TAR(2) and ES(2) are based on log linear detrended unemployment for the USA
(Rothman (1999)). These DGPs are “strong”, in that coefficients and evidence of non-

linearity are statistically significant, regardless of sample size.

The AR(5) and LS(5) are based on fourth differences of the logarithms of industrial
production for Belgium (see Teriisvirta and Anderson (1992)). Both are “strong” DGPs,
although LS(5) has a “hole” at lag 3. The AR(9) and ES(9) are based on similarly
transformed data for the USA and Japan. Both are moderately “strong” DGPs, but
the ES(9) process for Japan has “holes” (no structure for lags 6 and 7, and restrictions
for lags 5 and 9).

The AR(4), AR(7), TAR(4) and TAR(7) are based on data for mispricing errors associ-
ated with the S&P 500 index and matching futures contracts. See Martens et al (1998).
As is typical for financial data, the lag structure is “weak”. Evidence of nonlinearity is

strong, but the corresponding threshold models contain many “holes”.
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Table 3a: Performance of AIC based criteria

(proportion of times the correct lag is picked)

Data Generating Process (samples of 100)

Model Family | AR(2) AR(5) AR(9) CDR(2) ES(2) TAR(2) LS(2) LS(5) ES(9)

AR .2302 .7013 .2464 .3287 7050  .6982 4010 .6526 .5030
SQ 1740 .6930 1457 2509 7426 7430 3516 .6772 2912
CR 1049 2725 0531 1472 5389 5215 2205 2721 0715
PCC 1740 .6964  .1489  .2512 7567 .7441 3453 6719 .3043
N10 1389 4436 1706 1867 6720 .6225 3001 4199 .2690
NM2 1357 4393 1476 1770 6074 6741 3204 3297 2524

Data Generating Process (samples of 150)

Model Family | AR(2) AR(5) AR(9) CDR(2) ES(2) TAR(2) LS(2) LS(5) ES(9)

AR 3413 7216 .4224 4719 7093 .6941 5311 .6426 .7058
SQ 2746 7666  .2671 @ .4142 7711 7531 0094 7249 5094
CR 2421 7720 .0547  .3745 .8359 .8285 A878 7476 1465
PCC 2763 7641 2692 4138 0727 7576 5051 7041 .5445
N10 2167 5128 2593 .3196 .6926 .6104 4471 4864 L3827
NM?2 2180  .b672 11916 .3166 6712 7592 4876 3536 .4000

Data Generating Process (samples of 200)

Model Family | AR(2) AR(5) AR(9) CDR(2) ES(2) TAR(2) LS(2) LS(5) ES(9)

AR 4194 7257 5559 .5605 7111 .6886 6164  .6280 .7754
SQ 3571 7824 3882 .5222 7766 7553 6124 7267  .6522
CR 3200  .8674 .0601  .5107 .8552 .8477 6199 .8252 .2324
PCC 3538 7807 3871  .5251 7807  .7556 .6061 .7088  .6863
N10 2748 5263 .3551 4193 .6995  .5956 5511 56385 4371
NM2 2818 .6050  .2515  .4129 6764 7958 0918 3216 .5398
(continued)
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Table 3a: Performance of AIC based criteria (continued)

(proportion of times the correct lag is picked)

Data Generating Process (samples of 250)

Model Family | AR(2) AR(5) AR(9) CDR(2) ES(2) TAR(2) LS(2) LS(5) ES(9)
AR 4896 .7240 .6640 .6015 7125 .6796 .6611 .6163 .7856
SQ 4295 7820  .b064  .5928 7849 7648 6720 7291 7142
CR 3917 - .9005 .0757  .6150 .8642 .8543 .6944 8512 .3533
PCC 4323 7797 5100 .5930 1847 7542 6709 6994 7452
N10 3410 5352 4080  .5037 7051  .5775 6179 5782 4752
NP2 3399 .6220 .3228 4937 6845  .8213 6638 2804  .6483
Data Generating Process (samples of 300)
Model Family | AR(2) AR(5) AR(9) CDR(2) ES(2) TAR(2) LS(2) LS(5) ES(9)
AR 5410 .7328 7254  .6291 7107 6728 .6829 5984 .7885
SQ 4931 7826 7951  .6447 7838 .7650 71627259 7348
CR 4677 9127 1010  .6942 .8696 .8459  .7499 .8600 .4729
PCC 4936 7871  .6073  .6453 7845 7580 7091 6921 7575
N10 4033 5345 4862 .5639 6981  .5691 .6687  .6062  .4750
NM2 4019 .6349  .3932  .5544 .6764 8333 7205 2428 7172
Data Generating Process (samples of 1000)
Model Family | AR(2) AR(5) AR(9) CDR(2) ES(2) TAR(2) LS(2) LS(5) ES(9)
AR 7141 7300  .8492  .6083 .7076  .5286 7104 3896  .7053
SQ 7828 7963 .8638  .6181 7921 6917 7835 6657  .5096
CR 8577 .9365 .8097 .7572 .8807 .7818 8565  .8109 .7725
PCC 7870 7922 8672  .3858 7939  .6658 7721 5076 .6964
N10 7336 5264 .6970  .5801 .6171  .5533 7411 7215 L3270
NM2 7124 6668  .6923  .5634 5499 .9264 8704 .0524  .9158

See Table 1 for a description of model families and Table 2 for the DGPs
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Table 3b: Performance of HQ based criteria
(proportion of times the correct lag length is picked)

Data Generating Process (samples of 100)

Model Family | AR(2) AR(5) AR(9) CDR(2) ES(2) TAR(2) LS(2) LS(5) ES(9)
AR 1857 .8312 .1122 .2894 8761  .8680 .3676 .8008 .3285
SQ 0868 7733 .0244 1461 29240 9231 2394 7896  .0906
CR 0630  .3199 .0018  .0903 .9630 .9638 1780 4424 .0085
PCC 0866  .7742  .0258  .1472 29296 9242 2320 7895 .1068
N10 0627  .6081  .0471  .1004 8819  .8479 1913 5400  .1130
NM?2 .0529  .b579  .0148  .0780 9047 9259 1980  .4447  .0589
Data Generating Process (samples of 150)
Model Family | AR(2) AR(5) AR(9) CDR(2) ES(2) TAR(2) LS(2) LS(5) ES(9)
AR .2910 .8860 .2356 .4697 .8916 8771 5419 8397 .6154
SQ 1488 9172 .0558 2812 9499 .9402 4097 .9120 .2463
CR 0839  .6865 .0000  .1854 .9801 .9807 3126 .8025  .0039
PCC 1464 .9180 .0560  .2809 9468 9382 3984 9022 2801
N10 0956  .7763  .0949  .1852 9102 .8591 3342 6669  .2258
NM?2 0862  .8188  .0178  .1562 9281 9577 3517  .5588 1206
Data Generating Process (samples of 200)
Model Family | AR(2) AR(5) AR(9) CDR(2) ES(2) TAR(2) LS(2) LS(5) ES(9)
AR 3852  .9050 .3689 .6010 9045 8826 .6744 8468 .7893
SQ 2115 9494 1107 4167 29557 9465 5428 9317 .4529
CR 1252 .9001  .0000  .2986 .9855 .9824 4367 .9499 .0051
PCC 2122 9498 1098  .4246 9555 .9443 6350 9193 4948
N10 1288 .8206  .1558  .2861 9195 8485 A567 7132 3315
NM2 1290 9018 .0347  .2555 9407 9698 .b001  .5671  .2456
(continued)
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Table 3b: Performance of HQ based criteria (continued)

(proportion of times the correct lag is picked)

Data Generating Process (samples of 250)

Model Family | AR(2) AR(5) AR(9) CDR(2) LS(2) LS(5) ES(9)
AR 4685 9067  .4902 .6998 7623 .8446  .8603
SQ 2770 9586 .1849  .5440 .6600 .9395 .6325
CR 1677 .9739  .0000  .4071 .b470  .9851  .0099
PCC 2761 9570  .1842  .5498 .6507 9189  .6800
N10 1707 8365  .2250  .3874 D715 7319 4040
NP2 A774 0 .9220  .0550 .3654 .6185  .5320  .4087
Data Generating Process (samples of 300)
Model Family | AR(2) AR(5) AR(9) CDR(2) LS(2) LS(5) ES(9)
AR 5459 9114  .6037 .7733 .8145 8439 .8843
SQ 3528 .9600  .6124  .6546 7418 9441 7557
CR 2213 .9942  .0000  .5236 6474 .9936 .0227
PCC 3513 9612 2704 .6564 7374 9176 .8008
N10 2182 .8458  .3225  .5015 6668 .7479  .4650
NM?2 2234 9304  .0967  .4789 7138 4886 .5521
Data Generating Process (samples of 1000)
Model Family | AR(2) AR(5) AR(9) CDR(2) LS(2) LS(5) ES(9)
AR 9171 9381 9528  .8686 9358 7561  .8626
SQ .8982 9751 9578  .9118 9731 9427 7878
CR 8107 9996 .0223 .9772 9904 .9954 .9269
PCC 9001 9754 9598 8976 9699 8219 9061
N10 7998  .8571  .8300  .9613 9684 7988  .3890
NM2 7931 9650  .7961  .9297 9788 1267 19495

See Table 1 for a description of model families and Table 2 for the DGPs




Table 3c: Performance of BIC based criteria

(proportion of times the correct lag is picked)

Data Generating Process (samples of 100)

Model Family | AR(2) AR(5) AR(9) CDR(2) ES(2) TAR(2) LS(2) LS(5) ES(9)
AR 1021 .8473 .0215 .1790 9576 9527 .2468 .8297 .1107
SQ 0223 .b578  .0008  .0430 9863 .9859 .0886 .6326 .0064
CR .0072  .0246  .0000  .0165 9969 .9973 .0438 .0751  .0000
PCC .0221  .5558  .0005  .0426 9866  .9847 .0876  .6388  .0008
N10 0131 4459  .0022  .0227 9673 9584 0597 4746  .0179
NM?2 0057  .2407  .0001  .0109 9846 9893 0468 2712 .0010
Data Generating Process (samples of 150)
Model Family | AR(2) AR(5) AR(9) CDR(2) ES(2) TAR(2) LS(2) LS(5) ES(9)
AR 1700 .9521 .0591 .3218 9660 9618 4222 9378 .3364
SQ .0410  .8672  .0012  .0939 29921 9885 A873 9025 0317
CR 0129 1225  .0000 .0372 9989 .9990 .0953  .2678  .0000
PCC .0404  .8660 .0010  .0963 29927 9881 1791 9058  .0385
N10 0180  .7737  .0056  .0427 9767 9651 1195 7196 .0515
NM?2 0111 5885  .0000  .0253 9931 .9953 1126 5237 .0027
Data Generating Process (samples of 200)
Model Family | AR(2) AR(5) AR(9) CDR(2) ES(2) TAR(2) LS(2) LS(5) ES(9)
AR .2358 9722 1211 .4665 9719 9634 5622 9522  .5920
SQ 0646  .9722  .0036  .1666 9941 9919 2953  .9770 .1026
CR 0193  .3411  .0000  .0667 9993 .9996 1577 5586 .0000
PCC 0645 .9728 .0028  .1683 29949 9913 2851 9735  .1209
N10 0243 9187  .0131  .0720 9801  .9639 1801 8235 1170
NM2 0181  .8437 .0000 .0513 29942 9970 1861  .6708  .0118
(continued)
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Table 3c: Performance of BIC based criteria (continued)

(proportion of times the correct lag is picked)

Data Generating Process (samples of 250)

Model Family | AR(2) AR(5) AR(9) CDR(2) ES(2) TAR(2) LS(2) LS(5) ES(9)
AR 3073 9763  .2028 .5858 9758 .9664 .6775 9553 .7718
SQ 0912 9925 .0068  .2599 29959 9932 4019 .9892 2258
CR .0281 .6098 .0000  .1172 9997 .9996 2311 8068  .0000
PCC 0906  .9912  .0072  .2627 9963 .9923 3946 9842 2541
N10 0340  .9565  .0240  .1148 9864 9633 2574 8590  .2190
NP2 .0268  .9561  .0000  .0888 9968 .9985 2878 7371 L0391
Data Generating Process (samples of 300)
Model Family | AR(2) AR(5) AR(9) CDR(2) ES(2) TAR(2) LS(2) LS(5) ES(9)
AR .3809 .9808 .2915 .6948 9798 9648 .7640 9552 .8746
SQ 1281 9954 1370 .3588 9973 9930 b027 0 .9919 3781
CR 0390 .8275  .0000  .1750 9999 .9995 3083 9379 .0000
PCC 1270 9955 0173 .3643 9972 9927 4938 9874 4166
N10 0426 .9638  .0502  .1696 9877 9601 3389 8642  .3000
NM?2 0376 .9887  .0003  .1431 9970 9986 3898 7529 11026
Data Generating Process (samples of 1000)
Model Family | AR(2) AR(5) AR(9) CDR(2) ES(2) TAR(2) LS(2) LS(5) ES(9)
AR 9126 9915 .9694  .9690 9880  .9389 .9885 9517  .9550
SQ 6652  .9987  .6874  .9802 29991 .9930 9871 9953 19528
CR 3839 1.000 .0000  .9350 1.000 .9997 9578  1.000 .0510
PCC .6662  .9988  .6889  .9779 29986 9915 9876 9644 9857
N10 3706 9749 7670 9174 29923 9452 9623 8824  .4790
NM2 3853 19998 2467  .9233 9975 9996 9829 .3626 .9710

See Table 1 for a description of model families and Table 2 for the DGPs
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Table 4a: Under and over prediction when AIC procedures are used
(proportion of times under (U), correctly (C) or over (O) predicted)

Model Data Generating Process (samples of 100)
Family AR(2) AR(5) AR(9) CDR(2) ES(2) TAR(2) LS(2) LS(5) ES(9)
U | .5617 .0162 .6738  .4137 .0000  .0000 3700 .0154  .3509
AR C|.2302 .7013 .2464 .3287 .7050 .6982 4010 .6526 .5030
O | .2081 .2825 .0798  .2576 2950  .3018 2290 .3320 .1461
U | .6878 .0433 .7888  .5724 .0000  .0000 A7r8 0341 4117
SQ C|.1740 .6930 .1457 .2509 7426 .7430 3518 .6772 .2912
O |.1382 .2637 .0655  .1767 2574 .2570 1704 2887 1205
U | .5530 .0995 .4399  .4831 .0000  .0000 3806 .0621  .3201
CR C|.1049 .2725 .0531 .1472 .5389 .5215 2205 .2721 .0651
O |.3421 .6280 .5070  .3697 4611 4785 3989 6658  .6148
Model Data Generating Process (samples of 200)
Family AR(2) AR(5) AR(9) CDR(2) ES(2) TAR(2) LS(2) LS(5) ES(9)
U | .3402 .0000 .3148 .1339 .0000  .0000 1175 .0000  .0280
AR C | .4194 7257 .5559 .5605 .7111 .6886 .6164 .6280 .7754
O | .2404 2743 1293  .3056 2889  .3114 2661 3289 .1966
U | 4822 .0001  .5092  .2517 .0000  .0000 1897 .0002 1395
SQ C | .3571 .7824 .3882 .5222 7766 .7553 .6124 7267 .6522
O | .1607 .2175 .1026  .2261 2234 2447 1979 2731 2083
U | .b917 .0044 9114  .3504 .0000  .0000 .2510 .0016  .6149
CR C | .3200 .8674 .0601 .5107 .8552 .8477 .6119 .8252 .2369
O | .0883 1292 .0285 1389 1448 11523 A371 0 1732 1482

(continued)
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Table 4a: Prediction when AIC criteria are used (continued)

(proportion of times under (U), correctly (C) or over (O) predicted)

Model Data Generating Process (samples of 300)

Family AR(2) AR(5) AR(9) CDR(2) ES(2) TAR(2) LS(2) LS(5) ES(9)
U | .2023 .0000 .1365  .0416 .0000  .0000 .0383  .0000 .0021

AR C | .5410 .7328 .7254 .6291 .7107 .6728 .6829 .5984 .7885
O | .2567 .2672  .1381  .3293 2893 3272 2788 4016 .2094
U | .3316 .0000 .2779  .0934 .0000  .0000 .0701  .0000 .0176

SQ C | .4931 .7826 .5998 .6447 .7838 .7650 7169 7259 .7348
O | .1753 2174 1223  .2619 2162 .2350 2130 2741 2476
U | .4380 .0000 .8840  .1551 .0000  .0000 1093 .0000  .3752

CR C | .4677 .9127 .1010 .6942 .8698 .8459 .7499 .8600 .4785
O |.0943 .0873 .0180 .1750 1302 1541 .1408  .1400  .1463

Table 4b: Under and over prediction when BIC procedures are used
(proportion of times under (U), correctly (C) or over (O) predicted))

Model Data Generating Process (samples of 100)

Family AR(2) AR(5) AR(9) CDR(2) ES(2) TAR(2) LS(2) LS(5) ES(9)
U | .8844 1100 .9760  .8006 .0000  .0000 7335 1125 .8910

AR C|.1021 .8473 .0215 .1790 9576 .9527 .2468 .8297 .1107
O | .0135 .0427 .0025 .0204 0424 .0473 0197  .0578  .0083
U | .9759 4289 9992  .9554 .0000  .0000 9082 3508  .9923

SQ C | .0223 .5578 .0008 .0430 9863 .9859  .0886 .6326 .0064
O |.0018 .0133 .0000  .0016 0137 .0141 .0032 .0166 .0013
U |.9928 9751 1.000  .9835 .0000  .0000 9560 9245  .9999

CR C | .0072 .0246 .0000 .0165 9969 .9973 .0438 .0751 .0000
O | .0000  .0003  .0000  .0000 .0031 .0027 .0002 .0005 .0001

(continued)
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Table 4b: Prediction when BIC criteria are used (continued)
(proportion of times under (U), correctly (C) or over (O) predicted)

Model Data Generating Process (samples of 200)
Family AR(2) AR(5) AR(9) CDR(2) ES(2) TAR(2) LS(2) LS(5) ES(9)
U | .7513 .0008 .8736  .5079 .0000  .0000 4190  .0014  .3806
AR C|.2358 .9722 .1211 .4665 9719 .9634 5622 .9522 .5920
O |.0129 .0270 .0053  .0256 0281  .0366 .0188 .0464 .0274
U |.9343 .02056 .9961  .8306 .0000  .0000 7023 .0129  .8913
SQ C | .0646 .9722 .0036 .1666 9941 .9919 .2953 .9770 .1026
O | .0011 .0073 .0003 .0028 .0059  .0081 .0024 .0101 .0061
U | .9807 .6589 1.000 .9323 .0000  .0000 .8422 4414 1.000
CR C | .0193 .3411 .0000 .0667 9993 .9996 1577 .5586 .0000
O | .0000 .0000  .0000  .0000 .0007  .0004 .0001  .0000 .0000
Model Data Generating Process (samples of 300)
Family AR(2) AR(5) AR(9) CDR(2) ES(2) TAR(2) LS(2) LS(5) ES(9)
U | .6079 .0000 .7016  .2777 .0000  .0000 2169  .0000  .0859
AR C|.3809 .9808 .2915 .6948 9798 .9648 7640 .9552 .8746
O | .0112 .0192 .0069 .0275 0202 .0452 .0191  .0448 .0394
U | .8711 .0003 .9832 .6372 .0000  .0000 4942 .0002  .6088
SQ C |.1281 .9954 .0167 .3588 9973 .9930 5027 .9919 .3781
O | .0008 .0043 .0001  .0002 .0027  .0070 .0031 .0079 .0131
U | .9610 .1725 1.000 .8249 .0000  .0000 6913 .0620 1.000
CR C | .0390 .8275 .0000 .1750 .9999 .9995 .3083 .9379 .0000
O | .0000  .0000  .0000  .0000 .0001  .0005 .0004 .0001  .0000
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Fgure 1: Performance of Standard Mbdel Selection Qriteria
(Proportion of Gorrect Ficks vs Sample Sze)
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Figure 2: Performance of Selection Criteria when True DGP is Linear
(Proportion of Correct Picks vs Sample Size)
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Fgure 3a: Performance of Model Sdection Qiteriawhen True DGPis Nonlinear
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Fgure 3b: Performence of Model Selection Qriteriawhen True DGPis Nonlinear
(Proportion of Correct Picks vs Sanple Size)
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