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1 Introduction

The so-called “long memory”, or strongly dependent, processes have come to play an im-

portant role in time series analysis. Statistical procedures for analyzing such processes

have ranged from the likelihood-based methods studied in Fox and Taqqu (1986), Sowell

(1992) and Beran (1995), to the non-parametric and semi-parametric techniques advanced

by Robinson (1995), among others. These techniques typically focus on obtaining an ac-

curate estimate of the parameter (or parameters) governing the long-term behaviour of the

process, and while maximum likelihood is asymptotically efficient in this context, that result

as always depends on the correct specification of a parametric model.

An alternate approach looks for an adequate “approximating” model; with a finite-order

autoregression being a computationally convenient candidate whose asymptotic properties

in the context of certain classes of data generating processes are well-known. However, an

exception has, until recently, been the class of processes exhibiting strong dependence, in

which case standard asymptotic results no longer apply. Yet it is in these cases that it might

be most useful to have recourse to a valid approximating model; either in its own right, or

as the basis for subsequent estimation. Indeed, long-order autoregressive models are often

used as benchmarks against which the performance of more complex models is measured;

see, for instance, Baillie and Chung (2002), Barkoulas and Baum (2003) for a couple of

recent examples. Accordingly, Poskitt (2006) considers the statistical consequences of fit-

ting an autoregression to processes exhibiting long memory under regularity conditions that

allow for both non-invertible and fractionally integrated processes, providing a theoretical

underpinning for the use of finite-order autoregressive approximations in these instances.

We now consider the empirical properties of the AR approximation, particularly the

finite-sample properties of alternative estimators of the AR parameters of the approximating

AR(h) process and corresponding estimates of the optimal approximating order h.

The paper proceeds as follows. Section 2 summarizes the statistical properties of long

memory processes, and their implications for autoregressive approximation. In Section 3

we outline the various autoregressive estimation techniques to be considered. Details of

the simulation study are given in Section 4, followed by the results presented in Section 5.

Section 6 closes the paper.

2 Autoregressive approximation in non-standard situations

Let y(t) for t ∈ Z denote a linearly regular, covariance-stationary process,

y(t) =
∞∑

j=0

k(j)ε(t− j) (2.1)

where ε(t), t ∈ Z, is a zero mean white noise process with variance σ2 and the impulse

response coefficients satisfy the conditions k(0) = 1 and
∑

j≥0 k(j)2 < ∞. The innovations

ε(t) are further assumed to conform to a classical martingale difference structure (Assumption

1 of Poskitt, 2006); from which it follows that the minimum mean squared error predictor
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(MMSEP) of y(t) is the linear predictor

ȳ(t) =
∞∑

j=1

ϕ(j)y(t− j). (2.2)

The MMSEP of y(t) based only on the finite past is then

ȳh(t) =
h∑

j=1

ϕh(j)y(t− j) ≡ −
h∑

j=1

φh(j)y(t− j); (2.3)

where the minor reparameterization from ϕh to φh allows us, on also defining φh(0) = 1, to

conveniently write the corresponding prediction error as

εh(t) =
h∑

j=0

φh(j)y(t− j). (2.4)

The finite-order autoregressive coefficients φh(1), . . . , φh(h) can be deduced from the Yule-

Walker equations
h∑

j=0

φh(j)γ(j − k) = δ0(k)σ2
h , k = 0, 1, . . . , h, (2.5)

in which γ(τ) = γ(−τ) = E[y(t)y(t − τ)], τ = 0, 1, . . . is the autocovariance function of the

process y(t), δ0(k) is Kronecker’s delta (i.e., δ0(k) = 0 ∀ k 6= 0; δ0(0) = 1), and

σ2
h = E

[
εh(t)2

]
(2.6)

is the prediction error variance associated with ȳh(t).

The use of finite-order AR models to approximate an unknown (but suitably regular)

process therefore requires that the optimal predictor ȳh(t) determined from the autoregressive

model of order h be a good approximation to the “infinite-order” predictor ȳ(t) for sufficiently

large h.

However, established results on the estimation of autoregressive models when h → ∞
with the sample size T are generally built on the assumption that the process admits an

infinite autoregressive representation with coefficients that tend to zero at an appropriate

rate, which is to say (i) the transfer function associated with the Wold representation (2.1)

is invertible; and (ii) the coefficients of (2.1), or, equivalently, the autoregressive coefficients

in (2.2), satisfy a suitable summability condition. This obviously precludes non-invertible

processes, which, failing condition (i), do not even have a infinite-order AR representation,

and “persistent”, or long-memory, processes, which fail condition (ii). The former would

arise if the transfer function k(z) contains a unit root, such as might be induced by over-

differencing; the latter, observed in a very wide range of empirical applications, is charac-

terized by an autocovariance structure that decays too slowly to be summable. Specifically,

rather than the autocovariance function declining at the exponential rate characteristic of a

stable and invertible ARMA process, it declines at a hyperbolic rate dependent on a “long
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memory” parameter α ∈ (0, 1); i.e.,

γ(τ) ∼ Cτ−α, C 6= 0, as τ →∞ .

A detailed description of the properties of such processes can be found in Beran (1994).

Perhaps the most popular model of such a process is the fractionally integrated (I(d))

process introduced by Granger and Joyeux (1980) and Hosking (1980). This class of processes

can be characterized by the specification

y(t) =
κ(z)

(1− z)d
ε(t)

where z is here interpreted as the lag operator (zjy(t) = y(t− j)) and κ(z) =
∑

j≥0 κ(j)zj .

The behaviour of this process naturally depends on the fractional integration parameter d;

for instance, if d ≥ 1/2 the process is no longer stationary, although it may be made so by

differencing. More pertinently, the impulse response coefficients of the Wold representation

(2.1) characterized by k(z) are now not absolutely summable for any d > 0; and the auto-

covariances decline at the rate γ(τ) ∼ Cτ2d−1 (i.e., α = 1 − 2d). Such processes have been

found to exhibit dynamic behaviour very similar to that observed in many empirical time

series.

Nonetheless, if the “non-fractional” component κ(z) is absolutely summable (i.e., κ(z) is

the transfer function of a stable, invertible ARMA process) and |d| < 0.5, then the coefficients

of k(z) are square-summable (
∑

j≥0 |k(j)|2 < ∞), in which case y(t) is well-defined as the

limit in mean square of a covariance-stationary process. The model is now essentially a

generalization of the classic Box-Jenkins ARIMA model (Box and Jenkins, 1970),

(1− z)dΦ(z)y(t) = Θ(z)ε(t)

in that we now allow non-integer values of the integrating parameter d. In this case y(t)

satisfies Assumption 2 of Poskitt (2006), the order-h prediction error εh(t) converges to ε(t)

in mean-square, the estimated sample-based covariances converge to their population coun-

terparts, though at a slower rate than for a conventionally stationary process, and the Least

Squares and Yule-Walker estimators of the coefficients of the approximating autoregression

are asymptotically equivalent and consistent. Furthermore, order selection by AIC is asymp-

totically efficient in the sense of being equivalent to minimizing Shibata’s (1980) figure of

merit, discussed in more detail in section 3.2.

The non-invertible case is a little different, in that the autoregressive coefficients φ(j), j =

1, . . . are determined as the limit of φh as h −→ ∞. However, y(t) is still linearly regular

and covariance stationary, and so the results developed for the ARFIMA model still hold,

although the convergence rates given in Poskitt (2006) may be conservative.

3 Model Fitting

We wish to fit an autoregression of order h to a realisation of T observations from an unknown

process y(t). For compactness, in this section y(t) will be denoted yt, t = 1, . . . , T . The model
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to be estimated is therefore

yt = −
h∑

j=1

φh(j)yt−j + et ; (3.1)

which we may write as et = Φh(z)yt, where Φh(z) = 1+φh(1)z+· · ·+φh(h)zh is the hth-order

prediction error filter. We define the “normalized” parameter vector φh =
(
1 φh

)
where

φh = (φh(1), . . . , φh(h)).

A variety of techniques have been developed for estimating autoregressions. MATLAB,

for instance, offers at least five, including the standards, Yule-Walker and Least Squares,

plus two variants of Burg’s (1968) algorithm, and a “Forward-Backward” version of least

squares. Each of these techniques is reviewed below. Note that in the following φ̂h merely

indicates an estimator of φh; in this section it will be clear from the context which estimator

is meant.

3.1 Estimation Procedures for Autoregression

3.1.1 Yule-Walker

As already observed, the “true” AR(h) coefficients (i.e., those yielding the minimum mean

squared error predictor based on yt−1, . . . , yt−h) correspond to the solution of the Yule-Walker

equations (2.5). Rewriting (2.5) in matrix-vector notation yields

Γhφh = vh (3.2)

where Γh is the (h + 1) × (h + 1) Toeplitz matrix with (i, j)th element equal to γ(i − j),

i, j = 0, 1, . . . , h, which we may for convenience write as toeplitz(γ(0), . . . , γ(h)), and vh =

(σ2
h, 0, . . . , 0). Removing the “zeroth” case from this system yields

Γhφh = −γh (3.3)

where Γh = toeplitz(γ(0), . . . , γ(h− 1))), and γh = (γ(1), . . . , γ(h)).

Yule-Walker estimates of the parameters of (3.1) are obtained by substituting the sample

autocorrelation function (ACF) into (3.3) and solving for φ̂h:

φ̂h = −R−1
h rh

where Rh = toeplitz(r(0), . . . , r(h− 1)), rh = (r(0), r(1), . . . , r(h)), r(k) = γ̂(k)/γ̂(0), and

γ̂(k) =
1
T

T∑
t=k+1

(yt − ȳ) (yt−k − ȳ)

is the sample autocovariance at lag k. The innovations variance is then estimated as

σ̂2
h = γ̂(0) +

h∑
j=1

φ̂h(j)γ̂(j).

This estimator has the advantage that it can be readily calculated without requiring

http://www.mathworks.com/
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matrix inversion via Levinson’s (1947) recursion1, and being based on Toeplitz calculations

the corresponding filter Φ̂h(z) will be stable. However, while the Yule-Walker equations give

the minimum mean squared error predictor given the actual ACF of the underlying process,

this is not the case when based on sample autocorrelations. Hence the Yule-Walker variance

estimate σ̂2
h does not in general minimize the empirical mean squared error.

We also note that the Yule-Walker estimator of φh is well known to suffer from substantial

bias in finite samples, even relative to the Least Squares approach discussed below. Tjøstheim

and Paulsen (1983) present theoretical and empirical evidence of this phenomenon and show

that when yt is a finite autoregression then the first term in an asymptotic expansion of

the bias of φ̂h has order of magnitude O(T−1) but the size of the constant varies inversely

with the distance of the zeroes of the true autoregressive operator from the unit circle.

Hence, when the data generating mechanism shows strong autocorrelation it is possible for

the bias in the Yule-Walker coefficient estimates to be substantial. Given that fractional

processes can display long-range dependence with autocovariances that decay much slower

than exponentially, similar effects are likely to be manifest when using the Yule-Walker

method under the current scenario.

3.1.2 Least-Squares

Least Squares is perhaps the most commonly-used estimation technique, with implementa-

tions on offer in just about every numerical package and application. In this case (3.1) is

fitted by minimizing the sum of squared errors
∑T

t=h+1 ê2
t , where êt = yt − ŷt, and

ŷt = −
h∑

j=1

φ̂h(j)yt−j

is the hth-order linear predictor. In other words, the forward prediction error is minimized

in the least squares sense. This corresponds to solving the normal equations

Mhφ̂h = −mh

where

Mh =
T∑

t=h+1




yt−1

...

yt−h

 (
yt−1 . . . yt−h

)
and

mh =
T∑

t=h+1

yt


yt−1

...

yt−h

 .

Note that, following standard practice, the LS estimator presented here is based on the

1 Generally referred to as Durbin-Levinson recursion (see Durbin, 1960). For a summary of the algorithm
see Brockwell & Davis, §5.2.
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last T − h values of y; i.e., on yt, t = h + 1, . . . , T , making the effective2 sample size T − h.

The least squares estimate of the variance is then

σ̂2
h = (T − h)−1

T∑
t=h+1

(yt − ŷt)2.

By way of contrast with the Yule-Walker estimator, Least Squares minimizes the observed

mean squared error but there is no guarantee that the corresponding AR filter Φ̂h(z) will be

stable.

3.1.3 Least-Squares (Forward-backward)

The conventional least squares approach discussed above obtains φ̂h such that the sum of

squared forward prediction errors

SSE1 =
T∑

t=h+1

yt +
h∑

j=1

φ(j)yt−j

2

is minimized. However, we can also define a LSE based on the equivalent time-reversed

formulation; i.e., we now minimize the sum of squared backward prediction errors,

SSE2 =
T−h∑
t=1

yt +
h∑

j=1

φ(j)yt+j

2

.

The combination of the two yields “forward-backward” least squares (FBLS), sometimes

called the modified covariance method, in which φ̂h is obtained such that SSE1 + SSE2 is

minimized. The normal equations are now Mhφ̂h = −mh with

Mh =
T∑

t=h+1




yt−1

...

yt−h

 (
yt−1 . . . yt−h

) +
T−h∑
t=1




yt+1

...

yt+h

 (
yt+1 . . . yt+h

)
and

mh =
T∑

t=h+1


ytyt−1

...

ytyt−h

 +
T−h∑
t=1


ytyt+1

...

ytyt+h

 .

This may be thought of as “stacking” a time-reversed version of yt; i.e., yt for t =

T − h, . . . , 1, on top of yt, t = h + 1, . . . , T , and regressing the resulting 2(T − h)-vector on

its first h lags. See Kay (1988, Chpt.7) or Marple (1987, Chpt.8) for further details.

2 An obvious alternative is to take the range of summation for the least squares estimator as t = 1, . . . , T ,
and assume the pre-sample values y1−h, . . . , y0 are zero. The effect of the elimination of the initial terms
is, for given h, asymptotically negligible, but may well have significant impact in small samples.



Nonstandard Autoregressive Approximation 7

3.1.4 Burg’s method

The “Burg” estimator for the coefficients of an autoregressive process (Burg, 1967, 1968),

while a standard in spectral analysis, is not well known in the econometrics literature. It

does however, have several nice features, chief among which is that parameter stability is

imposed without the sometimes large biases involved in Yule-Walker estimation. As we

shall see, its properties in that regard tend to mimic those of Least Squares; making it

something of a “best of both worlds” estimator. The estimator essentially performs a Least

Squares optimization with respect to the partial autocorrelation coefficient alone (called the

‘reflection coefficient’ in the related literature), with the remaining coefficients determined

by Levinson recursion (Durbin, 1960; Levinson, 1947). The result is a set of prediction error

filter coefficients which solve

Γhφh = vh (3.4)

(cf. equation (3.2)) where in this case vh = (vh, 0, . . . , 0) in which vh is the output ‘power’

of prediction error filter Φh; that is, the mean-squared error of the order-h autoregression.

Burg (1968) outlined a recursive scheme for solving (3.4); later formalized by Andersen

(1974)3. Essentially, (3.4) is solved via Levinson recursion as per the Yule-Walker procedure,

except that the partial autocorrelation coefficient at each stage (m, say) is now obtained

by minimizing the average of the forward and backward mean squared prediction errors

described in 3.1.3. This is equivalent to obtaining the reflection coefficient as the harmonic

mean of the forward and backward partial correlation coefficients, for which reason the Burg

algorithm is sometimes referred to as the “harmonic” method.

The so-called “geometric” procedure (or ‘geometric Burg’ procedure) differs in imple-

mentation only in that the mth-order partial autocorrelation coefficient φmm is calculated

as

φmm =
T−m∑
t=1

bmtb
′
mt

/
T−m∑
t=1

√
b2
mtb

′ 2
mt

rather than as

φmm =
T−m∑
t=1

bmtb
′
mt

/
T−m∑
t=1

1
2

(
b2
mt + b′2mt

)
(notation as per Andersen). This corresponds to obtaining the mth-order PAC by minimizing

the geometric rather than harmonic mean of the forward and backward partial correlation

coefficients. In either case the PAC produced at each stage is by construction less than unity

in absolute magnitude, ensuring a stable AR filter.

3.2 Selecting the optimal AR order

Undoubtedly more important in determining the accuracy or otherwise of any autoregressive

approximation than a particular choice of model fitting technique, is the choice of h, the order

of the approximating model. If we suppose, for a moment, that the order-h prediction error

variance, σ2
h, is known to us (i.e., we know the theoretical ACF), then we might also suppose

3 Fortran code implementing Andersen’s procedure is given in Ulrych and Bishop (1975).
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the existence of an “optimal” order for the AR approximation, h∗; where h∗ corresponds to

that value of h which minimizes a suitably-penalized function4 of σ2
h. This value may then

be taken as the basis for comparison of the estimation techniques under consideration.

The problem is analogous to model selection in an empirical setting, except that we are

choosing between approximating models based on their theoretical properties, rather than

between models according to their “fit” to a set of observed data. We therefore consider the

“figure of merit” function

LT (h) = (σ2
h − σ2) + hσ2/T

proposed by Shibata (1980) in the context of fitting autoregressive models to a truly infinite-

order process. Shibata showed that if an AR(h) model is fitted to a stationary Gaussian

process that has an AR(∞) representation and this model is then used to predict an indepen-

dent realization of the same process then the difference between the mean squared prediction

error of the fitted model (σ̂2
h) and the innovation variance (σ2) converges in probability to

LT (h). Poskitt (2006) showed that this is also true for the non-standard processes considered

here.

Accordingly, if we define h∗T , for a given process and sample size, as the value of h that

minimizes LT (h) over the range h = 0, 1, . . . ,HT , h∗T is then asymptotically “efficient” in

the sense of minimizing the difference between the mean squared prediction error of the

fitted model and the innovation variance; and a sequence of selected model orders, say h′T ,

is likewise asymptotically efficient if LT (h′T ) −→ LT (h∗T ) as T −→∞.

Returning to the empirical setting, there are of course any number of candidate criteria

for model selection, of which perhaps the best known is that due to Akaike (1970), namely

AIC(h) = ln(σ̂2
h) + 2h/T ,

where σ̂2
h is the finite-order (mean squared error) estimator of the innovations variance as

produced by the estimation technique under consideration.

AIC is a member of the class of so-called “Information Criteria”, based on the maximized

log-likelihood, plus a penalty of the form hCT /T , where CT > 0 is chosen such that CT /T →
0 as T →∞. Further criteria in this style were subsequently proposed by numerous authors,

in particular Schwarz (1978) (CT = log T ) and Hannan and Quin (1979) (CT = log log T ),

whose criteria are known to be consistent in the sense that they will asymptotically correctly

identify the true model if it is included in the selection set. In our case, of course, we are

looking for an optimal means of choosing the order of an approximating model, the true

process being infinite-order, so consistency arguments along these lines cannot apply.

AIC, on the other hand, corresponds to setting CT = 2, which in more conventional

(i.e., finite order) situations tends to result in over-parameterized models (i.e., AIC is not

“consistent” in the sense of Schwarz’s BIC). However, AIC is asymptotically efficient, in

the sense of Shibata (1980) outlined above, under Shibata’s original regularity conditions.

Poskitt (2006) showed that this is still the case for the long memory and non-invertible

4 We cannot, of course, minimize σ2
h itself, as this is monotonic decreasing in h, and in fact equals σ2 in the

limit as h→∞.
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processes that are the focus of this paper, subject to a suitable rate of increase in the

maximum order HT .

3.3 Other asymptotically efficient selection criteria

Other methods of autoregressive order determination that do not share the same structure

as the information criteria mentioned above have been proposed; these include the criterion

autoregressive transfer function suggested by Parzen (1974), the mean squared prediction

error criterion of Mallows (1973), and the final prediction error criterion of Akaike (1970).

The simplest of these is undoubtedly Akaike’s FPE:

FPET (h) =
(

T + h

T − h

)
σ̂2

h ;

being, like the various IC, based only on the finite-order (mean squared error) estimator of

the innovations variance as produced by the estimation technique under consideration.

The Parzen and Mallows criteria, on the other hand, essentially compare the magnitude

of the MSE corresponding to an autoregression of order h to an “infinite”-order estimator

of σ2; i.e., one that does rely on a (necessarily truncated) approximating process. The usual

candidate is the nonparametric estimator for σ2 constructed by analogy with Kolmogorov’s

Formula5 for the one-step ahead mean square prediction error,

σ2 = 2π exp
{

1
2π

∫ π

−π
log{f(ω)} dω

}
;

namely

σ̃2
∞ = 2π exp

γ′ + N−1
N∑

j=1

ln IT (ωj)

 (3.5)

where N = [(T − 1)/2], ωj = 2πj/T , γ′ = 0.57721 . . . is Euler’s constant, required for

consistency, and

IT (ω) = (2πT )−1

∣∣∣∣∣
T∑

t=1

e−ωity(t)

∣∣∣∣∣
2

is the periodogram of the T -vector y.

Mallow’s (1973) statistic is then calculated as

MC T (h) =
(

σ̂2
h

σ̃2
∞
− 1

)
+

2h

T
;

while Parzen’s (1974) criterion is

CATT (h) = 1− σ̃2
∞

σ̃2
h

+
h

T
,

where σ̃2
h =

T

T − h
σ̂2

h is the “unbiased” estimator of the innovation variance σ2. Further

5 Szegö (1939), and Kolmorgorov (1941).
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criteria in this style have been suggested; for instance, the CAT 2 criterion of Bhansali (1985)

CAT 2,T (h) = 1− σ̃2
∞

σ̂2
h

+
2h

T
,

which is based on a penalized comparison of σ̂2
h with σ̃2

∞, and so very similar in appearance

to Mallow’s statistic.

Parzen (1977) subsequently suggested an alternative “autoregressive transfer” criterion,

not involving σ̃2
∞,

CAT ∗
T (h) =

T−1
h∑

j=1

σ̃−2
j

− σ̃−2
h .

All these criteria are asymptotically efficient in the sense of Shibata (1980) (see Bhansali,

1986) and so asymptotically equivalent. Accordingly, in large samples we anticipate that

these criteria will move together and will be minimized at the same value of h.

In finite samples, of course, there are likely to be significant differences between the au-

toregressive order selected by the various criteria, with the final selected order also depending

on the estimation technique employed, as we shall see.

4 Simulation Experiment

We will initially focus our attention on the simplest of non-invertible and fractionally inte-

grated processes: in the first instance the first-order moving average process

y(t) = ε(t)− ε(t− 1) ; (4.1)

and in the second, the fractional noise process

y(t) = ε(t)
/
(1− L)d , 0 < d < 0.5. (4.2)

In both cases ε(t) will be taken to be Gaussian white noise with unit variance.

The theoretical ACF’s of these processes are well known: for (4.1) we have γ(0) =

2, γ(1) = −1, and zero otherwise. For (4.2) the ACF is as given in (for instance) Brockwell

and Davis (1991, §13.2), and accordingly very simply computed, for k > 1, via the recursion

γ(k) = γ(k − 1)
k − 1 + d

k − d
,

initialized at γ(0) = Γ(1− 2d)/Γ2(1− d).

Knowledge of the ACF allows both simulation of the process itself and computation of

the coefficients of the h-step ahead linear filter via Levinson recursion. As we might expect,

for the simple models considered here the coefficient solutions simplify very nicely: for model

(4.1) we have:

φh(j) =
h + 1− j

h + 1
,



Nonstandard Autoregressive Approximation 11

while for the fractional noise process (4.2) the coefficients are given by the recursion

φh(j + 1) = φh(j)
(j − d)(h− j)

(j + 1)(h− d− j)
, j = 0, 1, 2, . . .

We also note that for the moving average model (4.1) the prediction error variance falls

out of the recursion as

σ2
h = σ2

{
1 +

1
h + 1

}
from which we can quickly deduce

h∗T =
√

T − 1.

For the fractional noise models we have

σ2
h = σ2 Γ(h + 1)Γ(h + 1− 2d)

Γ2(h + 1− d)
,

in which case h∗T is obtained most simply by calculating LT (h) for h = 1, 2, . . ., stopping

when the criterion starts to increase.

The first stage of the simulation experiment is based around comparing the properties of

alternative estimators of the parameters of the optimal autoregressive approximation, where

“optimal” is here defined in terms of minimizing Shibata’s figure of merit, LT (h).

In the second stage we consider the problem of empirically choosing the order of the

approximation, viewed both as a problem in model selection, and in terms of estimating the

theoretically optimal order h∗T . Restricting the selection criteria to be considered to those

known to be asymptotically efficient in the infinite order setting, we shall begin with the most

obvious choice, the Akaike information criterion, or AIC. Accordingly, having obtained h∗

for each model and sample size, we then “estimate” it by finding the value ĥ that minimizes

AIC(h) = ln(σ̂2
h) + 2h/T,

where σ̂2
h is the mean squared error delivered by each of the five estimation techniques. We

will denote this empirically optimal value by ĥAIC
T .

4.1 Monte Carlo Design

The simulation experiments presented here are based on a total of five data generating mecha-

nisms: the non–invertible moving average process (4.1), and the fractional noise process (4.2)

with d = 0.125, 0.3, 0.375 and 0.45, labelled as follows:

Model Description

MA1 Non–invertible MA(1) as per (4.1)

FN125 Fractional Noise as per (4.2), with d = 0.125

FN30 Fractional Noise as per (4.2), with d = 0.3

FN375 Fractional Noise as per (4.2), with d = 0.375

FN45 Fractional Noise as per (4.2), with d = 0.45
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The fractional noise processes listed here are all stationary with increasing degrees of long-

range dependence; however, for d < 0.25 the distribution of T 1/2(γ̂T (τ)− γ(τ)) is asymptot-

ically normal, while for d ≥ 0.25 the autocovariances are no longer even
√

T -consistent (see

Hosking, 1996, for details). Results for the d = 0.125 case are therefore expected to differ

qualitatively from those for which d > 0.25.

For all processes ε(t) is standard Gaussian white noise (σ2 = 1.0). For each process we

considered sample sizes T = 50, 100, 200, 500 and 1000. The maximum AR order for the

model search phase was set at HT = 2
√

T , and all results based on R = 1000 replications.

The “optimal” autoregressive approximation for each DGP and sample size is obtained

by calculating h∗T = argmin1,...,HT
LT (h) as per §3.2, with the parameters (the coefficient

vector φh∗ = (φh∗(1), . . . , φh∗(h∗)) and the corresponding mean squared prediction error σ2
h∗

following as outlined above6.

The empirical distribution of the various statistics of interest (see below) is obtained by

using the N realized values for each statistic as the basis for a kernel density estimate of the

associated distribution. We use the Gaussian kernel, with bandwidth equal to 75% of the

Wand and Jones (1995) over-smoothed bandwidth; i.e.,

h = 0.75 5

√
243
35R

s(X)

where s(X) is the empirical standard deviation of the R-element series X.

The experiment is conducted as follows: for each replication r = 1, 2, . . . , R

1. A data vector of length T is generated according to the selected design.

2. The optimal AR order h∗T is obtained as outlined above, and the parameters of the

corresponding AR approximation estimated by each of the five methods described in

Section 3.

3. Summary statistics are computed and saved for subsequent computation of their em-

pirical distributions. These include (with h taken to be h∗T in all cases)

– the estimated coefficients φ̂h = (φ̂h(1), . . . , φ̂h(h))

– the estimation error φ̂h(j)− φh(j), j = 1, . . . , h

– the squared and absolute estimation error:(
φ̂h(j)− φh(j)

)2
and

∣∣∣φ̂h(j)− φh(j)
∣∣∣ , j = 1, . . . , h

– and the sum and average of the error in estimating the vector φh:

h∑
j=1

(
φ̂h(j)− φh(j)

)
and

1
h

h∑
j=1

(
φ̂h(j)− φh(j)

)
.

4. The best AR order is estimated empirically for each of the five methods by estimating

autoregressions of all orders h = 1, 2, . . . ,HT and computing the corresponding AIC.

ĥAIC
T is taken to be the value of h that yields the smallest AIC in each case.

6 We omit the subscript T when using h∗ in this context.
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5. Finally, the behaviour of the various selection criteria discussed in subsection 3.3

is assessed by using the Burg algorithm to estimate autoregressions of orders h =

1, 2, . . . ,HT , computing the corresponding values of the several criteria, and so the set

of minimizing orders ĥT .

5 Empirical Distributions

This section discusses the results presented in Appendices A and B. Note that in the tables

we use the following shorthand notation: ‘MA’ indicates the non-invertible moving average

(4.1); ‘FN’ the fractional noise process (4.2). The five estimation techniques (Yule-Walker,

Least-Squares, “Harmonic” Burg, “Geometric” Burg, and Forward-Backward least squares)

are designated YW, LS, HB, GB, and FB respectively.

5.1 The optimal AR order

The relative frequency of occurrence of the empirical order selected by minimizing the AIC

is presented in Table 1, and in Figures 1 and 2.

Table 1 displays the AR order selected by minimizing AIC, ĥAIC
T , averaged over N = 1000

Monte-Carlo realizations, by estimation method, model, and sample size. Shibata’s h∗, and

the “theoretical” hAIC are included for comparative purposes.

Figure 1 presents the relative frequency of ĥAIC
T for the Least Squares, Forward-Backward,

Yule-Walker, and Burg estimators when T = 100; Figure 2 plots the same quantities for

T = 500. The maximum order is HT = 2
√

T in each case. The results for Geometric-Burg

are indistinguishable from those for “harmonic” Burg on this scale, and so are omitted for

clarity.

It is notable that that the average AIC-selected order is generally quite close to h∗T , and

in all cases much closer to h∗T than to hAIC . In fact for the moving average model the

AIC estimates based on Least Squares are pretty much spot on, with FB being next closest,

followed by the Burg estimators, and finally, Yule-Walker.

However, the distribution of ĥAIC
T is highly skewed to the right, with the degree of

skewness being greatest for smaller d and least for the non-invertible moving average. The

dispersion of ĥAIC
T about h∗T is correspondingly large, increasing with d, and being greatest

for the non-invertible MA. The figures also show that the higher average ĥAIC
T for Least

Squares is caused by a greater proportion of large orders being selected, with, for T = 100,

the distribution of ĥAIC
T for LS not quite falling away to zero by h = HT .

For the fractional noise models ĥAIC
T exceeds h∗T for all values of d, T , and estimators; and

since ĥAIC
T is invariably largest for LS, and smallest for YW, Least Squares is now generally

the “worst”-performing estimator in this sense. However, in accordance with the predictions

of Poskitt (2006, Section 5), ĥAIC
T for all five estimators approaches h∗T as T increases,

with the differences between the estimators diminishing accordingly. This is reflected in

Figures 1 and 2, where we see that as T increases the difference between the distributions of

ĥAIC
T for each of the five estimators becomes negligible, and the distributions become more

concentrated around h∗T .
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Repeating the experiment for the set of asymptotically efficient criteria discussed in 3.3

with σ̂2
h as produced by the Burg algorithm, we find that there is indeed little to choose be-

tween them, even for quite small sample sizes. The behaviour of AIC and FPE is essentially

identical, for instance, with a minimum “rate of agreement” of 97% for the fractional noise

models, and 95.2% for the non-invertible Moving Average (Table 3). Disagreement between

the six criteria was greatest for the non-invertible MA in all cases; and least for fractional

noise with small d.

The empirical distributions of the autoregressive order as selected using Akaike’s IC,

Parzen’s CAT, Bhansali’s CAT 2 and Mallows’ criterion, for fractional noise with d = 0.3,

are displayed in Figure 3 for sample sizes from 50 to 1000. Akaike’s FPE and Parzen’s CAT ∗

are omitted for clarity, there being little visible difference between these and AIC. The distri-

butions are highly skewed, though becoming less so as T increases, and not notably different

from each other; although CAT tends to select smaller h than the others, particularly for

T = 50 and 100, and so has less weight in the long right-hand tail of the distribution. This

is borne out by the average order as selected by each of the six criteria presented in Table

2; for the fractional noise models CAT invariably produces the smallest order on average.

With respect to the accuracy with which the six criteria estimate h∗, we find that, at

least for small and “moderate” fractional integration, Parzen’s CAT results in the smallest

average error (measured as the average difference between ĥ and h∗ in R = 1000 Monte-Carlo

replications). The picture was much more mixed for the non-invertible MA and fractional

noise with d > 0.3, with the smallest error shared between CAT, MC, CAT ∗, and CAT 2,

in that order. AIC trumped the others just once, and FPE not at all. In general, for

the fractional noise processes the six criteria tended to select h > h∗, particularly for small

sample sizes, and d ≤ 0.3. For the non-invertible moving average all criteria exceeded h∗ on

average, with the exception of Mallows’ criterion, which tended to underfit.

5.2 Autoregressive coefficients

Turning to the empirical distributions of the coefficient estimators themselves, we focus on the

estimation error (bias) in the first and last coefficients; i.e., (φ̂h(1)−φ(1)) and (φ̂h(h)−φ(h))

respectively, the sum of the estimation errors in all h coefficients,
∑h

j=1(φ̂h(j) − φ(j)) and

the corresponding average, h−1
∑h

j=1(φ̂h(j) − φ(j)). h equals h∗T in all cases. The density

estimates are constructed from the simulated values as outlined in the preceding section; i.e.,

using a Gaussian kernel and bandwidth 0.75 ξ 5
√

(243/35R) ' 0.278ξ where ξ is the empirical

standard deviation of the R = 1000 Monte Carlo realizations of the relevant quantity.

Although results are obtained for all five estimators, only the Yule-Walker results are

distinguishable from Least Squares in the plots, so only these are presented graphically.

Each figure also includes a plot of the Normal distribution with zero mean and variance

equal to the observed variance of the quantity being plotted. The estimation error in the

first and last coefficients, and averaged over the coefficient vector, for each model, sample

size, and estimation technique is presented in Tables 4 – 7.

Beginning with the behaviour of the various estimators of the first and last coefficients

(Figures 4 – 7, and Tables 6, 7), we observe that, as we might expect, departures from nor-
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mality worsen as d increases, with the worst case represented by the non-invertible MA. More

notable is that the “degree” of non-normality increases with sample size; the distributions

become noticeably less symmetric, with, for the distribution φ̂h(1), an interesting “bump”

appearing on the left-hand side. Only for the FN45 and MA1 models is there much difference

between the estimators, with the Yule-Walker results typically appearing less “normal” than

the Least Squares.

The Yule-Walker departures from normality are reflected in the summaries of estimation

error and mean squared error presented in the tables. For the fractional noise processes

the error in Yule-Walker estimates of the autoregressive coefficients is generally larger than

for the other four estimation techniques, particularly for the smaller sample sizes. However,

despite the Yule-Walker estimator having a distinctly more “off-center” empirical distribution

than the other estimators, its relative performance with respect to average estimation error

(bias) tended to improve with the degree of fractional integration, being best for d = 0.45.

Nonetheless, the bias in Yule-Walker estimates of the partial autocorrelation coefficient was

almost invariably greater than for the other estimators; with the single exception being for

the non-invertible moving average and T = 50. In all other instances the average error in the

Yule-Walker estimates of the PAC was greater than for all the other estimators, sometimes

by an order of magnitude.

For the first coefficient the outcome is not quite so one-sided, with Yule-Walker in fact

being more accurate than its competitors for d = 0.375 and 0.45. The worst case for bias,

mean squared error, and general non-normality was undoubtedly the non-invertible moving

average, with the worst affected estimator being, unsurprisingly, the Yule-Walker; partly

because the accuracy of the Yule-Walker estimator improves only very slowly as T increases

from 100 to 1000.

When estimation error and squared error was averaged over the h-vector of coefficients,

we find that in every case Yule-Walker is most biased, while its mean squared error is often

least. Similarly, Least Squares was the best performer with respect to h−1
∑h

j=1(φ̂h(j)−φ(j)),

but the worst with respect to h−1
∑h

j=1(φ̂h(j) − φ(j))2. Nonetheless, there is very little

difference in the relative accuracy of the five estimators; and while Yule-Walker stands out

somewhat, the Least Squares, Forward-Backward, Burg and Geometric-Burg are essentially

indistinguishable from each other.

Turning to the total coefficient error
∑h

j=1(φ̂h(j) − φ(j)), comparison of the estimated

distributions of this quantity with a normal curve of error with zero mean and variance

ξ2 (figures 8 – 10) indicates that when d = 0.125 the distribution is reasonably close to

normal for all estimators. When d > 0.25, however, the presence of the Rosenblatt process

in the limiting behaviour of the underlying statistics (see Hosking, 1996, §3; also Rosenblatt,

1961) is manifest in a marked distortion in the distribution relative to the shape anticipated

of a normal random variable, particularly in the right hand tail of the distribution. This

distortion is still present when T = 1000 and does not disappear asymptotically.

The situation with the moving average process is a little different (Figure 11), firstly in

that the marked skew to the right is not evident, and secondly in the degree of difference

between Yule-Walker and the other estimators. The Yule-Walker estimator seems to result
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in a considerable negative bias in the coefficient estimates when summed over the coefficient

vector, and this bias becomes worse as T increases.

5.3 Central Limit Theorem

Finally, we consider the “standardized weighted sum of coefficients”:

ϕ̂λ,T = T 1/2 λ′hΓh(φ̂h − φh)√
λ′h(Φh∆hΦ′

h)λh

,

where λh is a “differencing” vector, ∆h is the h×h limiting covariance matrix of T 1/2{γ̂T (τ)−
γ̂T (0)−(γ(τ)−γ(0))}, τ = 1, . . . , h and Φh is the sum of the lower triangular Toeplitz matrix

based on (1, φh(1), . . . , φh(h − 1)) and a Hankel matrix based on (φh(2), . . . , φh(h), 0) (see

Poskitt, 2006, section 6, for details).

ϕ̂λ,T was shown by Poskitt to have a standard normal limiting distribution; a result that

follows from the observation by Hosking (1996) that the “non-normal” component of the

limiting distribution of the autocovariances of a long-memory process with d ∈ [0.25, 0.5) can

be removed by some form of differencing; for instance, by computing γ̂T (τ)− γ̂T (0). Applied

to the autoregressive coefficients this means that while the limiting distribution of the Least-

Squares (or, equivalently, Yule-Walker) estimators is non-normal, this is not the case for a

suitably weighted function of the coefficient vector. In accordance with Hosking’s findings,

the weights are based on centering (or differencing) the toeplitz matrix of autocovariances;

for instance, if we define λ′h = (1, 0, . . . , 0,−1), then λ′hΓh(φ̂h − φh) =
∑h

j=1(γ(j − 1) −
γ(h−j))(φ̂h(j)−φh(j)). The main proviso here is that the elements of λh must sum to zero,

though this need not be true if the centering matrix is included explicitly.

Figure 12 plots the observed distribution of ϕ̂λ,T with λ′h = (1, 0, . . . , 0,−1), for T =

1000, based on φ̂h obtained from N realizations of the fractionally-integrated process y(t) =

ε(t)/(1 − z)d, with d = 0.3 and 0.45, and h = h∗T (i.e., h = 9 and 14 respectively). The

estimated empirical distributions are, as before, obtained using the Gaussian kernel and the

Wand and Jones bandwidth, and overlayed with a standard normal density. Although some

bias is still apparent even at this sample size, more so for the Yule-Walker estimator than for

Least Squares, the skewness and kurtosis of the type observed previously with this process

has now gone. Figure 13 plots the same quantities for d = 0.375 and varying T ; comparing

this with panel (c) of figures 8 to 10 shows that the sample need not be especially large for

the operation of Poskitt (2006, Theorem 6.1) to become apparent.

6 Conclusion

While the Least Squares and Yule-Walker estimators of φh and σ2
h are shown to be asymp-

totically equivalent under the regularity conditions employed in Poskitt (2006), that paper,

and the more extensive work presented here, shows their finite-sample behaviour to be quite

different, particularly as regards the “normality” or otherwise of the empirical distributions

of the estimated coefficients. The error in Yule-Walker estimation of the autoregressive coef-

ficients is generally larger than for the other four techniques, although this varies according
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to which coefficient is under examination, and, of course, with the degree of fractional inte-

gration. For the non-invertible moving average the relative bias in the Yule-Walker estimator

is notable, particularly when averaged over the entire h-vector of coefficients.

For the fractional noise processes the differences were not nearly so marked, although

Yule-Walker was still generally less accurate than the other estimators. The bias in Yule-

Walker estimates of the partial autocorrelation coefficient, for instance, was almost invariably

greater than for the other estimators; with the single exception being for the non-invertible

moving average and T = 50. There was very little to choose between Least Squares, Forward-

Backward Least Squares, and the two Burg estimators; Least Squares did best with respect

to estimation of the PAC, while the Burg estimators tended to be slightly more accurate

otherwise.

The effect of fractional integration on the finite sample distributions of the coefficients

can be quite startling, particularly for d close to 0.5, and particularly if we consider the sum

of the coefficients. The distributions are quite heavily skewed in that case, and generally of

somewhat irregular appearance; more importantly, these “irregularities” do not disappear as

T increases. Weighting the coefficients so as to take advantage of Hosking’s result regarding

the differences of autocovariances substantially removes the skewness, resulting in a statistic

with a standard Normal limiting distribution; unfortunately, the weights are fairly specific

functions of the process autocovariances, so it is difficult to see an immediate practical

application for this result.

The asymptotic efficiency of AIC as an order-selection tool in the infinite-order setting is

borne out by the results presented in Table 1; however, we also found that the selected order is

extremely variable, with a highly skewed distribution. Thus while the average AIC-selected

order approaches the “optimal” order h∗ reasonably quickly, the actual order selected in any

given instance can lie anywhere between one and the upper limit of the search (2
√

T , in

this case). Repeating the experiment with other asymptotically efficient selection criteria

did not make a great deal of difference to the distribution of selected orders; all displayed a

similar degree of variability and skewness, although the alternate criteria tended to better

approximate the “optimal” order on average, the best performer in this regard being the

‘criterion autoregressive transfer’ function of Parzen (1974).

In summary, with the possible exception of the Yule-Walker approach, neither the choice

of estimation method nor model selection technique would seem unduly critical as regards

the average estimation outcome over a large number of realizations, at least for larger sample

sizes. It must be noted, however, that our examination of the properties of these estimated

autoregressive approximations has been largely in terms of the theoretical finite order ap-

proximation of a known infinite order process. The implications of the combination of autore-

gressive estimator and order selection criteria for data fitting and forecasting performance

are yet to be examined.
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Appendix A: Figures
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Figure 1: Relative frequency of occurrence of hAIC
T , T = 100, for the

fractional noise process y(t) = ε(t)/(1− z)d with (a) d = 0.125 (b) d = 0.3
(c) d = 0.375 and (d) d = 0.45 and (e) the moving average process

y(t) = ε(t)− ε(t− 1).
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Figure 2: Relative frequency of occurrence of hAIC
T , T = 500, for the

fractional noise process y(t) = ε(t)/(1− z)d with (a) d = 0.125 (b) d = 0.3
(c) d = 0.375 and (d) d = 0.45 and (e) the moving average process

y(t) = ε(t)− ε(t− 1).
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Figure 3: Relative frequency of occurrence of hT as determined using
Akaike’s IC, Parzen’s CAT, Bhansali’s CAT 2 and Mallows’ criterion (MC),

with T = 50, 100, 200, 500 and 1000, for the fractional noise process
y(t) = ε(t)/(1− z)0.3.
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Figure 4: Empirical distribution of (φ̂h(1)− φh(1)) for the fractional
noise process y(t) = ε(t)/(1− z)d with (a) d = 0.125 (b) d = 0.3 (c)

d = 0.45, and (d) the moving average process y(t) = ε(t)− ε(t− 1), h = h∗
T

and T = 100.
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Figure 5: Empirical distribution of (φ̂h(1)− φh(1)) for the fractional
noise process y(t) = ε(t)/(1− z)d with (a) d = 0.125 (b) d = 0.3 (c)

d = 0.45, and (d) the moving average process y(t) = ε(t)− ε(t− 1), h = h∗
T

and T = 1000.
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Figure 6: Empirical distribution of (φ̂h(h)− φh(h)) for the fractional
noise process y(t) = ε(t)/(1− z)d with (a) d = 0.125 (b) d = 0.3 (c)

d = 0.45, and (d) the moving average process y(t) = ε(t)− ε(t− 1), h = h∗
T

and T = 100.
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Figure 7: Empirical distribution of (φ̂h(h)− φh(h)) for the fractional
noise process y(t) = ε(t)/(1− z)d with (a) d = 0.125 (b) d = 0.3 (c)

d = 0.45, and (d) the moving average process y(t) = ε(t)− ε(t− 1), h = h∗
T

and T = 1000.
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Figure 8: Empirical distribution of
∑h

j=1(φ̂h(j)− φ(j)) for the fractional
noise process y(t) = ε(t)/(1− z)d with (a) d = 0.125 (b) d = 0.3 (c)
d = 0.375 and (d) d = 0.45, h = h∗

T = 1, 3, 4 and 5 respectively, and
T = 100.
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Figure 9: Empirical distribution of
∑h

j=1(φ̂h(j)− φh(j)) for the
fractional noise process y(t) = ε(t)/(1− z)d with (a) d = 0.125 (b) d = 0.3
(c) d = 0.375 and (d) d = 0.45, h = h∗

T = 2, 7, 8 and 10 respectively, and
T = 500.



Nonstandard Autoregressive Approximation 24

−0.2 −0.1 0 0.1 0.2
0

1

2

3

4

5

6

7

P
ro

ba
bi

lit
y 

de
ns

ity

(a) d=0.125

N(0,ξ2)
LS
YW

−0.2 −0.1 0 0.1 0.2 0.3
0

1

2

3

4

5

6
(b) d=0.30

N(0,ξ2)
LS
YW

−0.2 −0.1 0 0.1 0.2 0.3
0

1

2

3

4

5

6

7

Deviation from origin

P
ro

ba
bi

lit
y 

de
ns

ity

(c) d=0.375

N(0,ξ2)
LS
YW

−0.1 0 0.1 0.2 0.3
0

2

4

6

8

Deviation from origin

(d) d=0.45

N(0,ξ2)
LS
YW

Figure 10: Empirical distribution of
∑h

j=1(φ̂h(j)− φh(j)) for the
fractional noise process y(t) = ε(t)/(1− z)d with (a) d = 0.125 (b) d = 0.3
(c) d = 0.375 and (d) d = 0.45, h = h∗

T = 4, 9, 12 and 14 respectively, and
T = 1000.
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Figure 11: Empirical distribution of
∑h

j=1(φ̂h(j)− φh(j)) for the moving
average process y(t) = ε(t)− ε(t− 1) for h = h∗

T and (a) T = 100 (b)
T = 200 (c) T = 500 and (d) T = 1000.
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Figure 12: Observed distribution of ϕλ,T for (a) y(t) = ε(t)/(1− z)0.3,
and (b) y(t) = ε(t)/(1− z)0.45, when λ′

h = (1, 0, . . . , 0,−1), T = 1000.
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Figure 13: Observed distribution of ϕλ,T for y(t) = ε(t)/(1− z)0.375,
when λ′

h = (1, 0, . . . , 0,−1), for (a) T = 100 (b) T = 200 (c) T = 500 and
(d) T = 1000.
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Appendix B: Tables

Table 1

AIC-based estimates of h. Average in R = 1000 replications, by
estimation method, model, and sample size.

Estimation method
Model: y(t) = T h∗ hAIC LS YW FB Burg GB

(1− L)ε(t)

50 6 4 6.53 5.14 5.85 5.52 5.51
100 9 6 9.22 7.86 8.71 8.31 8.31
200 13 9 13.21 11.94 12.88 12.42 12.42
500 21 14 21.21 19.9 20.87 20.57 20.57
1000 31 21 30.99 29.29 30.62 30.19 30.19

ε(t)
(1− L)0.125

50 1 1 3.34 2.37 2.7 2.5 2.5
100 1 1 3.27 2.72 2.96 2.78 2.78
200 1 1 3.18 2.98 3.1 2.99 2.99
500 2 2 4.22 4.09 4.15 4.12 4.12
1000 4 2 5.42 5.33 5.39 5.33 5.33

ε(t)
(1− L)0.3

50 2 1 3.71 2.74 3.15 2.9 2.9
100 3 2 4.17 3.56 3.87 3.65 3.65
200 4 3 5.19 4.74 4.96 4.77 4.77
500 7 5 7.59 7.29 7.46 7.3 7.3
1000 9 7 10.19 10.04 10.11 10.05 10.05

ε(t)
(1− L)0.375

50 3 2 4 2.88 3.32 3.09 3.08
100 4 3 4.66 3.92 4.29 4.1 4.1
200 5 4 6.08 5.48 5.74 5.56 5.56
500 8 6 8.69 8.33 8.62 8.4 8.4
1000 12 8 11.99 11.72 11.87 11.74 11.74

ε(t)
(1− L)0.45

50 3 2 4.35 3.01 3.71 3.38 3.38
100 5 3 5.13 4.21 4.75 4.48 4.48
200 6 4 6.87 5.99 6.59 6.39 6.39
500 10 7 9.94 9.32 9.8 9.52 9.52
1000 14 10 13.76 13.26 13.63 13.43 13.43
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Table 2

Estimates of h, as produced by minimizing Akaike’s AIC and FPE,
Parzen’s CAT and CAT∗, Mallows’ statistic, and Bhansali’s CAT2.

Average in R = 1000 replications, by sample size T and model.

Criterion
Model d T h∗ AIC FPE CAT CAT∗ MC CAT2
FN 0.125 50 1 2.805 2.677 2.31 2.538 2.578 3.425

100 1 2.656 2.602 2.39 2.494 2.495 3.242
200 1 2.534 2.528 2.456 2.464 2.519 2.878
500 2 3.319 3.319 3.238 3.263 3.326 3.365
1000 4 4.676 4.676 4.555 4.67 4.66 4.662

0.3 50 2 3.4 3.204 2.769 3.005 3.227 3.853
100 3 3.787 3.718 3.237 3.56 3.665 4.194
200 4 4.719 4.701 4.405 4.624 4.666 4.988
500 7 6.848 6.834 6.634 6.701 6.785 6.899
1000 9 9.648 9.648 9.487 9.61 9.626 9.72

0.375 50 3 3.652 3.466 2.929 3.301 3.485 4.103
100 4 4.341 4.3 3.852 4.095 4.242 4.741
200 5 5.744 5.723 5.343 5.585 5.621 6.075
500 8 8.062 8.05 7.84 7.922 8.041 8.223
1000 12 11.25 11.25 11.11 11.17 11.30 11.32

0.45 50 3 4.092 3.916 3.307 3.739 4.023 4.478
100 5 4.837 4.722 4.373 4.554 4.793 5.271
200 6 6.503 6.481 6.206 6.38 6.405 6.902
500 10 9.249 9.24 8.936 9.104 9.324 9.283
1000 14 12.94 12.94 12.71 12.87 12.9 13.0

MA 50 6 7.179 6.917 6.874 6.63 5.43 9.206
100 9 10.02 9.901 9.685 9.504 8.255 12.33
200 13 14.09 14.02 13.8 13.61 12.71 16.21
500 21 21.79 21.74 21.43 21.3 20.4 24.17
1000 31 31.7 31.67 31.12 31.15 30.18 33.45

Table 3

Minimum “rate of agreement” between Akaike’s AIC and: Akaike’s FPE,
Parzen’s CAT∗ and CAT, Mallows’ statistic, and Bhansali’s CAT2, by

sample size T and model class.

Criterion
Model T FPE CAT∗ CAT MC CAT2
FN 50 0.97 0.93 0.847 0.845 0.775

100 0.987 0.955 0.905 0.879 0.842
200 0.995 0.967 0.931 0.887 0.879
500 0.997 0.977 0.947 0.914 0.914
1000 0.999 0.988 0.963 0.95 0.942

MA 50 0.952 0.878 0.898 0.648 0.589
100 0.984 0.914 0.926 0.692 0.646
200 0.991 0.923 0.932 0.789 0.726
500 0.997 0.946 0.944 0.848 0.799
1000 0.997 0.952 0.945 0.87 0.837
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Table 4

Estimation error in the coefficients, averaged over the coefficient vector
(h−1

∑h
j=1(φ̂h(j)− φh(j)), h = h∗T ). Average in R = 1000 replications,

by estimation method, model, and sample size.

Estimation method
Model d T h LS YW FB Burg GB
MA 50 6 0.00017 -0.04026 -0.00039 0.00467 0.00517

100 9 -0.00351 -0.0393 -0.00387 0.00025 0.00043
200 13 -0.00289 -0.038 -0.00312 -0.00155 -0.00148
500 21 -0.00131 -0.03346 -0.00126 -0.00039 -0.00037
1000 31 -0.0076 -0.04102 -0.00753 -0.00698 -0.00697

FN 0.125 50 1 0.00444 0.00732 0.00466 0.00466 0.00463
100 1 0.00173 0.00312 0.00177 0.00177 0.00176
200 1 0.00026 0.00097 0.00026 0.00026 0.00026
500 2 0.00064 0.00083 0.00061 0.00058 0.00058
1000 4 0.00004 0.00013 0.00003 0.00002 0.00002

0.3 50 2 0.03275 0.0376 0.0328 0.03283 0.03278
100 3 0.01505 0.01712 0.01499 0.01482 0.01481
200 4 0.00856 0.00936 0.0084 0.00829 0.00829
500 7 0.00316 0.00348 0.00315 0.00316 0.00316
1000 9 0.00162 0.00177 0.00162 0.00162 0.00162

0.375 50 3 0.03307 0.03768 0.03292 0.03264 0.0326
100 4 0.01848 0.02067 0.01849 0.01826 0.01825
200 5 0.01039 0.01126 0.01025 0.01016 0.01016
500 8 0.00447 0.00479 0.00447 0.00445 0.00445
1000 12 0.00224 0.00237 0.00224 0.00223 0.00223

0.45 50 3 0.03685 0.04242 0.03655 0.0364 0.03637
100 5 0.01702 0.01929 0.01704 0.01686 0.01685
200 6 0.01064 0.01153 0.01054 0.01044 0.01044
500 10 0.00463 0.00492 0.00463 0.00461 0.00461
1000 14 0.00255 0.00267 0.00255 0.00254 0.00254
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Table 5

Mean-squared estimation error in the coefficients, averaged over the
coefficient vector (h−1

∑h
j=1(φ̂h(j)− φh(j))2, h = h∗T ). Average in

R = 1000 replications, by estimation method, model, and sample size.

Estimation method
Model d T h LS YW FB Burg GB
MA 50 6 0.0349 0.0309 0.0337 0.0333 0.0334

100 9 0.0217 0.0204 0.0213 0.021 0.021
200 13 0.0141 0.0152 0.0139 0.0138 0.0138
500 21 0.0081 0.0099 0.008 0.008 0.008
1000 31 0.0058 0.0086 0.0058 0.0058 0.0058

FN 0.125 50 1 0.0218 0.0209 0.0217 0.0217 0.0217
100 1 0.0112 0.011 0.0112 0.0112 0.0112
200 1 0.0056 0.0056 0.0056 0.0056 0.0056
500 2 0.002 0.002 0.002 0.002 0.002
1000 4 0.0011 0.001 0.0011 0.0011 0.0011

0.3 50 2 0.0243 0.0232 0.0241 0.024 0.024
100 3 0.0127 0.0121 0.0127 0.0126 0.0126
200 4 0.0057 0.0055 0.0057 0.0056 0.0056
500 7 0.0022 0.0022 0.0022 0.0022 0.0022
1000 9 0.0011 0.0011 0.0011 0.0011 0.0011

0.375 50 3 0.0273 0.0248 0.0269 0.0267 0.0268
100 4 0.013 0.0121 0.0128 0.0127 0.0127
200 5 0.0061 0.0059 0.0061 0.0061 0.0061
500 8 0.0023 0.0023 0.0023 0.0023 0.0023
1000 12 0.0012 0.0012 0.0012 0.0012 0.0012

0.45 50 3 0.0279 0.0254 0.0275 0.0275 0.0275
100 5 0.0139 0.0129 0.0137 0.0136 0.0136
200 6 0.0062 0.006 0.0061 0.0061 0.0061
500 10 0.0025 0.0024 0.0025 0.0025 0.0025
1000 14 0.0012 0.0012 0.0012 0.0012 0.0012
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Table 6

Estimation error in the first coefficient (φ̂h(1)− φh(1), h = h∗T ). Average
in R = 1000 replications, by estimation method, model, and sample size.

Estimation method
Model d T h φh(1) LS YW FB Burg GB
MA 50 6 0.8571 -0.0233 -0.0534 -0.0232 -0.015 -0.0146

100 9 0.9 -0.0117 -0.0353 -0.0132 -0.0077 -0.0076
200 13 0.9286 -0.0061 -0.0241 -0.0068 -0.0044 -0.0044
500 21 0.9545 -0.0035 -0.0145 -0.0033 -0.0024 -0.0024
1000 31 0.9688 -0.003 -0.0112 -0.003 -0.0024 -0.0024

FN 0.125 50 1 -0.1429 0.0044 0.0073 0.0047 0.0047 0.0046
100 1 -0.1429 0.0017 0.0031 0.0018 0.0018 0.0018
200 1 -0.1429 0.0003 0.001 0.0003 0.0003 0.0003
500 2 -0.1333 -0.0009 -0.0008 -0.001 -0.001 -0.001
1000 4 -0.129 -0.0013 -0.0012 -0.0013 -0.0012 -0.0012

0.3 50 2 -0.3529 0.02 0.0233 0.0196 0.0199 0.0198
100 3 -0.3333 0.0103 0.0104 0.0099 0.0097 0.0097
200 4 -0.3243 0.006 0.0054 0.0055 0.0055 0.0055
500 7 -0.3134 0.002 0.0017 0.002 0.0021 0.0021
1000 9 -0.3103 0.0008 0.0005 0.0008 0.0008 0.0008

0.375 50 3 -0.4286 0.0256 0.0203 0.0239 0.0232 0.0232
100 4 -0.4138 0.0135 0.0091 0.0128 0.0126 0.0126
200 5 -0.4054 0.0092 0.006 0.0086 0.0085 0.0085
500 8 -0.3934 0.0044 0.0027 0.0043 0.0043 0.0043
1000 12 -0.3871 0.0021 0.0009 0.0021 0.002 0.002

0.45 50 3 -0.5294 0.0307 0.0053 0.0285 0.0276 0.0276
100 5 -0.4945 0.0147 -0.0078 0.0134 0.0135 0.0135
200 6 -0.4865 0.0111 -0.0035 0.0103 0.0104 0.0104
500 10 -0.4712 0.0054 -0.0023 0.0054 0.0055 0.0055
1000 14 -0.4649 0.0032 -0.0015 0.0032 0.0031 0.0031
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Table 7

Estimation error in the partial autocorrelation coefficient (φ̂h(h)− φh(h),
h = h∗T ). Average in R = 1000 replications, by estimation method,

model, and sample size.

Estimation method
Model d T h φh(h) LS YW FB Burg GB
MA 50 6 0.1429 0.0224 -0.0017 0.0212 0.0205 0.0207

100 9 0.1 -0.0028 -0.0164 -0.0035 -0.0035 -0.0034
200 13 0.0714 -0.0015 -0.0111 -0.0018 -0.0019 -0.0018
500 21 0.0455 -0.0003 -0.0057 -0.0003 -0.0003 -0.0003
1000 31 0.0313 -0.0009 -0.0047 -0.0009 -0.0009 -0.0009

FN 0.125 50 1 -0.1429 0.0044 0.0073 0.0047 0.0047 0.0046
100 1 -0.1429 0.0017 0.0031 0.0018 0.0018 0.0018
200 1 -0.1429 0.0003 0.001 0.0003 0.0003 0.0003
500 2 -0.0667 0.0022 0.0024 0.0022 0.0022 0.0022
1000 4 -0.0323 0.002 0.0022 0.002 0.002 0.002

0.3 50 2 -0.1765 0.0455 0.0519 0.046 0.0458 0.0457
100 3 -0.1111 0.0115 0.0159 0.0116 0.0116 0.0116
200 4 -0.0811 0.0132 0.0154 0.0132 0.0132 0.0132
500 7 -0.0448 0.0019 0.0026 0.0019 0.0019 0.0019
1000 9 -0.0345 0.0032 0.0036 0.0032 0.0032 0.0032

0.375 50 3 -0.1429 0.0243 0.0391 0.0251 0.0251 0.025
100 4 -0.1034 0.0284 0.0357 0.0287 0.0286 0.0286
200 5 -0.0811 0.0099 0.0138 0.0099 0.0099 0.0099
500 8 -0.0492 0.007 0.0087 0.0071 0.0071 0.0071
1000 12 -0.0323 0.0038 0.0046 0.0039 0.0039 0.0039

0.45 50 3 -0.1765 0.0277 0.06 0.0288 0.0288 0.0287
100 5 -0.0989 0.0158 0.0331 0.0164 0.0164 0.0164
200 6 -0.0811 0.0164 0.0257 0.0165 0.0165 0.0165
500 10 -0.0471 0.0085 0.0124 0.0086 0.0086 0.0086
1000 14 -0.0332 0.005 0.0069 0.0051 0.0051 0.0051
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