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Abstract

Given that it is quite impractical to use standard model selection criteria in a

nonlinear modeling context, the builders of nonlinear models often choose lag length

by setting it equal to the lag length chosen for a linear autoregression of the data.

This paper studies the performance of this procedure in a variety of circumstances,

and then proposes some new and simple model selection procedures, based on linear

approximations of the nonlinear forms. The idea here is to apply standard selection

criteria to these linear approximations, rather than to autoregressions that make

no provision for nonlinear behavior. A simulation study compares the properties of

these proposed procedures with the properties of linear selection procedures.
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1. Introduction

There has been considerable interest in nonlinear time series models in recent years, as

evidenced by a growing body of studies of asymmetries in business cycles and nonlinear-

ities in asset markets. Models that allow for state-dependent or regime-switching behav-

iour have been very popular, with well known examples including the Markov Switching

(MS) model (Hamilton, 1989), the Current Depth of Recession (CDR) model (Beaudry

and Koop, 1993), the Smooth Transition Autoregressive (STAR) model (Teräsvirta,

1994) and the Threshold Autoregressive (TAR) model (Potter, 1995). At Þrst blush,

such models have intuitive appeal and seem relatively easy to work with, although in

practice they are often quite difficult to specify and estimate.

One difficulty associated with nonlinear modelling is that the researcher usually

needs to determine the lag structure of the data before conducting nonlinearity tests or

estimating nonlinear speciÞcations. Researchers often choose this lag length by setting

it equal to the lag length chosen for a linear autoregressive model of the data, where the

latter choice is based on the partial autocorrelation function, or standard lag selection

criteria such as those proposed by Akaike (1974), Hannan-Quinn (1979) or Schwartz

(1978). It is recognized that these lag selection techniques will only �work� if the main

features of the linear autocorrelation structure reßect the lag dependencies associated

with the underlying nonlinear process, but it is quite impractical to calculate and com-

pare model selection criteria for nonlinear speciÞcations of different lag lengths, when

each calculation requires the maximization of a potentially ill-behaved likelihood.

There is a very large literature on lag selection (see the survey article by de Goojier et

al (1985)), but most of this is set in a linear context and there is comparatively little that

works within the more general nonlinear framework. There is a small body of research

that has used various dependence measures to construct analogues to the autocorrelation

and partial autocorrelation functions that are often used in linear settings. Auestad and

Tjøstheim (1990) use nonparametric estimates of conditional means and variances for

this purpose, while Granger and Lin (1994) suggest the use of Pinsker�s (1964) mutual

information coefficients and Kendall�s (1938) partial correlation coefficients. Granger

et al (2001) have also worked with a dependence metric based on the Bhattacharya-
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Matuisa-Hellinger measure of entropy. After simulating the distribution of this metric

under the null hypothesis of independence, they suggest that it be used for identifying

statistically signiÞcant lag lengths in potentially nonlinear settings.

The above procedures essentially mimic various aspects of the Box-Jenkins approach

for identiÞcation, and like the Box-Jenkins methodology, their reliance on the skill and

judgement of the researcher invites criticism. Another potential problem with the above

procedures is that with the exception of Kendall�s coefficient, they require nonparametric

estimation of density functions, which is difficult for the novice and often inappropriate

when dealing with small samples. The nonparametric Þnal prediction error (FPE)

criterion proposed by Tjøstheim and Auestad (1994) offers a less subjective approach to

the lag selection problem, but it is nevertheless difficult to implement and impractical,

given the size of typical economic data sets.

This paper looks at the problem of lag selection for nonlinear models from the view-

point of an applied economist. It focusses on nonlinear autoregressive models because

these models are popular in applied work, and the goal is to study simple and practical

techniques that might be appropriate for relatively small samples of up to three hundred

observations. My suggestion is to work with linear approximations to nonlinear forms

and then to apply the usual lag selection criteria (for example AIC, HQ and BIC) to

discriminate between such approximations. Since these approximations are linear in pa-

rameters, the calculation of selection criteria for each lag length is very straightforward.

Naturally, the procedure relies on Þnding reasonable approximations for nonlinear func-

tional forms. I work with second order polynomial expansions and various subsets of

these expansions, and although I also experiment with neural network approximations,

I Þnd that the former seem to work better for relatively small samples.

I study both linear and nonlinear data generating processes (DGPs), with short,

medium and long lag structures. These DGPs are all based on published models of

macroeconomic and Þnancial data, so that my conclusions relate to the sorts of series

that econometricians actually encounter in practice. I Þnd that when the underly-

ing DGP is nonlinear, standard model selection criteria tend to overestimate the true

lag-length. This problem is especially pronounced when AIC (which generally favours

overÞtting) is used, but it is also evident when the Schwartz criterion (which generally
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favours underÞtting) is used. This suggests that when series are potentially nonlinear

and the selection criteria uses only one parameter to account for each lag, higher para-

meter penalties are needed to account for the fact that nonlinear DGPs will typically

have more than one parameter associated with each lag length. Given that �count-

ing� parameters in a nonlinear setting can be a problematic concept, because different

parameters can affect the data generating process at different points in time, I make

no attempt to suggest appropriate parameter penalties here. Instead, I focus on using

approximations that have a known number of parameters, and simply report on how

well the application of AIC, HQ and BIC to these approximations identiÞes the true

lag-length. My simulations suggest that lag selection based on approximations reduces

the tendency to overpredict lag-length, particularly for nonlinear DGPs. Further, this

reduced tendency to overpredict lag-length is accompanied by an increased tendency to

underpredict lag-length.

The organization of this paper is as follows. Section 2 sets up the lag selection

problem and outlines a general framework within which the researcher might tackle this

problem. Here, I discuss why standard selection criteria might not work, and suggest

a few approaches that might work better. In Section 3, I describe some simulation

exercises designed to assess the performance of my procedures within both linear and

nonlinear contexts, and then I report the results of the simulations in Section 4. Section

5 summarises and concludes.

2. Lag selection in a potentially nonlinear setting

I consider a univariate time series yt, with history Yt = (. . . y−2, y−1, y0, y1, . . . yt−1)

that has a DGP given by

yt = β0 + β
0Y t−p

t−1 +Ψ(Y
t−p

t−1 , θ) + εt ((1))

where Y t−p
t−1 = (yt−1, yt−2, . . . yt−p), β0, β and θ are parameters, and Ψ(Y

t−p
t−1 , θ) is

a nonlinear function of its Þrst and possibly second arguments. I assume that yt is

essentially stationary and weakly dependent as deÞned in Wooldridge (1994), and that

although the functional form of Ψ might be initially unknown to the researcher, it
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satisÞes conditions that will allow consistent estimation of θ once this functional form

has been speciÞed. I further assume that εt is a sequence of independent and identically

distributed zero mean random variables with E(ε2
t ) = σ

2 being a Þnite constant.

The class of models deÞned by (1) includes the large family of exponential autore-

gressive (EXPAR) models discussed by Haggan and Ozaki (1981), threshold autore-

gressive (TAR) models (see Tong (1990)), and closely related models such as smooth

transition autoregressive (STAR) models (see Teräsvirta (1994)) and current depth of

recession (CDR) models (see Beaudry and Koop (1993)). In the special case given by

σ2 = 0, model (1) also includes chaotic series such as the logistic map series for which

yt = 4yt−1(1−yt−1). This series is especially interesting, because its autocorrelation and

partial autocorrelation functions are equal to zero at all lags. Model (1) does not allow

for autoregressive conditional heteroskedasticity (ARCH) processes, bilinear processes

or hidden Markov chains, but given the practical importance of pure autoregressive

processes in the applied econometrics literature, it is useful to start with these.

Our problem is to determine the lag length p, possibly prior to determining the

dimension of θ and specifying the functional form of Ψ. This situation often arises

when the researcher wants to test for nonlinearity, or wants to determine the type

of nonlinearity present in Ψ, but the test assumes a knowledge of the lag length p.

Alternatively, we might not be able to specify Ψ and estimate β and θ until we have Þrst

determined p. Even if we are willing to specify Ψ prior to determining p, we might want

to avoid estimating (1) using different lags lengths, simply because nonlinear estimation

is time consuming and difficult. Furthermore, the difficulty in estimating and comparing

nonlinear speciÞcations for a set of different p can be compounded if the true model is

actually linear and various parameters in the speciÞcation are therefore unidentiÞed.

See Davies (1977) or Engle (1984) for further discussion of this identiÞcation problem.

Standard lag selection criteria (such as AIC, HQ or BIC) applied to autoregressive

time series typically assume a linear process for yt, and then solve an optimization prob-

lem for p that simultaneously rewards the Þt of the AR(p) and penalises its complexity.

Higher p will improve the Þt, but will also entail more complexity. The assumption that

the time series is linear is not innocuous when AR(p) models are being Þtted, because it

implies that one of the options considered by the researcher will be the true model. The
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reason why these standard procedures might not work in the nonlinear context given by

(1), is that by just considering linear AR(p) processes (for 0 ≤ p ≤ pmax), the researcher

does not include the true model in his/her choice set. Tong (1990, p288) discusses this

issue very brießy, and notes that when the set of models under consideration does not

include the true model, the selected model may or may not be adequate, depending on

how close the likelihood of the chosen model is to the likelihood of the true model.

Akaike (1985) emphasizes that the researcher�s choice set of possible models should

reßect his/her particular way of looking at the data, and this suggests that when models

such as (1) are being considered, the family of AR(p) models might not necessarily

provide the most appropriate choice set for determining lag length. This leads to the

question of whether there are other families of models which might better account for the

nonlinearity in (1) and thus provide a more reliable selection of p. Since Ψ is potentially

difficult to estimate for different lag lengths p, and its precise functional form isn�t

necessarily known, it seems sensible to focus on families of models that are both simple

and capture unspeciÞed nonlinearities.

Tests for unspeciÞed nonlinearity in the conditional mean are often based on simple

linear regressions. Various examples are studied and discussed in Granger and Teräsvirta

(1993) and Lee et al (1993), who claim that these tests involve �speciÞc functions of

Y t−p
t−1 , that are chosen to capture essential features of possible nonlinearities�. Such

functions include the duals of Volterra expansions in Y t−p
t−1 and neural networks in Y

t−p
t−1 ,

and I discuss these further below. Two important features of each of these functions

are that they can be used to approximate Ψ in model (1) and that they are linear in

parameters. I use these features in the lag selection criteria that I suggest below.

Volterra expansions are discussed in Priestley (1981), and they approximate Ψ using

the formula

Ψ(Y t−p
t−1 , θ) ≈ Ψ0+

k=pX
k=1

Ψ1kyt−k+

k=pX
k=1

j=kX
j=1

Ψ2kjyt−kyt−j+

k=pX
k=1

j=kX
j=1

i=jX
i=1

Ψ3kjiyt−kyt−jyt−i+· · · ,

(2)

which includes squares, cross-products, cubic terms and other higher order terms to

capture the nonlinearities in Ψ. When Ψ is well behaved, these polynomial expansions
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can be justiÞed as Taylor series expansions around Y
t−p
t−1, but (2) can often provide a

good approximation of Ψ even when Ψ is ill-behaved. Such expansions can become

unwieldy if p is large and the expansion includes high order terms, but expansions

involving just the squares and cross-products have often proven useful in practice. In

the latter case (1) is given by

yt ' β∗0 + β0∗Y t−p
t−1 +

k=pX
k=1

j=kX
j=1

Ψ2kjyt−kyt−j + εt (3)

which is linear in (p+ 1) + 1
2p(p+ 1) parameters.

Neural network approximations of Ψ are based on the intuition that any nonlinear

function of Y t−p
t−1 can be approximated arbitrarily well by a linear combination of ele-

mentary nonlinear transformations of q indices of Y t−p
t−1 (i.e. γ

0
rY

t−p
t−1 , r = 1, ..., q ), for q

sufficiently large (Hornik et al 1989). The approximating model of yt is then given by:

yt ' β∗0 + β0∗Y t−p
t−1 +

qX
r=1

Ψrφ
³
γ0r(1, Y

t−p
t−1

´
+ εt (4)

where φ is a permissible elementary function1, and the γr are randomly chosen by

the econometrician, independently of yt and Y
t−p

t−1 . I include a constant in φ because

Teräsvirta et al (1993) found that this helped approximate certain types of nonlinearity.

Model (4) is linear in (1+ p+ q) parameters. Lee et al (1993) note that elements in φ

tend to be collinear with themselves and with Y t−p
t−1 , but they resolve this difficulty by

using q∗ < q principal components of the φ functions that are not collinear with Y t−p
t−1 .

The lag selection procedures that I suggest involve choosing a maximum possible

lag length pmax, Þtting the approximations of the nonlinear forms to the data for each

of lags 0 to pmax, and then choosing the lag length p∗ that minimizes AIC, HQ or BIC.

Given the explanator sets used in approximations (3) and (4), the parameter penalties

are (p+ 1) + 1
2p(p+ 1) in the calculations based on (3), and (1+ p+ q) for calculations

based on (4). These penalties are larger than (p+ 1) which is used when Þtting linear
1The elementary function, which is called the �activation function� or the �squashing function� in the

neural network literature, can be any function that satisÞes some continuity and denseness conditions

discussed in Hornik et al (1989). The most popular one is the logistic function φ(z) = [1 + exp (z)]−1 .
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autoregressions of order p, but we are Þtting more highly parameterized models to the

data. Since the approximating models can be potentially overparameterized for large p

and/or q, I experiment with various subsets of explanators. For instance, when working

with (3) I consider an approximation that includes just the squares (and not the cross

products) of Y t−p
t−1 , so that the approximating model contains less parameters and the

relevant penalty drops to (1+2p). I also consider using just the Þrst principal component

of the set of 1
2p(p + 1) cross products, so that the approximating models use (2 + p)

parameters. Table 1 contains a list of the various approximating models that I consider,

together with a count of how many parameters are used for each approximation.

One could work with many different versions of approximation (4). I set q = 30 and

then use the Þrst ten principal components of the thirty squashing functions2. Although

Lee et al (1993) found that the Þrst two principal components (out of ten generated)

were sufficient to give neural network based nonlinearity tests power against nonlinear

AR(1) and AR(2) alternatives, I suspected that more components might be needed to

capture nonlinearities that had potentially longer lag structures, and this led to my

choice of 10. However, to allow for more frugal approximations, I also used just the

Þrst 2p principal components. A comparison between these two families of models is

potentially interesting, because the Þrst keeps the number of variables in the explanator

set for the nonlinearity constant while lag length increases, while the second allows the

explanator set for the nonlinearity to expand with lag length.

The ability of these suggested procedures to choose a correct lag depends on whether

the approximation to Ψ is �close� to Ψ, given the data. It is reasonable to expect

procedures based on (3) and (4) to outperform the AR based procedures if the data has

�strong� nonlinear characteristics, but that the AR based procedure might be better if

our time series has very subtle nonlinearities. It is also reasonable to expect that the

suggested procedures will cloud the choice of lag length when the time series is actually

linear, but here one can hope that the parameter penalties that are supposed to correct

for the overparameterization that occurs in this case will �do their job�. These issues

are studied by simulation below.
2 I remove those components in the same basis space as the linear part of the model, prior to calcu-

lating the principal components.
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3. Simulation Design

The simulation study is based on a set of DGPs that have been chosen from the applied

econometrics literature. These DGPs include speciÞcations based on Teräsvirta and

Anderson�s (1992) models of industrial production, Beaudry and Koop�s (1993) model

of US output, Rothman�s (1998) models of unemployment, Anderson and Vahid�s (2001)

models of US output, and Martens et al�s (1998) data on mispricing errors associated

with S&P stocks and futures contracts. Industrial production indices, unemployment

and stock returns all exhibit strong evidence of nonlinearities, whereas the nonlinearities

in output are much weaker. Therefore the sample of DGPs includes processes with

�strongly� nonlinear behaviour, as well as processes that are �almost linear�. I also

include some linear DGPs in our study, some of which are published in the above papers,

and others which I obtained by estimating linear models for various economic/Þnancial

data sets and then setting my DGP parameters equal to my estimated parameters.

I chose the DGPs so that they would be representative of the sorts of DGPs that

econometricians encounter in practice. Some have short lag structures, others have

longer lag structures, and I even include some lag structures with �holes� or �near-

holes�3 Full details of all DGPs are provided in Table 2, together with references and

notes on their properties.

The error terms for our DGPs and neural network random coefficients were generated

using Gauss. Error terms are drawn from the standard normal distribution and then

scaled according to the standard deviation of the error term of the relevant DGP. For the

neural network models I followed Lee et al (1993), rescaling all variables onto [0,1], and

then drawing the hidden weights from the uniform distribution on [-2,2]. I discarded the

Þrst 1000 observations of the simulated DGPs to avoid initialization effects, and report

results based on 10000 replications of the relevant DGP. I studied samples of size 100,

150, 200, 250, 300, 500, 1000 and 5000, with the last three of these being included so

that I could obtain some idea of the asymptotic behaviour of the procedures. I note,

however, that the results for these larger samples would also be relevant for studies of
3By �holes� we mean zero (or very close to zero) coefficients on intermediate lags. It is typically very

hard to choose the correct lag structure, given these types of DGPs.
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Þnancial data, where samples are typically large. I report results on only a subset of

the samples to conserve space, but other results are available upon request. In total, I

studied Þve processes of order two, two of order 4, two of order Þve, two of order 7, and

two of order nine, and the lag selection procedures considered all possible lag lengths

from zero lags to ten.

4. Finite sample properties of the proposed procedures

Tables 3a, 3b, and 3c present detailed results on the performance of the AIC, Hannan-

Quinn and Schwartz procedures, and Figures 1 - 4 provide visual summaries of the main

patterns that seemed to emerge from these results.

Figure 1 illustrates how the standard procedures (based on the AR family of models)

work for each DGP. The top row relates to linear DGPs, and illustrates with the well-

known properties that (i) for small samples AIC usually dominates HQ, which usually

dominates BIC; but (ii) HQ and BIC improve with sample size and eventually dominate

AIC, because AIC is inconsistent, in contrast to HQ and BIC. For the AR(2) and AR(9)

DGPs, the large sample properties are beginning to show for samples of only 250 - 300,

while samples as small as 100 observations on the AR(5) are behaving like large samples.

The latter observation is due to the relatively large coefficient on the AR(5) term, which

is sufficiently large to be statistically signiÞcant in samples of 100.

Similar patterns are observed when the standard procedures are applied to nonlinear

DGPs (see the remaining two rows in Figure 1). However, the latter graphs also suggest

that the inconsistency of AIC becomes evident earlier (i.e. for smaller sample sizes) for

nonlinear processes relative to linear processes, while the improvement in HQ and BIC

with sample size seems to be more rapid.

Figure 2 illustrates the differences between standard procedures (based on the AR

family of models) and approximating procedures (based on other model families), when

the true DGP is linear. Since the true DGP is linear, one might expect that the for-

mer procedure will dominate, while the other procedures will have lower, but hopefully

non-trivial ability to choose lag length. This seems to occur for the AR(2) and AR(9)

processes, which are both �weak� in the sense that they do not generate signals that
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allow information criteria based on small samples to accurately select lag length. It also

occurs for the AR(5), when BIC based procedures are used. However, when AIC or HQ

based procedures are applied to the AR(5) process, the SQ, CR and PCC procedures

almost always perform better than the AR based procedures, except when samples are

very small. Given that the AR(5) process is �strong�, in the sense that large sample

behaviour is already evident for the AR versions of AIC and HQ when samples are

relatively small, this latter Þnding suggests that the better performance of the nonlin-

ear criteria is a large sample phenomenon. Possibly, this phenomenon arises because

the nonlinear families of models use more parameters at each lag length than do lin-

ear models, and this make it easier to discriminate between different lag lengths. It

is noteworthy that for larger samples, the nonlinear procedures also outperform linear

procedures for the AR(2) and the AR(9), and the BIC nonlinear procedures also out-

perform the linear BIC procedures. Differences between the AR and other lines on each

graph in Figure 2 measure the �cost� of applying nonlinear procedures to linear DGPs.

These can be very high, especially if BIC-CR is applied to a �strong� DGP. However,

this cost decreases with sample size and eventually becomes negative. The last panel in

Figure 2 provides an illustration of this.

Figure 3 illustrates the differences between standard procedures (based on the AR

family of models) and approximating procedures (based on other model families), when

the true DGP is nonlinear. Since the true DGP is nonlinear, the hope is that the

latter procedures will dominate, while the standard procedures based on the AR family

will have lower ability to choose lag length. This clearly occurs for the ESTAR(2),

TAR(2) and the LSTAR(5) processes illustrated in Figure 3(b), where the SQ CR and

PCC procedures almost always dominate the AR based procedures. It also occurs to

a lesser degree for samples of more than 200 of the CDR(2) and LSTAR(2) processes,

when AIC based procedures are used. The N10 and NM2 procedures outperform the

AR procedures only rarely, and while the CR procedure often dominates all others

(especially for �strong� DGPs and for larger samples (>500 observations)), it is usually

the worst for samples of 100. It is interesting to note that there is rarely any substantial

difference between the performances of the SQ and PCC procedures.

For samples of 100, there seems to be little advantage to using a nonlinear selection
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criterion, even when the DGP is nonlinear. The SQ and PCC procedures sometimes

work better when the true DGP is truly nonlinear, but this increase in accuracy is

never more than 5% in absolute value. Given that the SQ and PCC procedures use

fewer parameters to model the nonlinearity while the worst performers in small samples

(CR, N10 and NM2 procedure) use many more parameters, it seems that parsimony is

essential in small sample settings. Thus, AR based procedures seem best.

The picture starts to change once samples grow to about 200 observations, but this

depends on the relative �strength� of the nonlinear process, and how soon the asymptotic

properties of each selection procedure start to set in. Figure 3 has been roughly arranged

in order of �strength�, so that the �weaker� DGPs appear Þrst in Figure 3a, and then the

�stronger� DGPs appear later in Figure 3b.4 For weak processes, lag selection based on

HQ-AR or BIC-AR dominate selection based on nonlinear versions of AIC, even though

the latter dominate AIC-AR. Thus, although the nonlinear versions of AIC are now

working better than standard AIC, there is little point in using them, because linear

versions of HQ and BIC perform better still. The same is true for the stronger processes

illustrated in Figure 3b, where there can be up to a 20% improvement when AIC-CR

is used rather than AIC-AR. Once again, there is little point in �capitalizing� on these

relative beneÞts when the linear versions HQ and BIC outperform all versions of AIC,

but now several of the nonlinear versions of HQ and BIC perform even better. HQ-SQ,

HQ-PCC, BIC-SQ and BIC-PCC offer reliable but small improvements over HQ-AR and

BIC-AR. The improvements are small, simply because the latter have accuracy rates

of well over 80%. The HQ-CR and BIC-CR procedures can have even higher accuracy

rates of well over 99%, but the CR criterion seems to be quite unreliable, in that it

either works really well, or it doesn�t work at all. This is because the CR performance

curves are often shaped like a logistic curve5 with a steep slope (γ), so that essentially
4Note, from Figure 1, that for the three processes in Figure 3a, (CDR(2), LSTAR(2) and ESTAR(9)),

that AIC-AR is still improving with sample size and HQ-AR and BIC-AR have only just started to

dominate AIC-AR. For the three processes in Figure 3b, (LSTAR(5), TAR(2) and ESTAR(2)), Figure

1 shows that HQ-AR and BIC-AR already dominate AIC-AR, which has already started to decrease

with sample size
5A logistic function in sample size t is given by f(t) = (1 + exp{−γ(t− c)})−1 for γ > 0.
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one has to pass a certain sample size threshold (c) before good performance is observed.

For the weaker processes, this threshold has not yet been reached for samples of 300, so

that CR procedures hardly work at all. For the stronger processes, the threshold occurs

for samples of less than 100, so that we observe the ßat part of the top of the curve,

and associated good performance.

The results for samples of 5000 are not reported, but the simulations show the usual

inconsistency associated with AIC in large samples. Some of this is already evident

in samples of 1000. This is particularly so for the �stronger� DGPs when AIC-AR is

used, but it is also observed for the CDR(2) and ES(9) processes. While the AIC-

AR procedure usually shows evidence of inconsistency Þrst (i.e. for relatively smaller

samples), the performances of other nonlinear procedures based on AIC also decline

after a certain point. This is true for both linear and nonlinear DGPs. I found no

evidence that any of the HQ or BIC based procedures were inconsistent when applied

to linear DGPs, but the performance of both linear and nonlinear procedures based on

HQ or BIC became inconsistent for nonlinear DGPs. Thus, it appears that one cannot

rely on standard HQ or BIC when the true DGP is nonlinear. It seems possible that one

might be able to maintain consistency of HQ and BIC for nonlinear processes by using

higher order approximations as the sample size grows, but this issue is not explored any

further here.

Taken together, the accuracy results suggest using AIC or HQ based on AR models

for small samples (of less than 150 observations). Nonlinear procedures are generally not

working well for small samples, even if the true DGP is nonlinear. HQ and BIC based

on the SQ and PCC nonlinear approximations can be useful for moderate samples (of

150 -300), especially if the true DGP is nonlinear. Given that typical macroeconomic

data sets usually consist of forty to forty Þve years of quarterly observations (i.e 160 -

180 observations), this Þnding is potentially useful for applied macroeconomists. Un-

fortunately the practical question of whether these nonlinear procedures will work in

any given situation depends on whether the true DGP is nonlinear, and the practi-

tioner doesn�t generally know that in advance. However, if there are good reasons to

suspect nonlinearities (because, for instance, one is working with unemployment data

which often shows strong evidence of nonlinearity), then it seems sensible to use the
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procedures based on SQ and PCC approximations. However, if working with a series

that is unlikely to have strong nonlinearities (for instance GDP), then it seems best to

stay with the standard AR based procedures.

While accuracy is desirable when building time series models, we need to recognize

that mistakes will occur and consider whether certain types of mistakes are less costly

than others. For instance, over prediction of lag lengths is a problem if we wish to

forecast, while underprediction is a problem if we wish to test for and model nonlin-

earity. Tables 4a and 4b contain some statistics that cast light on these considerations.

The same general pattern characterizes both AIC and BIC procedures. Relative to

procedures based on AR models, the nonlinear criteria tend to under-predict lag length

more and over-predict lag length less, although under-prediction does not seem to be a

problem for many of the nonlinear models we studied. It is interesting to note that a

comparison of similar series (say the AR(2) and the LS(2) which were both based on

estimates from the same data) shows that underprediction is less likely when the true

DGP is nonlinear. This is perhaps comforting when considering nonlinear modelling,

because it is relatively easy to reduce a general nonlinear model to a more parsimo-

nious speciÞcation, but much harder to work out from a speciÞc to a more general

speciÞcation.

The tables do not include results for the four DGPs based on Þnancial series because

all criteria (linear and nonlinear, based on AIC, HQ or BIC) had great difficulty in

choosing the correct lag length. AIC based on the AR family performed best in each

case, but accuracy ranged from .0359 to .1568 for the AR(4), .0137 to .1446 for the

AR(7), .0355 to .1078 for the TAR(4), and .0168 to .1304 for the TAR(7), (where in

each case the Þrst Þgure relates to samples of 100 and the second relates to samples of

1000). Results for samples of 5000 were considerably better (ranging between 45 and

65% for AIC), but BIC results for this sample size were still small (between 2% and

8%), indicating that much larger samples would be needed before asymptotic properties

become evident. In one sense, these Þndings are not unexpected, given the extremely

weak correlation structure that is typically found in Þnancial data. However, the results

also illustrate how poorly our standard methods can work, when the true DGP has very

weak properties.
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5. Conclusion

This paper has studied the problem of lag selection for nonlinear models from the

viewpoint of an applied economist. Two common approaches include the application of

AIC, HQ or BIC to linear autoregressive models, or Þrst specifying the nonlinearity and

then applying the same criteria to a sequence of nonlinear models. I argue against the

second of these because of its impracticality, but assess the Þrst of these by means of

simulation. In general I Þnd that AIC applied to AR models works quite well for small

samples even when the true model is nonlinear. In contrast, HQ and BIC perform quite

poorly, unless the sample size is large.

I propose and study several lag selection criteria that might be useful in nonlinear

settings. Some of these are based on polynomial approximations to the nonlinear DGP,

while others are based on neural network approximations. The SQ and PPC procedures

seems to improve lag selection performance, when applied to moderately small samples

and used in conjunction with HQ and BIC. This offers potential when working with typ-

ical macroeconomic data sets. All procedures work well for larger samples of data which

follow the sorts of nonlinear processes that are popular in macroeconomic modelling.

However, since standard versions of HQ and BIC are also working well in this case,

the nonlinear procedures improve lag selection only slightly. For large samples of data,

both linear and nonlinear procedures are easy to implement, but will be inconsistent.

Although harder to implement, non-parametric techniques (such as those suggested by

Tjøstheim and Auestad (1994)) might improve accuracy.

The simulations show that the usual lag selection criteria are likely to have difficulty

with typical macroeconomic and Þnancial data sets. While the proposed procedures

offer some improvement, this improvement is very limited. This leads to the conclusion

that more work is needed to develop other techniques that are practical, but more

helpful in small sample settings.
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Table 1: Families of models used to approximate the DGP

Family Approximating Equation Parameters

AR yt ' β∗0 + β0∗Y t−p
t−1 (1+ p)

SQ yt ' β∗0 + β0∗Y t−p
t−1 +

Pk=p
k=1Ψ2ky

2
t−k (1+ 2p)

CR yt ' β∗0 + β0∗Y t−p
t−1 +

Pk=p
k=1

Pj=k
j=1 Ψ2kjyt−kyt−j (1+ p) + 1

2p(p+ 1)

PCC yt ' β∗0 + β0∗Y t−p
t−1 + fpc{yt−kyt−j for 1 ≤ k, j ≤ p} (2 + p)

N10 yt ' β∗0 + β0∗Y t−p
t−1 + f10opc of {φ

³
γ0rY

t−p
t−1

´
for 1 ≤ r ≤ 30} (11+ p)

NM2 yt ' β∗0 + β0∗Y t−p
t−1 + f(2p)opc of {φ

³
γ0rY

t−p
t−1

´
for 1 ≤ r ≤ 30} (1+ 3p)

Note 1: fpc is the Þrst principal component of the bracketed explanator set.

Note 2: f10opc takes the Þrst 10 principal components of the bracketed explanator set,

othogonal to the linear explanator set.

Note 3: f(2p)opc takes the Þrst 2p principal components of the bracketed explanator

set, othogonal to the linear explanator set.
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Table 2: DGPs used in the simulation studies

AR(2) yt = 0.49 + 0.25yt−1 + 0.13yt−2 + εt with εt ∼ N(0, 0.892)

AR(5) yt = 0.005+0.935yt−1+0.055yt−2−0.049yt−3−0.609yt−4+0.417yt−5+εt with

εt ∼ N(0, 0.0272)

AR(9) yt = 0.008 + 1.423yt−1 − 0.7347yt−2 + 0.3375yt−3 − 0.6423yt−4 + 0.5348yt−5 −
0.1115yt−6+0.0409yt−7− 0.2685yt−8+0.1837yt−9+ εt with εt ∼ N(0, 0.0220152).

CDR(2) yt = 0.35+0.24yt−1+0.22yt−2+0.20CRDt−1+εt with CDRt = max{CDRt−1, yt}−
yt and εt ∼ N(0, 0.892).

ES(2) yt = 0.325yt−1 − 1.777yt−2 + ft × (1.219yt−1 + 1.124yt−2) + εt with ft = (1 −
exp{−10.230× 200(yt−1)2}) and εt ~ N(0, 0.05762).

TAR(2) yt = 0.0529 + 1.349yt−1 − 1.665yt−2 + ft × (1.646yt−1 − 0.733yt−2) + εt with

ft = (1)(yt−1 < 0.062) and εt ~ N(0, 0.0632)

LS(2) yt = −1.51 − 1.41yt−2 + ft × (2.04 + 0.26yt−1 + 1.50yt−2) + εt with ft = (1 +

exp{−11(yt−2 + 0.55)})−1 and εt ~ N(0, 0.892).

LS(5) yt = −0.030+0.64yt−1−0.29yt−2−0.64yt−4+ft×(0.044+0.49yt−2+0.45yt−5)+εt

with ft = (1+ exp{−7.3× 21.6(yt−1 + 0.015)})−1 and εt ∼ N(0, 0.02312).

ES(9) yt = 0.0075 + 3.03yt−1 − 1.31yt−2 −∆0.49yt−4 + ft × (−1.68yt−1 + 0.87yt−2 −
∆0.30yt−8) + εt with ft = (1 − exp{−1.54 × 196(yt−1 + 0.082)2}) and εt ∼
N(0, 0.01852).

AR(4) yt = 0.0033 + 0.8679yt−1 + 0.0429yt−2 + 0.0228yt−3 + 0.0348yt−4 + εt with

εt ∼ N(0, 0.028562).

AR(7) yt = 0.00085+0.8976yt−1−0.0142yt−2−0.0073yt−3−0.0002yt−4+0.0121yt−5+

0.0011yt−6 + 0.0372yt−7 + εt with εt ∼ N(0, 0.02962402).
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TAR(4) yt = I(yt−1 < −0.090)(0.0031 + 0.6098yt−1 + 0.3577yt−2 − 0.1996yt−3 +

0.1682yt−4) + I(−0.090 ≤ yt−1 < 0.062)(0.0025 + 0.8916yt−1 + 0.0124yt−2 −
0.0061yt−3 + 0.0220yt−4) + I(0.062 ≤ yt−1)(0.008 + 0.8547yt−1 + 0.0142yt−2 −
0.0048yt−3 + 0.0251yt−4) + εt with εt � N(0, 0.0248

2).

TAR(7) yt = I(yt−1 < −0.073)(−0.0161 + 0.6748yt−1 − 0.0578yt−2 + 0.0362yt−3 +

0.10321yt−4−0.0244yt−5+0.0182yt−6+0.1147yt−7)+I(−0.073 ≤ yt−1 < 0.072)(0.0002+

0.9311yt−1 − 0.0048yt−2 − 0.0154yt−3 + 0.02119yt−4 + 0.0003yt−5 + 0.0016yt−6 +

0.0164yt−7) + I(0.072 ≤ yt−1)(0.0159 + 0.8185yt−1 − 0.0292yt−2 − 0.004275yt−3 −
0.0695yt−4 + 0.0803yt−5 − 0.0222yt−6 + 0.060yt−7) + εt with εt � N(0, 0.0294

2).

Notes and Sources:

The AR(2), CDR(2) and LS(2) are based on∆lnGDP for USA (see Anderson and Vahid

(2001)). These DGPs are �weak� in that coefficients and/or evidence of nonlinearity

don�t become statistically signiÞcant until the sample is large.

The TAR(2) and ES(2) are based on log linear detrended unemployment for the USA

(Rothman (1999)). These DGPs are �strong�, in that coefficients and evidence of non-

linearity are statistically signiÞcant, regardless of sample size.

The AR(5) and LS(5) are based on fourth differences of the logarithms of industrial

production for Belgium (see Teräsvirta and Anderson (1992)). Both are �strong� DGPs,

although LS(5) has a �hole� at lag 3. The AR(9) and ES(9) are based on similarly

transformed data for the USA and Japan. Both are moderately �strong� DGPs, but

the ES(9) process for Japan has �holes� (no structure for lags 6 and 7, and restrictions

for lags 5 and 9).

The AR(4), AR(7), TAR(4) and TAR(7) are based on data for mispricing errors associ-

ated with the S&P 500 index and matching futures contracts. See Martens et al (1998).

As is typical for Þnancial data, the lag structure is �weak�. Evidence of nonlinearity is

strong, but the corresponding threshold models contain many �holes�.
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Table 3a: Performance of AIC based criteria

(proportion of times the correct lag is picked)

Data Generating Process (samples of 100)

Model Family AR(2) AR(5) AR(9) CDR(2) ES(2) TAR(2) LS(2) LS(5) ES(9)

AR .2302 .7013 .2464 .3287 .7050 .6982 .4010 .6526 .5030

SQ .1740 .6930 .1457 .2509 .7426 .7430 .3516 .6772 .2912

CR .1049 .2725 .0531 .1472 .5389 .5215 .2205 .2721 .0715

PCC .1740 .6964 .1489 .2512 .7567 .7441 .3453 .6719 .3043

N10 .1389 .4436 .1706 .1867 .6720 .6225 .3001 .4199 .2690

NM2 .1357 .4393 .1476 .1770 .6074 .6741 .3204 .3297 .2524

Data Generating Process (samples of 150)

Model Family AR(2) AR(5) AR(9) CDR(2) ES(2) TAR(2) LS(2) LS(5) ES(9)

AR .3413 .7216 .4224 .4719 .7093 .6941 .5311 .6426 .7058

SQ .2746 .7666 .2671 .4142 .7711 .7531 .5094 .7249 .5094

CR .2421 .7720 .0547 .3745 .8359 .8285 .4878 .7476 .1465

PCC .2763 .7641 .2692 .4138 .7727 .7576 .5051 .7041 .5445

N10 .2167 .5128 .2593 .3196 .6926 .6104 .4471 .4864 .3827

NM2 .2180 .5672 .1916 .3166 .6712 .7592 .4876 .3536 .4000

Data Generating Process (samples of 200)

Model Family AR(2) AR(5) AR(9) CDR(2) ES(2) TAR(2) LS(2) LS(5) ES(9)

AR .4194 .7257 .5559 .5605 .7111 .6886 .6164 .6280 .7754

SQ .3571 .7824 .3882 .5222 .7766 .7553 .6124 .7267 .6522

CR .3200 .8674 .0601 .5107 .8552 .8477 .6199 .8252 .2324

PCC .3538 .7807 .3871 .5251 .7807 .7556 .6061 .7088 .6863

N10 .2748 .5263 .3551 .4193 .6995 .5956 .5511 .5385 .4371

NM2 .2818 .6050 .2515 .4129 .6764 .7958 .5918 .3216 .5398

(continued)
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Table 3a: Performance of AIC based criteria (continued)

(proportion of times the correct lag is picked)

Data Generating Process (samples of 250)

Model Family AR(2) AR(5) AR(9) CDR(2) ES(2) TAR(2) LS(2) LS(5) ES(9)

AR .4896 .7240 .6640 .6015 .7125 .6796 .6611 .6163 .7856

SQ .4295 .7820 .5064 .5928 .7849 .7648 .6720 .7291 .7142

CR .3917 .9005 .0757 .6150 .8642 .8543 .6944 .8512 .3533

PCC .4323 .7797 .5100 .5930 .7847 .7542 .6709 .6994 .7452

N10 .3410 .5352 .4080 .5037 .7051 .5775 .6179 .5782 .4752

NP2 .3399 .6220 .3228 .4937 .6845 .8213 .6638 .2804 .6483

Data Generating Process (samples of 300)

Model Family AR(2) AR(5) AR(9) CDR(2) ES(2) TAR(2) LS(2) LS(5) ES(9)

AR .5410 .7328 .7254 .6291 .7107 .6728 .6829 .5984 .7885

SQ .4931 .7826 .7951 .6447 .7838 .7650 .7162 .7259 .7348

CR .4677 .9127 .1010 .6942 .8696 .8459 .7499 .8600 .4729

PCC .4936 .7871 .6073 .6453 .7845 .7580 .7091 .6921 .7575

N10 .4033 .5345 .4862 .5639 .6981 .5691 .6687 .6062 .4750

NM2 .4019 .6349 .3932 .5544 .6764 .8333 .7205 .2428 .7172

Data Generating Process (samples of 1000)

Model Family AR(2) AR(5) AR(9) CDR(2) ES(2) TAR(2) LS(2) LS(5) ES(9)

AR .7141 .7300 .8492 .6083 .7076 .5286 .7104 .3896 .7053

SQ .7828 .7963 .8638 .6181 .7921 .6917 .7835 .6657 .5096

CR .8577 .9365 .8097 .7572 .8807 .7818 .8565 .8109 .7725

PCC .7870 .7922 .8672 .3858 .7939 .6658 .7721 .5076 .6964

N10 .7336 .5264 .6970 .5801 .6171 .5533 .7411 .7215 .3270

NM2 .7124 .6668 .6923 .5634 .5499 .9264 .8704 .0524 .9158

See Table 1 for a description of model families and Table 2 for the DGPs
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Table 3b: Performance of HQ based criteria

(proportion of times the correct lag length is picked)

Data Generating Process (samples of 100)

Model Family AR(2) AR(5) AR(9) CDR(2) ES(2) TAR(2) LS(2) LS(5) ES(9)

AR .1857 .8312 .1122 .2894 .8761 .8680 .3676 .8008 .3285

SQ .0868 .7733 .0244 .1461 .9240 .9231 .2394 .7896 .0906

CR .0530 .3199 .0018 .0903 .9630 .9638 .1780 .4424 .0085

PCC .0866 .7742 .0258 .1472 .9296 .9242 .2320 .7895 .1068

N10 .0627 .6081 .0471 .1004 .8819 .8479 .1913 .5400 .1130

NM2 .0529 .5579 .0148 .0780 .9047 .9259 .1980 .4447 .0589

Data Generating Process (samples of 150)

Model Family AR(2) AR(5) AR(9) CDR(2) ES(2) TAR(2) LS(2) LS(5) ES(9)

AR .2910 .8860 .2356 .4697 .8916 .8771 .5419 .8397 .6154

SQ .1488 .9172 .0558 .2812 .9499 .9402 .4097 .9120 .2463

CR .0839 .6865 .0000 .1854 .9801 .9807 .3126 .8025 .0039

PCC .1464 .9180 .0560 .2809 .9468 .9382 .3984 .9022 .2801

N10 .0956 .7763 .0949 .1852 .9102 .8591 .3342 .6669 .2258

NM2 .0862 .8188 .0178 .1562 .9281 .9577 .3517 .5588 .1206

Data Generating Process (samples of 200)

Model Family AR(2) AR(5) AR(9) CDR(2) ES(2) TAR(2) LS(2) LS(5) ES(9)

AR .3852 .9050 .3689 .6010 .9045 .8826 .6744 .8468 .7893

SQ .2115 .9494 .1107 .4167 .9557 .9465 .5428 .9317 .4529

CR .1252 .9001 .0000 .2986 .9855 .9824 .4367 .9499 .0051

PCC .2122 .9498 .1098 .4246 .9555 .9443 .5350 .9193 .4948

N10 .1288 .8206 .1558 .2861 .9195 .8485 .4567 .7132 .3315

NM2 .1290 .9018 .0347 .2555 .9407 .9698 .5001 .5671 .2456

(continued)
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Table 3b: Performance of HQ based criteria (continued)

(proportion of times the correct lag is picked)

Data Generating Process (samples of 250)

Model Family AR(2) AR(5) AR(9) CDR(2) ES(2) TAR(2) LS(2) LS(5) ES(9)

AR .4685 .9067 .4902 .6998 .9080 .8809 .7623 .8446 .8603

SQ .2770 .9586 .1849 .5440 .9603 .9507 .6600 .9395 .6325

CR .1677 .9739 .0000 .4071 .9892 .9853 .5470 .9851 .0099

PCC .2761 .9570 .1842 .5498 .9587 .9474 .6507 .9189 .6800

N10 .1707 .8365 .2250 .3874 .9292 .8407 .5715 .7319 .4040

NP2 .1774 .9220 .0550 .3654 .9451 .9733 .6185 .5320 .4087

Data Generating Process (samples of 300)

Model Family AR(2) AR(5) AR(9) CDR(2) ES(2) TAR(2) LS(2) LS(5) ES(9)

AR .5459 .9114 .6037 .7733 .9126 .8767 .8145 .8439 .8843

SQ .3528 .9600 .6124 .6546 .9626 .9514 .7418 .9441 .7557

CR .2213 .9942 .0000 .5236 .9911 .9859 .6474 .9936 .0227

PCC .3513 .9612 .2704 .6564 .9656 .9491 .7374 .9176 .8008

N10 .2182 .8458 .3225 .5015 .9330 .8234 .6668 .7479 .4650

NM2 .2234 .9304 .0967 .4789 .9472 .9767 .7138 .4886 .5521

Data Generating Process (samples of 1000)

Model Family AR(2) AR(5) AR(9) CDR(2) ES(2) TAR(2) LS(2) LS(5) ES(9)

AR .9171 .9381 .9528 .8686 .9329 .8021 .9358 .7561 .8626

SQ .8982 .9751 .9578 .9118 .9775 .9351 .9731 .9427 .7878

CR .8107 .9996 .0223 .9772 .9956 .9815 .9904 .9954 .9269

PCC .9001 .9754 .9598 .8976 .9741 .9221 .9699 .8219 .9061

N10 .7998 .8571 .8300 .9613 .9275 .7735 .9684 .7988 .3890

NM2 .7931 .9650 .7961 .9297 .9291 .9937 .9788 .1267 .9495

See Table 1 for a description of model families and Table 2 for the DGPs
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Table 3c: Performance of BIC based criteria

(proportion of times the correct lag is picked)

Data Generating Process (samples of 100)

Model Family AR(2) AR(5) AR(9) CDR(2) ES(2) TAR(2) LS(2) LS(5) ES(9)

AR .1021 .8473 .0215 .1790 .9576 .9527 .2468 .8297 .1107

SQ .0223 .5578 .0008 .0430 .9863 .9859 .0886 .6326 .0064

CR .0072 .0246 .0000 .0165 .9969 .9973 .0438 .0751 .0000

PCC .0221 .5558 .0005 .0426 .9866 .9847 .0876 .6388 .0008

N10 .0131 .4459 .0022 .0227 .9673 .9584 .0597 .4746 .0179

NM2 .0057 .2407 .0001 .0109 .9846 .9893 .0468 .2712 .0010

Data Generating Process (samples of 150)

Model Family AR(2) AR(5) AR(9) CDR(2) ES(2) TAR(2) LS(2) LS(5) ES(9)

AR .1700 .9521 .0591 .3218 .9660 .9618 .4222 .9378 .3364

SQ .0410 .8672 .0012 .0939 .9921 .9885 .1873 .9025 .0317

CR .0129 .1225 .0000 .0372 .9989 .9990 .0953 .2678 .0000

PCC .0404 .8660 .0010 .0963 .9927 .9881 .1791 .9058 .0385

N10 .0180 .7737 .0056 .0427 .9767 .9651 .1195 .7196 .0515

NM2 .0111 .5885 .0000 .0253 .9931 .9953 .1126 .5237 .0027

Data Generating Process (samples of 200)

Model Family AR(2) AR(5) AR(9) CDR(2) ES(2) TAR(2) LS(2) LS(5) ES(9)

AR .2358 .9722 .1211 .4665 .9719 .9634 .5622 .9522 .5920

SQ .0646 .9722 .0036 .1666 .9941 .9919 .2953 .9770 .1026

CR .0193 .3411 .0000 .0667 .9993 .9996 .1577 .5586 .0000

PCC .0645 .9728 .0028 .1683 .9949 .9913 .2851 .9735 .1209

N10 .0243 .9187 .0131 .0720 .9801 .9639 .1801 .8235 .1170

NM2 .0181 .8437 .0000 .0513 .9942 .9970 .1861 .6708 .0118

(continued)
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Table 3c: Performance of BIC based criteria (continued)

(proportion of times the correct lag is picked)

Data Generating Process (samples of 250)

Model Family AR(2) AR(5) AR(9) CDR(2) ES(2) TAR(2) LS(2) LS(5) ES(9)

AR .3073 .9763 .2028 .5858 .9758 .9664 .6775 .9553 .7718

SQ .0912 .9925 .0068 .2599 .9959 .9932 .4019 .9892 .2258

CR .0281 .6098 .0000 .1172 .9997 .9996 .2311 .8068 .0000

PCC .0906 .9912 .0072 .2627 .9963 .9923 .3946 .9842 .2541

N10 .0340 .9565 .0240 .1148 .9864 .9633 .2574 .8590 .2190

NP2 .0268 .9561 .0000 .0888 .9968 .9985 .2878 .7371 .0391

Data Generating Process (samples of 300)

Model Family AR(2) AR(5) AR(9) CDR(2) ES(2) TAR(2) LS(2) LS(5) ES(9)

AR .3809 .9808 .2915 .6948 .9798 .9648 .7640 .9552 .8746

SQ .1281 .9954 .1370 .3588 .9973 .9930 .5027 .9919 .3781

CR .0390 .8275 .0000 .1750 .9999 .9995 .3083 .9379 .0000

PCC .1270 .9955 .0173 .3643 .9972 .9927 .4938 .9874 .4166

N10 .0426 .9638 .0502 .1696 .9877 .9601 .3389 .8642 .3000

NM2 .0376 .9887 .0003 .1431 .9970 .9986 .3898 .7529 .1026

Data Generating Process (samples of 1000)

Model Family AR(2) AR(5) AR(9) CDR(2) ES(2) TAR(2) LS(2) LS(5) ES(9)

AR .9126 .9915 .9694 .9690 .9880 .9389 .9885 .9517 .9550

SQ .6652 .9987 .6874 .9802 .9991 .9930 .9871 .9953 .9528

CR .3839 1.000 .0000 .9350 1.000 .9997 .9578 1.000 .0510

PCC .6662 .9988 .6889 .9779 .9986 .9915 .9876 .9644 .9857

N10 .3706 .9749 .7670 .9174 .9923 .9452 .9623 .8824 .4790

NM2 .3853 .9998 .2467 .9233 .9975 .9996 .9829 .3626 .9710

See Table 1 for a description of model families and Table 2 for the DGPs
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Table 4a: Under and over prediction when AIC procedures are used

(proportion of times under (U), correctly (C) or over (O) predicted)

Model Data Generating Process (samples of 100)

Family AR(2) AR(5) AR(9) CDR(2) ES(2) TAR(2) LS(2) LS(5) ES(9)

U .5617 .0162 .6738 .4137 .0000 .0000 .3700 .0154 .3509

AR C .2302 .7013 .2464 .3287 .7050 .6982 .4010 .6526 .5030

O .2081 .2825 .0798 .2576 .2950 .3018 .2290 .3320 .1461

U .6878 .0433 .7888 .5724 .0000 .0000 .4778 .0341 .4117

SQ C .1740 .6930 .1457 .2509 .7426 .7430 .3518 .6772 .2912

O .1382 .2637 .0655 .1767 .2574 .2570 .1704 .2887 .1205

U .5530 .0995 .4399 .4831 .0000 .0000 .3806 .0621 .3201

CR C .1049 .2725 .0531 .1472 .5389 .5215 .2205 .2721 .0651

O .3421 .6280 .5070 .3697 .4611 .4785 .3989 .6658 .6148

Model Data Generating Process (samples of 200)

Family AR(2) AR(5) AR(9) CDR(2) ES(2) TAR(2) LS(2) LS(5) ES(9)

U .3402 .0000 .3148 .1339 .0000 .0000 .1175 .0000 .0280

AR C .4194 .7257 .5559 .5605 .7111 .6886 .6164 .6280 .7754

O .2404 .2743 .1293 .3056 .2889 .3114 .2661 .3289 .1966

U .4822 .0001 .5092 .2517 .0000 .0000 .1897 .0002 .1395

SQ C .3571 .7824 .3882 .5222 .7766 .7553 .6124 .7267 .6522

O .1607 .2175 .1026 .2261 .2234 .2447 .1979 .2731 .2083

U .5917 .0044 .9114 .3504 .0000 .0000 .2510 .0016 .6149

CR C .3200 .8674 .0601 .5107 .8552 .8477 .6119 .8252 .2369

O .0883 .1292 .0285 .1389 .1448 .1523 .1371 .1732 .1482

(continued)
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Table 4a: Prediction when AIC criteria are used (continued)

(proportion of times under (U), correctly (C) or over (O) predicted)

Model Data Generating Process (samples of 300)

Family AR(2) AR(5) AR(9) CDR(2) ES(2) TAR(2) LS(2) LS(5) ES(9)

U .2023 .0000 .1365 .0416 .0000 .0000 .0383 .0000 .0021

AR C .5410 .7328 .7254 .6291 .7107 .6728 .6829 .5984 .7885

O .2567 .2672 .1381 .3293 .2893 .3272 .2788 .4016 .2094

U .3316 .0000 .2779 .0934 .0000 .0000 .0701 .0000 .0176

SQ C .4931 .7826 .5998 .6447 .7838 .7650 .7169 .7259 .7348

O .1753 .2174 .1223 .2619 .2162 .2350 .2130 .2741 .2476

U .4380 .0000 .8840 .1551 .0000 .0000 .1093 .0000 .3752

CR C .4677 .9127 .1010 .6942 .8698 .8459 .7499 .8600 .4785

O .0943 .0873 .0180 .1750 .1302 .1541 .1408 .1400 .1463

Table 4b: Under and over prediction when BIC procedures are used

(proportion of times under (U), correctly (C) or over (O) predicted))

Model Data Generating Process (samples of 100)

Family AR(2) AR(5) AR(9) CDR(2) ES(2) TAR(2) LS(2) LS(5) ES(9)

U .8844 .1100 .9760 .8006 .0000 .0000 .7335 .1125 .8910

AR C .1021 .8473 .0215 .1790 .9576 .9527 .2468 .8297 .1107

O .0135 .0427 .0025 .0204 .0424 .0473 .0197 .0578 .0083

U .9759 .4289 .9992 .9554 .0000 .0000 .9082 .3508 .9923

SQ C .0223 .5578 .0008 .0430 .9863 .9859 .0886 .6326 .0064

O .0018 .0133 .0000 .0016 .0137 .0141 .0032 .0166 .0013

U .9928 .9751 1.000 .9835 .0000 .0000 .9560 .9245 .9999

CR C .0072 .0246 .0000 .0165 .9969 .9973 .0438 .0751 .0000

O .0000 .0003 .0000 .0000 .0031 .0027 .0002 .0005 .0001

(continued)
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Table 4b: Prediction when BIC criteria are used (continued)

(proportion of times under (U), correctly (C) or over (O) predicted)

Model Data Generating Process (samples of 200)

Family AR(2) AR(5) AR(9) CDR(2) ES(2) TAR(2) LS(2) LS(5) ES(9)

U .7513 .0008 .8736 .5079 .0000 .0000 .4190 .0014 .3806

AR C .2358 .9722 .1211 .4665 .9719 .9634 .5622 .9522 .5920

O .0129 .0270 .0053 .0256 .0281 .0366 .0188 .0464 .0274

U .9343 .0205 .9961 .8306 .0000 .0000 .7023 .0129 .8913

SQ C .0646 .9722 .0036 .1666 .9941 .9919 .2953 .9770 .1026

O .0011 .0073 .0003 .0028 .0059 .0081 .0024 .0101 .0061

U .9807 .6589 1.000 .9323 .0000 .0000 .8422 .4414 1.000

CR C .0193 .3411 .0000 .0667 .9993 .9996 .1577 .5586 .0000

O .0000 .0000 .0000 .0000 .0007 .0004 .0001 .0000 .0000

Model Data Generating Process (samples of 300)

Family AR(2) AR(5) AR(9) CDR(2) ES(2) TAR(2) LS(2) LS(5) ES(9)

U .6079 .0000 .7016 .2777 .0000 .0000 .2169 .0000 .0859

AR C .3809 .9808 .2915 .6948 .9798 .9648 .7640 .9552 .8746

O .0112 .0192 .0069 .0275 .0202 .0452 .0191 .0448 .0394

U .8711 .0003 .9832 .6372 .0000 .0000 .4942 .0002 .6088

SQ C .1281 .9954 .0167 .3588 .9973 .9930 .5027 .9919 .3781

O .0008 .0043 .0001 .0002 .0027 .0070 .0031 .0079 .0131

U .9610 .1725 1.000 .8249 .0000 .0000 .6913 .0620 1.000

CR C .0390 .8275 .0000 .1750 .9999 .9995 .3083 .9379 .0000

O .0000 .0000 .0000 .0000 .0001 .0005 .0004 .0001 .0000
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