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Stochastic population forecasts using

functional data models for mortality,

fertility and migration

Abstract: Age-sex-specific population forecasts are derived through stochastic population re-

newal using forecasts of mortality, fertility and net migration. Functional data models with

time series coefficients are used to model age-specific mortality and fertility rates. As de-

tailed migration data are lacking, net migration by age and sex is estimated as the difference

between historic annual population data and successive populations one year ahead derived

from a projection using fertility and mortality data. This estimate, which includes error, is also

modeled using a functional data model. The three models involve different strengths of the

general Box-Cox transformation chosen to minimise out-of-sample forecast error. Uncertainty

is estimated from the model, with an adjustment to ensure the one-step-forecast variances

are equal to those obtained with historical data. The three models are then used in the Monte

Carlo simulation of future fertility, mortality and net migration, which are combined using the

cohort-component method to obtain age-specific forecasts of the population by sex. The dis-

tribution of forecasts provides probabilistic prediction intervals. The method is demonstrated

by making 20-year forecasts using Australian data for the period 1921–2003.

Key words: Fertility forecasting, functional data, mortality forecasting, net migration, non-

parametric smoothing, population forecasting, principal components, simulation.
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1 Introduction

Stochastic methods of population forecasting are rapidly gaining recognition. Stochastic pop-

ulation forecasts have been produced for the US, Australia and several European and other

countries, as well as for the world and world regions. In the Netherlands, official statistical

agencies now use stochastic methods, and other countries, such as the US, are also adopting

their use in official forecasts.

Forecasts of the size and structure of the population are central to social and economic plan-

ning, from the provision of services in the short term to policy development in the long term.

Not least of the demographic challenges facing developed countries is the rapid ageing of

the population. Already developed country populations are experiencing unprecedentedly

large elderly proportions. The major driver of this ageing process is the fertility fluctuations

of the past, notably the post-war baby boom coupled with the low fertility of recent times, but

declining mortality is also significant. One response to population ageing and the attendant

shortage of labour to provide for the elderly has been an increase in immigration to ‘replace’

or make up for past shortfalls in births (Nations, 2000). Immigration has thus become a major

driver of population change in many developed countries, and in some cases amounts to as

much as 50% of the number of births; Australia and Spain are examples.

Population forecasting must take proper account of all three components of demographic

change, that is mortality, fertility and migration. While mortality forecasting has received

considerable attention in recent years, methods for forecasting fertility and migration are less

well developed. As with human behaviour in general, demographic behaviour is difficult to

forecast; this is particularly so for fertility and migration. A further problem for demographic

forecasting is the estimation of uncertainty: estimates may vary considerably depending on

the method of estimation (Keilman, 2001).

Any forecasting exercise presupposes that the data on which the forecast is based exist in

suitable form. For mortality and fertility, this is generally the case: vital registration and

population censuses or population registers provide lengthy series of data with the necessary

detail. For migration, however, data are often lacking: where they exist at all, they tend to be

in shorter series and often inadequately represent actual migration flows. A solution to this

lack of data is to estimate net migration as the difference between the increment in population
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size and natural increase using the demographic growth-balance equation. For subnational

population forecasting, where internal migration forecasts are required, this method is often

the only approach available because data are not collected.

Several different approaches to demographic forecasting have been developed. The most

widely used are those that involve some form of extrapolation, often using time series meth-

ods. Functional data methods fall under this category, but they have only recently been

adopted in demographic forecasting (Hyndman and Ullah, 2005). Functional data methods

have the advantage of providing a flexible framework that can be used for all three demo-

graphic processes.

This paper applies functional data models in forecasting mortality, fertility and net interna-

tional migration for use in population forecasting. These forecast components are combined

using the cohort-component method to produce probabilistic population forecasts by age and

sex. The method is illustrated using Australian data for 1921–2003. As complete and reliable

data on international migration are lacking, annual net migration for 1972–2003 is estimated

using the growth-balance equation.

1.1 Stochastic population forecasting

Fully probabilistic population forecasts have the major advantage of probabilistic consistency

among all forecast variables including ratios and other derived indices (Lee and Tuljapurkar,

1994). They are generated through stochastic population renewal using the cohort-component

method of population projection (Preston et al., 2001, pp.119–129). The forecast is achieved

either analytically using the stochastic Leslie matrix (Lee and Tuljapurkar, 1994; Sykes, 1969)

add Alho// or more simply by Monte Carlo simulation to produce a distribution of possi-

ble outcomes. In both approaches, it is necessary to specify the mean (or median), variance-

covariance structure and distributional form for each demographic component. These param-

eters may be estimated using informed judgment and ex-post evaluation of errors (Keilman,

1997; Lutz et al., 1996) or by formal statistical models (e.g., Lee, 1992)(Alho // check both

refs//) and check Renshaw and Haberman on uncertainty.

In this paper, the Monte Carlo simulation approach is adopted, and the parameters of the

component forecasts are derived using functional data models and time series methods. The
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use of extrapolative methods presupposes that the trends of the past will be continued into the

future. This assumption has proved to be a better basis for forecasting than either structural

modelling involving exogenous variables or methods based on expectation (Booth, 2006). The

following brief review of forecasting the three components focuses on extrapolative methods;

for a more comprehensive review, see Booth (2006).

1.2 Mortality

One of the simplest methods for extrapolating mortality, commonly used by actuaries, applies

empirical age-specific geometric mortality reduction factors to current death rates to forecast

future rates (Pollard, 1987). A more parsimonious approach is to forecast the parameters of

a ‘law’ of mortality representing the age pattern, also ensuring regularity. Among the nu-

merous existing models, the eight-parameter Heligman-Pollard (1980) model and the multi-

exponential model have been used in forecasting with limited success (McNown and Rogers,

1989; McNown et al., 1995; Forfar and Smith, 1987). Interdependencies among parameters call

for multivariate ARIMA models.

The most prominent method in mortality forecasting is the Lee-Carter method (Lee and Carter,

1992) which uses singular value decomposition to reduce annual age-specific log death rates

to a time-dependent index of the level of mortality and a set of time-independent parame-

ters that modify the overall level at particular ages. Standard time series methods are used

to model and forecast the level index over time. The Lee-Carter method has the advantages

of parsimony and simplicity in application. These stem from the fact that the overall down-

ward trend in mortality accounts for almost all of the variation, so that only the first term

(time parameter) is forecast. Further, in most applications, a random walk with drift has been

appropriate, indicating constant rates of decline in age-specific death rates (e.g., Tuljapurkar

et al., 2000).

Several variants and extensions of the original Lee-Carter method have been developed. Lee

and Miller’s (2001) variant is now widely used. A variant by Booth et al. (2002) has been

shown to be at least as accurate as Lee-Miller in the short term (Booth et al., 2005). The

Lee-Carter method has been further developed to incorporate a heteroscedastic Poisson error

structure (e.g., Wilmoth, 1993; Brouhns et al., 2002) and to be applicable to mortality reduction
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factors (Renshaw and Haberman, 2003a). Booth et al. (2002); Renshaw and Haberman (2003c)

examine the use of more than one term. Parallel approaches within the GLM framework have

also been developed (Renshaw and Haberman, 2003b).

Two recent extensions of the Lee-Carter method involve incorporating nonparametric smooth-

ing into the model. de Jong and Tickle (2006) combine spline smoothing and estimation via

the Kalman filter to fit a generalized version of the Lee-Carter model. Hyndman and Ullah

(2005), following the functional data paradigm, propose smoothing the mortality curves for

each year using constrained regression splines prior to fitting a model using principal compo-

nents decomposition. We extend the Hyndman-Ullah approach in this paper, and apply it to

mortality, fertility and migration.

1.3 Fertility

Unlike mortality, childbearing is both an avoidable and repeatable event; fertility rates can

thus be separated into level (quantum) and pattern (tempo) effects. These can be forecast

independently if quantum and tempo are not highly correlated, which is generally the case

for developed countries (e.g., Thompson et al., 1989). Fertility has proved difficult to forecast

due to structural change, and estimates of uncertainty are highly dependent on the particular

model.

Early forecasts of fertility used time series methods to forecast the total number of births,

reflecting the role of births in population growth (Saboia, 1977; McDonald, 1979, 1981). Total

fertility and independent age-specific rates have also been forecast by time series methods

(Lee, 1974; McDonald, 1984; Miller, 1986). Ortega and Poncela (2005) extend this approach to

exploit common trends by jointly modelling the total fertility rates for a homogeneous cluster

of countries using a dynamic factor model with common and country-specific factors.

Parameterisation has been employed in the form of the gamma, beta and Hadwiger distri-

butions (e.g., Hoem et al., 1981; Thompson et al., 1989; Congdon, 1993; Chandola et al., 1999;

Keilman and Pham, 2000), and the multi-exponential model (Knudsen et al., 1993; McNown

et al., 1995). Parameter interpretability and over-parameterisation can present difficulties for

forecasting and multivariate time series methods are desirable.
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Lee (1993) forecast fertility using a parallel method to the Lee-Carter method, but found it nec-

essary to pre-specify the long-term mean value of total fertility because of structural change

and to impose limits of 0 and 4 to reduce the width of the prediction interval (see also Lee,

1999). A principal components approach was also employed by Bozik and Bell (1987) in fore-

casting fertility using the first four components and multivariate ARIMA methods. Hyndman

and Ullah (2005) applied a similar method in adopting a functional data approach, and this

method is further developed on this paper.

1.4 Migration

Methods for forecasting migration are the least developed among the three components and

are often extremely simple (George and Perreault, 1992). One reason for this stems from a lack

of suitable data. Ideally migration is separated into its two distinct processes, immigration and

emigration, each of which is independently forecast by age and sex (Rogers, 1990). Decompo-

sition by reason for migration and disaggregation of immigration by citizenship are also ideal

(Hilderink et al., 2002). Forecasting immigration presents particular problems because of the

uncertainty inherent in any process that is determined more by political and socio-economic

considerations than any other.

A problem with the use of immigration data, even if accurate in what they measure, is that

coverage of actual in-migration may be incomplete. Undocumented migration is a substantial

flow for some countries. The US, for example, receives an estimated 500,000 illegal immi-

grants per year, while in Spain the immigration amnesty of 2005 resulted in 700,000 regis-

trations, equal to 2 per cent of the total population. In Australia, uncounted immigration

has occurred through ‘category jumping’ whereby temporary migrants (not counted as im-

migrants in migration data) legally change status when inside the country, thereby becoming

permanent immigrants (Khoo and McDonald, 2002). Further, immigration data may be mis-

leading if repeat migrants are counted each time they enter the country: overseas students, for

example, may be counted annually as long-term in-migrants but not counted as out-migrants

when they return home for the vacation. These and other inaccuracies demand that data be

decomposed as far as possible into the different types of migrants and checked for reliability.
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Emigration data present even greater problems, not least of which is that they are often un-

available or incomplete in coverage. When data are available, changes of emigration status

after leaving the country reduce data accuracy. Reliance on the immigration data of main

destination countries suffers from incomplete coverage and problems arising from different

classifications.

Estimating net migration as the residual from the demographic growth-balance equation may

be seen as a partial solution to the problems of data inadequacy, because population data are

generally more complete. The coverage of illegal migrants in population censuses increases

with the passage of time and with the acquisition of permanent legal status through amnesties.

However, difficulties can arise: even if the two processes of immigration and emigration are

stable, the difference between them can be unstable and therefore difficult to model and fore-

cast. Nevertheless, where detailed data are not available or are of poor quality, estimated net

migration may be the best solution.

Migration numbers are often forecast rather than rates. The use of numbers is consistent with

the specification of annual quotas for immigrants, and total numbers are often forecast. Fur-

ther, Miller and Lee (2004) note that numbers are preferable in that they take into account the

co-variation in the rate of immigration (or positive net migration) and population denomi-

nator. This also applies to emigration. However, the use of numbers can be problematic if

age-specific emigration is forecast to exceed the age group’s population. Time series methods

are often used to forecast aggregate immigration and emigration (e.g., De Beer, 1997; Keil-

man and Pham, 2004; Wilson and Bell, 2004); De Beer (1997) also forecast net migration with

consistent results.

The use of rates demands specification of the relevant population denominator. While emi-

gration may be meaningfully related to the domestic population, this is less relevant for immi-

gration though it is often used. This conceptual issue also applies to net migration; again the

domestic population is commonly used Miller and Lee (e.g., 2004). Miller (2003) forecast the

total net migration rate for California, multiplied it by the total population in the preceding

year to obtain total net migration and then applied the most recent empirical age-sex distri-

bution as a constant distribution for the duration of the forecast. A similar approach is used

by Miller and Lee (2004).
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Where detailed data by age are lacking, a model may be used; this also reduces the number

of parameters to be forecast. The Rogers-Castro model (Rogers and Castro, 1981; Rogers and

Little, 1994) with up to 13 parameters is the most widely used, but has been used with only

limited success for forecasting (Rogers et al., 2005; George, 1994). Keilman and Pham (2004)

used a six-parameter version of this model to disaggregate forecast totals by age.

1.5 Structure of the paper

In the following section, we discuss the data requirements of our approach, and explain how

derived data are obtained. Section 3 describes the functional data models we fit to each of the

components (mortality, fertility and net migration). In Section 4, we discuss how to simulate

future sample paths for each of these components, thereby obtaining simulated projections

of age-specific population numbers by sex. We apply the methodology to Australian data in

Section 5 to obtain twenty-year probabilistic forecasts of the population by age and sex. Some

conclusions and discussion on extensions to this approach are contained in Section 6.

2 Data requirements

We assume that age-specific birth and death numbers are available for each calendar year,

and that the age-specific population numbers are available at 30 June in each year. These data

are available for most of the last century for most developed countries. We use the following

notation for these data:

Bt(x) = Births in calendar year t to females of age x;

DF
t (x) = Deaths in calendar year t to females of age x;

DM
t (x) = Deaths in calendar year t of males of age x;

PF
t (x) = Female population of age x at 30 June, year t;

PM
t (x) = Male population of age x at 30 June, year t.

Let ft(x) = 1000Bt(x)/Pt(x) be the fertility rate (per thousand women) for females of age x

in calendar year t, and let mM
t (x) = DM

t (x)/PM
t (x) and mF

t (x) = DF
t (x)/PF

t (x) be the age-

specific central death rates for males and females respectively in calendar year t. Then we
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average these death rates across consecutive years to obtain mid-year to mid-year estimates

denoted by

→mF
t−1(x) = 0.5

[
mF

t−1(x) + mF
t (x)

]
→mM

t−1(x) = 0.5
[
mM

t−1(x) + mM
t (x)

]
The “right-arrow” notation is used to denote a shift forward in time by half a year. Thus
→mM

t−1(x) is an estimate of the male death rate for age x in the year from 1 July t− 1 to 30 June

t, whereas mM
t−1(x) is the observed male death rate for age x in calendar year t− 1.

Estimated births on a mid-year to mid-year basis are given by
→
Bt−1(x) = 0.5 [Bt(x) + Bt−1(x)].

Deaths are estimated from survivorship ratios obtained from successive life tables (see Preston

et al., 2001) based on mid-year to mid-year death rates.

Then, using these “mid-year” estimates, we compute the difference between the annual pop-

ulation and successive populations one year ahead derived from a projection using fertility

and mortality.

→
G

F
t (B) = PF

t+1(0) − 1
1+ρ

∑
j

→
Bt(j) +

→
D

F
t (B)

→
G

F
t (x) = PF

t+1(x + 1)− PF
t (x) +

→
D

F
t (x) x = 0, 1, 2, . . . ;

→
G

M
t (B) = PM

t+1(0) − ρ
1+ρ

∑
j

→
Bt(j) +

→
D

M
t (B)

→
G

M
t (x) = PM

t+1(x + 1)− PM
t (x) +

→
D

M
t (x) x = 0, 1, 2, . . . .

where ρ denotes the male:female birth ratio. Thus,
→
G

F
t (x) denotes the net migration (plus

error) for females of age x to x + 1 in the year from 1 July t to 30 June t + 1.
→
D

F
t (B) denotes

deaths to females born in the interval t to t+1 and
→
G

F
t (B) denotes female migrants who were

aged 0 at 30 June of year t + 1.

3 Functional data modelling approach

To obtain forecasts of each component, we first develop functional time series models for the

five sex-specific components: mF
t (x), mM

t (x), ft(x),
→
G

F
t (x), and

→
G

M
t (x). The five models will
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then be used to simulate future populations. We follow the approach of Hyndman and Ullah

(2005) to model each of these components.

3.1 Functional data models

Let y∗t (x) denote the quantity being modelled—either mortality rates, fertility rates, or net

migration numbers for age x in year t. First we use a Box and Cox (1964) transformation of

y∗t (x) to allow for variation that increases with the value of y∗t (x). Thus

yt(x) =


1
λ

(
[y∗t (x)]λ − 1

)
if 0 < λ < 1;

loge(y∗t (x)) if λ = 0.

The value of λ determines the strength of the transformation. Then we assume the following

model for the transformed quantity yt(x):

yt(x) = st(x) + σt(x)εt,x

st(x) = µ(x) +
K∑

k=1

βt,k φk(x) + et(x)

where st(x) is underlying smooth function of x, εt,x ∼ IID(0, 1) and σt(x) allows the variance

to change with age and time. That is, st(x) is a smooth function of age which we observe with

error. The second equation describes the dynamics of st(x) evolving through time. In this

equation, µ(x) is the mean of st(x) across years, {φk(x)} is a set of orthogonal basis functions

calculated using a principal components decomposition, and et(x) is the model error which

is assumed to be serially uncorrelated. The dynamics of the process are controlled by the

time series coefficients {βt,k} which are assumed to behave independently of each other (this

follows from using principal components decomposition).

This model was first proposed by Hyndman and Ullah (2005) for mortality and fertility rates

although they used log transformations instead of the more general Box-Cox transformation.

It has also been used by Erbas et al. (2006) for forecasting breast cancer mortality rates.

As Hyndman and Ullah (2005) point out, the model is a generalization of the well-known Lee-

Carter (1992) model for forecasting mortality rates. In the Lee-Carter approach, y∗t (x) denotes

mortality rates and λ = 0 so that yt(x) represents log mortality for year t and age x. The
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Lee-Carter method does not assume smoothness, so σt(x) = 0 and yt(x) = st(x). Then µ(x) is

estimated as the average of yt(x) across years, K = 1, and φ1(x) and βt,1 are computed from

the first principal component of the matrix of [yt(x) − µ̂(x)]. Forecasts are obtained by fitting

a time series model to βt,1; in practice this is almost always a random walk with drift.

In this paper, we extend the methodology of Hyndman and Ullah (2005) by using a more

general transformation, and by applying the model to net migration as well as mortality and

fertility rates. We also modify the method Hyndman and Ullah used for calculating forecast-

ing variance to allow for better calibration with the observed data.

Hyndman and Ullah proposed robust estimation of the model terms in order to handle the

effect of epidemics and wars on mortality data. We will avoid this additional complexity in

modelling Australian data by restricting mortality data to 1950 onwards.

The modelling steps (described in detail in Hyndman and Ullah, 2005) are:

1 Estimate smooth functions st(x) using nonparametric regression applied to yt(x) for

each year t. (In our application to Australian data, we use weighted penalized regression

splines.)

2 Estimate µ(x) as the mean of st(x) across years.

3 Estimate βt,k and φk(x), k = 1, . . . ,K, using principal components decomposition of

[yt(x)− µ̂(x)].

4 Estimate time series models for βt,k, k = 1, . . . ,K. We use exponential smoothing state

space models.

The value of K must be specified. Hyndman and Ullah (2005) proposed selecting K to mini-

mize the mean integrated squared forecast error. Since then, we have found that the method-

ology is insensitive to the choice of K provided K is large enough. That is, there is little cost

(apart from computing time) in choosing a large K, whereas a K too small may result in poor

forecast accuracy. Consequently, in this analysis we choose K = 6 for all components; this

seems to be larger than any of the components really require.

The observational variance, σ2
t (x), depends on the nature of the data. For mortality data,
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where y∗t (x) = mt(x), we assume deaths have a binomial distribution so that y∗t (x) has ap-

proximate variance P−1
t (x)y∗t (x)[1−y∗t (x)]. Thus, the variance of yt(x) is (via a Taylor approx-

imation)

σ2
t (x) ≈ [1− y∗t (x)][y∗t (x)]2λ−1P−1

t (x). (1)

For fertility data, where y∗t (x) = ft(x), we assume that births have a Poisson distribution so

that y∗t (x) has approximate variance P−1
t (x)y∗t (x)/1000. Thus, the variance of yt(x) is (via the

same Taylor approximation)

σ2
t (x) ≈ [y∗t (x)/1000]2λ−1P−1

t (x). (2)

For migration data, there is no reasonable distributional assumption. So we estimate σ2
t (x) by

a nonparametric regression of [yt(x)− st(x)]2 against x.

The success of the model depends on how well the bivariate surface {st(x) − µ(x)} can be

approximated by the sum of a few products of univariate functions of time (t) and age (x).

So far, we have applied this model to mortality data from about twenty different countries,

and to fertility data and migration data from Australia. This experience suggests that the

model is good at producing point forecasts, but not very good at estimating forecast variance.

Consequently, we propose below an adjustment to the forecast variance implied by the model.

3.2 Functional forecasts

Suppose we have data up to time t = n, and we wish to estimate future values of yt(x) for

t = n + 1, . . . , n + h and all x. Let β̂n,k,h denote the h-step ahead forecast of βn+h,k, let ŷn,h(x)

denote the h-step ahead forecast of yn+h(x) and let ŝn,h(x) denote the h-step ahead forecast of

sn+h(x). Then

ŷn,h(x) = ŝn,h(x) = µ̂(x) +
K∑

k=1

β̂n,k,hφ̂k(x) . (3)

A forecast of y∗t (x) is found through back-transformation.

Following Hyndman and Ullah (2005), we can give the following expression for forecast vari-

ance

Vh(x) = Var[sn+h(x) | I,Φ] = σ̂2
µ(x) +

K∑
k=1

un+h,k φ̂2
k(x) + v(x) (4)
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where I = {yt(xi)} denotes all observed data, un+h,k = Var(βn+h,k | β1,k, . . . , βn,k) can be

obtained from the time series model, σ̂2
µ(x) (the variance of the smooth estimate µ̂(x)) can be

obtained from the smoothing method used, and v(x) is estimated by averaging ê2
t (x) for each

x. Thus, the smoothing error is given by the first term, the error due to predicting the dy-

namics is given by the second term, and the third term gives the error due to the unexplained

dynamic variation. After the observational error is also included, we obtain

Var[yn+h(x) | I,Φ] = Vh(x) + σ2
t (x).

Note that correlations between ages are naturally dealt with in this formulation due to the

smooth functions of age (x). Also, correlations between years are handled by the time series

models for the coefficients βt,1, . . . , βt,K.

For low values of h, we can check the validity of Vh(x) by computing

Wh(x) =
1

n− h−m + 1

n−h∑
t=m

[st+h(x)− ŝt,h]2

where m is the smallest number of observations used to fit a model. In practice, considerable

differences between Wh(x) and Vh(x) can occur. Consequently, we use the following adjusted

variance expression:

Var[yn+h(x) | I,Φ] = Vh(x)W1(x)/V1(x) + σ2
t (x). (5)

This adjusts the variance so that the one-step forecast variance matches the observed in-

sample one-step forecast variance. It is assumed that the same multiplicative adjustment is

applicable at higher forecast horizons.

Note that we can similarly check the bias of the point forecasts by averaging st+h(x) − ŝt,h,

but empirical results suggest the model provides excellent forecasts.

4 Stochastic cohort simulation from functional data models

For each of mF
t (x), mM

t (x), ft(x),
→
G

F
t (x), and

→
G

M
t (x), we simulate a large number of future

sample paths which are then used to compute future sample paths of the age-sex-specific
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population. For each component, we use the time series models to generate random sample

paths of βt,k for t = n + 1, . . . , n + h conditional on β1,k, . . . , βn,k. We also generate random

values of et(x) by bootstrapping the estimated values.

Having obtained the simulated values of st(x) for t = n + 1, . . . , n + h, we then apply the

variance adjustment described in (5). Specifically, the adjusted value of sn+h(x) is

s̃n+h(x) = µ̂(x) +
K∑

k=1

β̂n,k,hφ̂k(x) +
[
sn+h(x)− µ̂(x)−

K∑
k=1

β̂n,k,hφ̂k(x)
]
W1(x)/V1(x).

Deaths for year n + h and age x are generated from a Binomial distribution with parameters

Pn+h−1(x) and s̃n+h(x). Births for year n + h to females of age x are generated from a Poisson

distribution with parameter s̃n+h(x)Pn+h−1(x)/1000. Migrants in year n + h of age x are

computed using the simulated smoothed mean s̃n+h(x) and bootstrapping the errors yt(x) −

st(x).

Using these simulated births, deaths and migrants, we generate the population for the next

year:

PF
t+1(x + 1) = PF

t (x) +
→
G

F
t (x) − →

D
F
t (x) x = 0, 1, 2, . . . ;

PF
t+1(0) = 1

1+ρ

∑
j

→
Bt(j) +

→
G

F
t (B) − →

D
F
t−1(B);

PM
t+1(x + 1) = PM

t (x) +
→
G

M
t (x) − →

D
M
t (x) x = 0, 1, 2, . . . ;

PM
t+1(0) = ρ

1+ρ

∑
j

→
Bt(j) +

→
G

M
t (B)− →

D
M
t (B).

This is repeated for years t = n+1, . . . , n+h. Thus we obtain a large number of future sample

paths of age-specific population and vital event numbers which can be used to estimate, with

uncertainty, any demographic variable that is derived from population numbers and vital

events, including life expectancies, total fertility rates, old-age dependency ratios, etc.
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5 Application to Australia

The data are from the Australian Demographic DataBank (Australian Centre for Population

Research, Australian National University). The data consist of central death rates and mid-

year populations by sex and by age in single years for 0–99 and 100+ years for 1901–2003, and

age-specific fertility rates by single years of age for 15–49 for 1921–2003. To avoid difficulties

with war years and the 1918 Spanish flu epidemic and with structural change over the course

of the twentieth century, we only use mortality data from 1950 onwards. When computing

net migrant numbers, we only use data from 1972 onwards, as the population numbers are

less reliable before that.

We follow the modelling framework outlined in Section 2. For mortality, we choose λ = 0

which is consistent with other studies (e.g., Lee and Carter, 1992; Booth et al., 2002; Hyndman

and Ullah, 2005, etc.). As described in Hyndman and Ullah (2005), we constrain the fitted

curves to be monotonically increasing for x > 65.

For fertility, there seems no consensus on the best transformation to use. Hyndman and Ul-

lah (2005) use logarithms; Lee (1993) uses no transformation on age-specific fertility rates, but

a logistic transformation (defined on the interval [0,4]) on the total fertility rate. We choose

the value of λ = 0.2 as it gave a relatively small out-of-sample forecast errors (on the un-

transformed scale) and narrowest prediction intervals when applied to the Australian data

for 1921–1993. The sex ratio at birth was set to be ρ = 1.0545 based on current Australian data.

For migration, the data are both positive and negative, so we do not use any transformation

(i.e., y∗t (x) = yt(x).)

For all models, K = 6 basis functions are used. This is larger than any of the components seem

to require. As noted previously, the methodology is insensitive to the choice of K provided K

is large enough; in other words, additional basis functions do not decrease forecast accuracy.

The time series models used are additive state space models for exponential smoothing, as

described in Hyndman et al. (2002). Parameters are optimized by averaging the h-step forecast

errors for h = 1, 2, . . . , 8.
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Figure 1: Net migration estimates, 1972–2003. Light-shaded region shows 2.5% and 97.5% per-
centiles; dark-shaded region shows 10% and 90% percentiles; solid line shows the mean.
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5.1 Results

Estimates of net migration for the period 1972–2003 are shown in Figure 1. It is seen that there

is a high degree of variation at all but the oldest ages around a jagged age-specific mean. The

variation in these estimated numbers is a combination of the variation in migration, errors

in the age-specific population numbers, errors in estimated age-specific deaths, and errors in

the estimated number of births. As population numbers are Estimated Resident Populations

(ERPs) produced by the Australian Bureau of Statistics (ABS), rather than independent empir-

ical counts, they are the product of models and assumptions and will be subject to (unknown)

systematic bias as well as random error. Such bias may have contributed to the jagged mean

age distribution, particularly at ages 35 and older; it is also likely that digit preference occurs

the reported ages in the population, deaths and possibly original migration data used in of-

ficial estimates of intercensal population size. Positive net migration at very old ages is the

result of bias; Wilson and Bell (2004) also found that the ERP inflates the population at ages

90+.

While there is a high degree of variation, an age pattern can be readily discerned. The male

and female patterns are similar. The mean suggests that the level of female net migration is

higher than male at young adult ages, which is perhaps surprising as labour migration flows

are often dominated by males. The number of children is also relatively high, a result of

Australian migration policies concerning family migration. For both males and females, the

first peak at young adult ages (at age 19) is due to overseas students, while the second (at age

29 for males and 26 for females) is due to labour migration and spouses. A further retirement-

related peak occurs at around age 60. Compared with the labour-dominated migration model

of Rogers and Castro (1981) (see also Rogers et al., 2005), these distributions are relatively flat

across the age range.

Figure 2 shows the fitted model terms for female log death rates. //?? Needs interpreting...

Figure 3 shows the first basis function and first coefficient for all the fitted component models.

//?? Needs comments.

Figure 4 shows forecast log death rates by sex for the first and last years of the forecast period

(2004 and 2023) with 80% prediction intervals. Also shown are observed rates for 2003. The
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Figure 2: Fitted basis functions and coefficients for Australian female log death rates.

forecast decline in mortality is more rapid at middle and older adult ages relative to young

adult ages, especially for males, reflecting recent trends. The independent modelling and

forecasting of mortality by sex has resulted in lower rates in childhood for males than females,

but the male prediction interval at this age is also very wide. This warrants further attention

with dependencies built into the models.

Forecast fertility rates are shown in Figure 5. The relatively recent change of second derivative

at ages 19 and 20, seen in the 2003 data, is a more marked feature in the forecast resulting in

particularly low rates in the early to mid-twenties. While such a marked age pattern of fertil-

ity has not been observed to our knowledge in any population, it is not an improbable feature.

Certainly this emerging effect is seen in several populations, including ///////England and

Wales (Chandola et al., 1999) and Germany //( ). It is likely to arise from heterogeneity with

respect to marital status (as Chandola et al. suggest) or socio-economic circumstance: one

group experiencing early fertility which will decline only slowly (possibly towards a thresh-

old beyond which rates will not decline) and another group experiencing a rapid decline in

early fertility. However, the message contained in the very wide prediction intervals in 2023
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Figure 3: First basis function and coefficient for each component of the Australian data.
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Figure 4: Forecast log death rates for 2004 and 2023, along with 80% prediction intervals. Actual
mortality rates for 2003 are also shown as circles.
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Figure 5: Forecast fertility rates for 2004 and 2023, along with 80% prediction intervals. Actual
fertility rates for 2003 are also shown as circles.

should not be ignored.

Net migration forecasts are shown in Figure 6. The volatility in the data is reflected in the

prediction interval. The forecast and interval are almost the same for every year of the forecast,

as the point forecasts of all coefficients are constant over the forecast horizon. The forecast

annual net migration is 50,300 females and 41,000 males.

Forecast life expectancy by sex is shown in Figure 7. By 2023, forecast values are 87.1 years

with an 80% prediction interval of 85.4 to 88.9 for females, and 83.0 years with an interval of

80.4 to 86.4 for males. Male life expectancy increases at a faster rate than female, a reflection

of recent trends. While this is defensible for the 20-year forecast duration, it would lead to

divergence in the longer term. Non-divergent models will be explored in future research.

Forecast total fertility (Figure 8) shows a slight downward trend: by 2023 total fertility is 1.69,

compared with 1.75 in 2003. The prediction interval of 1.31 to 2.15 reflects the large uncertainty

in forecasting fertility, and shows that this downward trend is not statistically significant.
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Figure 6: Forecast net migration numbers for 2023, along with 80% prediction intervals. All other
years are almost identical due to the low correlation between years.
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Figure 8: Forecasts of total fertility rate (TFR) for 2004–2023.
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Figure 9: Forecast population pyramid for 2023, along with 80% prediction intervals. The actual
population pyramid for 2003 is shown using dashed lines.

The final population forecasts for males and females in 2023 are shown as a population pyra-

mid with 80% prediction intervals in Figure 9, along with the 2003 base population. The broad

prediction intervals at young ages reflect the greater uncertainty in forecast fertility, while un-

certainty at 20–50 is largely due to migration.

Our forecasts are compared in Figure 10 with the population projections given in of Statistics

(2003). For both males and females, the forecast mean is very close to the middle ABS projec-

tion (Series B) showing that ABS Series B provides reasonably good point forecasts. However,

the high ABS projection (Series A) lies above the upper 95% prediction limit and the low ABS

projection (Series C) lies below the lower 95% prediction limit. This indicates that the ABS

assumptions which are meant to represent possible scenarios of high and low population

growth are in fact unlikely to eventuate.
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Figure 10: Twenty-year forecasts of total population for each sex along with 80% and 95% prediction
intervals. The dashed lines show the projections from of Statistics (2003), series A, B and C.

6 Comments and conclusions

The above analysis has demonstrated that functional data models can be successfully applied

to forecasting mortality rates, fertility rates and migration numbers. This modelling frame-

work is highly adaptable. The same basic model applies, allowing for the different character-

istics of the three demographic components through the use of different transformations. The

Box-Cox transformation has proved useful. Though this transformation is commonly used in

statistics, it has rarely been applied in demographic modeling. For mortality, the preferred

transform is the logarithm, which coincides with convention. For fertility, a slightly weaker

transform (λ = 0.2) is preferred; this use of the Box-Cox transformation is a substantial im-

provement on previous research where it has been necessary to impose judgmental limits in

order to constrain the prediction intervals to plausible values. ///consult thompson et al///

The forecasts produced here are based on the first six principal components. For mortality, this

is the main difference between our method and the Lee-Carter method (which additionally

involves an adjustment). The extra principal components allow more accurate forecasting

(Hyndman and Ullah, 2005), though typically at least 90% of the variation is explained by the

first component. The use of several components is more important for fertility, where the first

component explains a smaller proportion of the variation (69% in the current example). The

additional components may serve to incorporate changes in pattern that are relatively recent.
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For fertility, the emergence of relatively low rates in the early to mid-twenties is a case in point;

this pattern has been forecast to evolve. The somewhat irregular age pattern in forecast male

mortality also results from the combination of principal components reflecting recent trends;

further research is needed to impose greater regularity. Nevertheless, the forecast age pattern

is relatively smooth compared with the jagged age distribution of forecasts produced by the

Lee-Carter method (Girosi and King, 2006).

For net migration, the numbers by age and sex estimated from the growth-balance equation

include net errors in the recorded population and vital events. Comparison with total net

recorded migration for Australia from 1989 indicates that such errors are small, especially in

the very recent past. Further, errors in the age distribution arising from digit preference are

removed by smoothing. Thus, while forecast net migration will include bias or systematic

error not removed by smoothing, such error is unlikely to be significant. For purposes of

forecasting population, the inclusion of such error will not bias the forecast if past errors can be

assumed to be constant over time. In countries with high levels of illegal immigration, where

the estimation of net age-sex-specific migration is highly preferable to the use of recorded

data, this assumption may not be appropriate and care should be exercised in forecasting. For

example, if population coverage has increased over time, the trend in net migration will be

overestimated.

In the Australian case, the net migration age distribution forecast is a simple constant. Though

the level of migration has fluctuated over the last 30 years, there is no discernible trend; this

can be attributed to the general stability of migration policies and economic factors. In coun-

tries where such factors have been less stable, for example Spain which has changed from a

country of emigration to a country of immigration in the last few decades, the forecasting of

net migration will undoubtedly be more difficult.

As noted above, the estimation of the uncertainty of forecast demographic processes presents

considerable difficulties because estimates vary depending on the model used. In this paper,

we have adjusted model-based estimates of the variance to ensure the model one-step forecast

variance is equal to the historical empirical one-step forecast variance. In the Australian case,

this calibration increases the model variance for some ages and decreases it for others. For

mortality rates, the adjustment reduces variances except at very old ages; for fertility rates,

the adjustment tends to increase variances between ages 25 and 35 and decrease variances
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between ages 35 and above. The adjustment has little effect on migration variances.

In population forecasts, correlations among forecast errors in the demographic components

affect the width of the prediction interval (Lee 1999 check//). The correlations are taken into

account in our model through the smooth curves across age and the time series models han-

dling temporal correlations. These are then naturally incorporated into the simulated sample

paths of each demographic component. However, we have not taken account of any corre-

lation between the demographic components. The assumed independence among the three

demographic components is a reasonable first approximation for developed countries (e.g.,

Alho, 1992).

This application of functional data models to fully stochastic population forecasting is a first

exercise using data that are of good quality and well behaved. Extensions to this research in-

clude extension to other countries with different population histories, especially with respect

to migration. The dependencies between male and female mortality and between male and fe-

male migration also need to be addressed, through, for example, restriction to non-divergent

futures (see for example Li and Lee, 2005). Research into the demographic interpretation of the

main principal components with a view to constraining forecast coefficients may also improve

forecasting accuracy. Other possible extensions include taking account of cohort effects, mod-

eling fertility by parity and modeling interactions between components, such as (past) fertility

and (current) immigration.
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