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Abstract: 
 

Applications of exponential smoothing to forecast time series usually rely on three 
basic methods: simple exponential smoothing, trend corrected exponential smoothing 
and a seasonal variation thereof. A common approach to select the method appropriate 
to a particular time series is based on prediction validation on a withheld part of the 
sample using criteria such as the mean absolute percentage error. A second approach 
is to rely on the most appropriate general case of the three methods.  For annual series 
this is trend corrected exponential smoothing: for sub-annual series it is the seasonal 
adaptation of trend corrected exponential smoothing. The rationale for this approach 
is that a general method automatically collapses to its nested counterparts when the 
pertinent conditions pertain in the data.  A third approach may be based on an 
information criterion when maximum likelihood methods are used in conjunction with 
exponential smoothing to estimate the smoothing parameters. In this paper, such 
approaches for selecting the appropriate forecasting method are compared in a 
simulation study. They are also compared on real time series from the M3 forecasting 
competition. The results indicate that the information criterion approach appears to 
provide the best basis for an automated approach to method selection, provided that it 
is based on Akaike’s information criterion.  
 
JEL CLASSIFICATION:  C22 

Keywords: 

Model selection; exponential smoothing; information criteria; prediction; forecast 
validation  
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1. Introduction 

The exponential smoothing methods are relatively simple but robust approaches to 

forecasting. They are widely used in business for forecasting demand for inventories 

(Gardner, 1985). They have also performed surprisingly well in forecasting 

competitions against more sophisticated approaches (Makridakis et al ,1982; 

Makridakis and Hibon, 2000).  

 

Three basic variations of exponential smoothing are commonly used in practice: 

simple exponential smoothing (Brown, 1969); trend-corrected exponential smoothing 

(Holt, 1957); and Winters method (Winters, 1960). A distinctive feature of these 

approaches is that a) time series are assumed to be built from unobserved components 

such as the level, growth and seasonal effects; and b) these components need to be 

adapted over time when demand series display the effects of structural changes in 

product markets. As these components may be combined by addition or multiplication 

operators, 24 variations of the exponential smoothing methods may be identified 

(Hyndman, Koehler, Snyder and Grose, 2002). Given this proliferation of options, an 

automated approach to method selection becomes most desirable (Gardner, 1985; 

McKenzie, 1985).  

 

Hyndman et al. (2002) provided a statistical framework for exponential smoothing 

based on the earlier work of Ord, Koehler and Snyder (1997). The framework 

incorporated stochastic models underlying the various forms of exponential 

smoothing and enabled the calculation of maximum likelihood estimates of smoothing 

parameters.  It also enabled the use of Akaike’s information criterion (Akaike, 1973) 

for method selection. One issue not addressed was the preference for Akaike’s 
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information criterion over possible alternatives in Schwarz (1978), Hannan and Quinn 

(1979), Mallows (1964), Golub, Heath, and Wahba (1979), and Akaike (1970). An 

aim, therefore, is to determine whether Akaike’s information criterion (AIC) has a 

superior performance to its alternatives.  

 

The exponential smoothing methods were traditionally implemented without 

reference to a statistical framework so that other approaches were devised to resolve 

the method selection problem. Prediction validation (Makridakis, Wheelwright and 

Hyndman, 1998) is one such approach. The sample is divided into two parts: the 

fitting sample and the validation sample. The fitting sample is used to find sensible 

values for the smoothing parameters, often with a sum of squared one-step ahead 

prediction error criterion. The validation sample is used to evaluate the forecasting 

capacity of a method with a criterion such as the mean absolute percentage error 

(MAPE). Another approach applies a general version of exponential smoothing on the 

assumption that it effectively reduces to an appropriate nested method when this is 

warranted by the data. Trend corrected exponential smoothing is applied to annual 

time series; Winter’s method is applied to sub-annual time series. A second aim is to 

gauge the effectiveness of these traditional approaches relative to the information 

criterion approach to method selection.  

 

The plan of this paper is as follows. State space models for exponential smoothing and 

an approach to their estimation are introduced in Section 2. Criteria to be used in  

model selection and a measure for comparing resulting forecast errors are explained in 

Section 3. A simulation study is discussed in Section 4. An application of the model 

selection criteria to the M3 competition data (Makridakis and Hibon., 2000) is given 
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in Section 5. The paper ends with some concluding remarks in Section 6.  

2. State space models 

The state space framework in Snyder (1985), and its extension in Ord et al. (1997), 

provide the basis of an efficient method of likelihood evaluation, a sound mechanism 

for generating prediction distributions and the possibility of model selection with 

information criteria. Important special cases, known as structural models, that capture 

common features of time series such as trend and seasonal effects, provide the 

foundations for simple exponential smoothing, trend corrected exponential smoothing 

and Winters seasonal exponential smoothing. Of the 24 versions of exponential 

smoothing found in Hyndman et. al. (2002), the scope of this study is limited to three 

linear cases.  

 

The focus is on a time series that is governed by the innovations model (Snyder, 

1985):  

     ttty ε+′= −1xh              (2.1) 

     α+= −1tt Fxx tε              (2.2) 

 

Equation (2.1), called the measurement equation, relates an observable time series 

value  in typical period  to a random -vector  of unobservable components 

from the previous period.  is a fixed -vector, while the 

ty t k 1−tx

h k tε , the so-called 

innovations, are independent and normally distributed random variables with mean 

zero and a common variance 2σ . The intertemporal dependencies in the time series 

are defined in terms of the unobservable components with the so-called transition 

equation (2.2). F is a fixed  ’transition’ matrix and k × k α  is a -vector of smoothing k
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parameters. 

 

The following special cases are termed structural models.  

• Local Level Model (LLM)  tt ε+= −1ty  l

tt

 where  is a local level 

governed by the recurrence relationship 

tl

tαε+= −1ll  where 10 ≤≤ α . 

It underpins the simple exponential smoothing method.  

• Local Trend Model (LTM)  tttt by ε++= −− 11l  where  is a local 

growth rate. The local level and local growth rates are governed by the 

equations 

tb

tttt b ε++= −− 11ll  and b ttt b βε+= −1  where 10 ≤≤ α  and 

αβ ≤≤0 . Note that α ′  = [ ]βα . This model underpins trend corrected 

exponential smoothing.  

• Additive Seasonal Model (ASM)  tmtttt sby ε+++= −−− 11l

ttt b

, where 

 is the local seasonal component. The local level, growth and seasonal 

components are governed by 

ts

t αε++= −− 11l tt bbl , tβε+= −1 , 

tmtsts γε+= −  where m is the number of seasons in a year, 1≤≤0 α , 

βα ≤≤0 , and αγ −≤≤ 10 .  In this case α ′ = [ ]γβα .  This model 

is the basis of Winters additive method.  

 

Traditionally, the smoothing parameters α β γ, ,  were set to fixed values determined 

subjectively by users on the basis of personal experience. The studies of Chatfield 

(1978) and Bartolomei and Sweet (1989) show that this can be problematic and that 

parameters are best estimated from data. Ord et al. (1997) recommend that estimates 

of the parameters be obtained by maximizing the conditional log-likelihood. For the 

class of linear state-space models (2.1) and (2.2) the conditional likelihood function 
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based on a sample of size n is given by  

   ∑
=

−−−=
n

t
t

nnL
1

2
2

2

2
1)log(

2
)2log(

2
log ε

σ
σπ            (2.3) 

where the errors are calculated recursively with a general linear form of exponential 

smoothing defined by the relationships 1−′−= ttt y xhε  and α+= −1tt Fxx tε  for 

.  1 2t …= , , , n

 

This likelihood is not only a function of α  but also of the unobserved random vector 

. The exact likelihood function is potentially obtained by integrating  out of 

(2.3). An alternative strategy, however, is to treat  as a fixed unknown quantity - 

hence the use of the term ‘conditional’.  If the initial seed state vector is estimated first 

and entered into the conditional likelihood function, then the conditional likelihood is 

only maximized with respect to the parameter vector 

0x 0x

0x

α .  The conditional likelihood 

function was used for the studies in this paper for reasons that will be explained in the 

next section. 

 

On obtaining the estimates  and 0x̂ α̂

1−

, the exponential smoothing algorithm may be 

used to obtain the corresponding estimate x  of the state vector at the end of the 

sample. Point forecasts may be generated recursively with the equations 

 and  for 

nˆ

j1)(ˆ −+′= jnn jy xh ˆˆ ++ jnjn xx = F r,,2,1 K=  where r is the prediction 

horizon.  

3. Model selection approaches and a measure for comparing them 

An information criterion has the general form ),()ˆ(log qnpL −α  where p(n,q) is the 

so-called penalty function,  being the number of free parameters. Various forms of q
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the penalty have been suggested, as may be seen from Table 1. Note that  is the 

number of free parameters in the smallest model that nests all models under 

consideration and .   

q∗

∗−= qnc

 

It is tempting to use the optimized value of the exact likelihood in the formulae for the 

various information criteria. However, the state variables in the models are generated 

by non-stationary processes so that the seed state vector has an improper 

unconditional distribution. One is confronted with a situation that is similar to 

Bartlett’s paradox (Bartlett (1957)) in Bayesian statistics. Exact likelihood values for 

models with different state dimensions are non-comparable and information criteria 

based on them will also be non-comparable. This is not an issue for the conditional 

likelihood because the use of improper unconditional distribution of the seed state 

vector is avoided. It is for this reason, that the conditional likelihood was used instead 

of the exact likelihood for estimating the parameter vector α . It is also for this reason, 

that the conditional likelihood was used with the information criteria. 

 

No clear theory exists for deciding which of these information criteria is best suited 

for choosing the appropriate method of exponential smoothing. Thus, a simulation 

study was undertaken to compare them.  The simulation also included a comparison 

with two other approaches for model selection.  The prediction validation approach 

(Val) selects the model with the smallest MAPE for forecasting withheld data, and the 

encompassing model approach always selects LTM for annual data and ASM for 

quarterly and monthly data. 

 

The performance of each approach was gauged in terms of the following unit free 
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measure of forecasting effectiveness: 

          Median absolute prediction error as a percentage of the standard deviation of  ty

             )(APESMedianMdAPES =









×= 100

deviaton  Standard
error Prediction

ty
Median   

    = 





















×

−−

−

∑
=

+ 100
)1/()(

)(ˆ

2

1
nyy

jyy
Median

n

t
t

njn   

This measure was chosen for several reasons.  It had to be a unit free measure to 

permit comparisons between real time series measured in different units.  It had to 

avoid the problems encountered with the MAPE (and its variations) for series values 

close to zero.  Most importantly, it had to give a fair comparison on time series with 

different standard deviations. One would expect the forecast error to be larger when 

the standard deviation of a time series is large. The absolute prediction error as a 

percentage of the standard deviaton, APES, is a measure that will not produce larger 

values just because there is more variability in the time series. Thus, such time series 

will not necessarily cause an increase in the MdAPES just because of the larger 

variability.  Inherently more variable time series can still have APES values near the 

median value and play a central in the evaluation process.  In the comparisons, both 

simulated data and real data with different amounts of variability are included. 

 

4.  Simulation Study 

 The simulation study consisted of many experiments carried out under a wide variety 

of conditions. Depending on the type of data, the time series were generated by the 

three models: local level model (LLM), local trend model (LTM) and additive 
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seasonal model (ASM). Candidate values for the various factors in these models were: 

   =σ  10, 20 (for all models) 

     24, 40 (for LLM and LTM) =n

     24, 60 (for quarterly/m=4 ASM) =n

     48, 96 (for monthly/m=12 ASM) =n

   =α  0.1, 0.5, 0.9;  l  (for LLM) 1000 =

    , , ;      (for LTM ) 







=








05.0
1.0

β
α









1.0
4.0









1.0
7.0

,
1

1000








=









ob
l









5

100

    , ;    ; ,
1.0

05.0
1.0
















=

















γ
β
α

















2.0
1.0
4.0

















3.0
1.0
7.0

,
1

1000








=









ob
l









5

100
=A  0, 25, 50 (for ASM) 

 

The various combinations of these factors leads to 180 scenarios for the simulation 

study.   

 

The 180 scenarios were repeated 10 times (i.e. 10 trials) so that the study consisted of 

1800 simulation experiments.  Each experiment consisted of the following four steps: 

1.  Generate a time series, from a specified model, consisting of a) a tuning 

sample of a specified size  and b) an evaluation sample for r succeeding 

periods.  For annual data 

n

6=r , for quarterly data 8=r , and for monthly data 

.    18=r

2. Using the conditional likelihood function, fit a collection of models (the 

LLM and LTM for annual data; additionally the ASM model for quarterly 

and monthly data) to the tuning sample. 

3. Select the best model by one of the model selection approaches 

a. For the six information criterion approaches, choose the model that 
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is best according to the specified information criterion. 

b. For the prediction validation approach (Val) 

i. Withhold the last r years of the tuning sample and fit the 

local level model, local trend model, and additive seasonal 

model to the first n-r values by maximizing the conditional 

likelihood function. 

ii. Choose the model with the smallest MAPE for the forecasts 

of the r periods of withheld data.  

c. For the encompassing approach (Enc) 

i. Choose the local trend model for annual data. 

ii. Choose the additive seasonal model for quarterly and 

monthly data. 

4.  Using the estimates from Step 2 for the model chosen in Step 3 

       i. Generate predictions for each of the r periods in the evaluation 

          sample. 

ii. Calculate the absolute prediction error as a percentage of the      

standard deviation of  the tuning sample (APES) for each of  the  

time periods in the evaluation sample.  

 

For Step 1 only, the seed seasonal components in the ASM were generated from the 

equation )/2sin( mjAs mj π=− , mj ,,2,1 K= , where  is the seasonal amplitude and 

m is the number of seasons in a year.) 

A

 

In  Step 2 the estimates for the initial seed state vector  were found by: 0x

 Average of the first three values (for LLM) 
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 Global trend for the first five observations (for LLT) 

 Global trend and seasonal dummies for the first two years of data (for ASM) 

 

The results of the simulation are shown in Tables 2 through 4.  Table 2 contains 

results that use all 180 scenarios in each of the 10 trials.  For each of the eight model 

selection approaches, Table 2(a) displays the median absolute prediction error as a 

percentage of the standard deviation (MdAPES), and Table 2(b) contains the 

interquartile range (IQR) of APES, a unit free measure for the variability of the 

prediction errors.  Parts (c) and (d) of Table 2 show the individual ranking of the eight 

model selection approaches on each trial and the mean ranking for all ten trials, where 

a rank of 1 is best.  The AIC and FPE have the smallest mean ranking of 2.2 for the 

MdAPES, and the AIC has the least variability for the prediction errors as shown by 

smallest mean ranking of 3.0 for the IQR of the APES.  However, the actual values of 

the MdAPES are very close for many of the criteria.  Only the BIC and the Prediction 

Validation (Val) approaches are consistently worse than the other methods with 

respect to the median and the IQR. In particular, both these approaches are worse than 

the encompassing approach, which is to always choose the LTM for annual data and 

the ASM for quarterly and monthly data.  This is a surprising result for BIC and Val 

and will be examined more closely by looking at the subcategories in Tables 3 and 4 

and on real data.   

 

Comparisons within subcategories that are formed by splitting the forecasts for all the 

simulated time series into forecasts over short and long horizons, forecasts from large 

and small tuning samples, and forecasts for annual, quarterly, and monthly data are 

presented in Tables 3 and 4.  Table 3 shows the values of the MdAPES, and Table 4 
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shows the mean ranking of MdAPES.  In Table 4, the mean ranking for the AIC is 

never worse than the other methods and is usually much better. The BIC and Val 

continue to be ranked very low and always much worse than the AIC.  For seasonal 

data, both the BIC and Val are worse than the Enc, which always chooses the ASM.  

However, for annual data both are better than Enc.  While the AIC has better rankings 

compared to other approaches, the actual percentages are frequently quite close except 

for BIC and Enc.  FPE is almost identical to the AIC.  This latter result is to be 

expected since they are the same asymptotically.  It is interesting that the 

encompassing model does so well compared to the all other criteria in all 

subcategories other than annual data. 

 

The use of simulated data does raise the criticism that in real life the true model is 

unknown. Furthermore, real series are not so well behaved as the simulated series. 

This happens even when random errors and outliers are included in the simulated 

series. In the next section, we investigate how forecasting performance is affected by 

the eight approaches to model selection on real data.  

5.  Application to the M3 Competition Data 

In this section the eight model selection approaches are applied to the M3 competition 

data (Makridakis and Hibon, 2000) to see whether the results of simulated data carry 

through for real data.  In order to apply all eight approaches to the same set of time 

series, it was necessary to remove time series that were too short.  Each time series 

had a tuning sample of a specified size n and an additional evaluation sample of size r 

where  for annual data, 6=r 8=r  for quarterly data, and 18=r  for monthly data.  

For the prediction validation appraoch, it was necessary to fit models to rn −  

observations.  Thus, since the fitting sample was reduced from n to n-r values and  
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observations were also needed to estimate the initial seed values for the unobservable 

components, it was decided to require  for annual,  for quarterly data, 

and  for monthly data.  These requirements left 1452 of the 2829 times series 

in the M3 data  for use in the comparative study. 

20≥n 28≥n

72≥n

 

The procedures that were described in Steps 2 and 3 of Section 3 for the simulation 

study were applied to the 1452 time series from the M3 competition data.  The results 

are shown in Tables 5 and 6.  Table 5 displays the median absolute prediction error as 

a percentage of the standard deviation of the time series (MdAPES) and the 

interquartile range of the APES for all the time series, and Table 6 has the MdAPES 

for subcategories.  Although not as strong, findings similar to those in the simulation 

study are seen in the comparison of applying the approaches to real data.  The AIC 

continues to have the smallest MdAPES and smallest IQR for the APES.  The BIC 

and Val remain the worst two criteria except in the case of model selection for annual 

data.  Since real data in not well-behaved as simulated data, one would not expect the 

evidence to be as strong for the M3 data. 

6. Conclusions 

Simulated time series and real time series from the M3 competition provide very 

similar information when they are used to compare approaches for model selection.  

The AIC appears to be the best of the information criteria for selecting among the 

major exponential smoothing methods.  Other studies for ARIMA models have not 

shown the AIC to be superior to the BIC (see for example Koehler and Murphree, 

1985).  However, these studies have been trying to distinguish the number of AR and 

MA terms rather than the amount of differencing.  The ARIMA models that are 

equivalent to LLM, LTM, and ASM differ by the amount of differencing as well as 
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the number of parameters.  Recall that in order to be able to compare the exponential 

smoothing models, the AIC and BIC are computed using the conditional likelihood 

function rather than the exact likelihood.  

 

 The comparisons on the simulated and real data both indicate that the prediction 

validation approach is a less desirable choice.  The tables show that prediction 

validation is especially poor for small samples and monthly data.  It makes sense that 

approaches that use all the data to fit the models in the selection process should be 

better than prediction validation, especially for short time series.   

 

The encompassing approach frequently does well in the comparisons.  However, it is 

not as good as the AIC.  Since computers have such great capacity and speed now, it 

is not a burden to do the extra work that is required by the AIC over always using 

LLT for annual data and ASM for monthly data.  Overall, the results support the use 

of the AIC to choose models for exponential smoothing. 
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Table 1. Alternative Penalty Functions  

Criterion            Penalty Function        Source   

    AIC        q   Akaike (1973)   

    BIC         ( )log 2q n /   Schwarz (1978)   

    HQ       qlog   ( )log(n Hannan and Quinn (1979) 

MCp       nlog   2/)/21( cq+   Mallows (1964)   

GCV       -nlog(1-q/n)    Golub et al. (1979)   

FPE    ( ) ( )log log 2n n q n n q+ − − /( )    Akaike (1970) 
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Table 2 

All time series in simulated data (10 trials of 180 scenarios) 
 
(a)  Median absolute prediction error as a percentage of the standard deviation 
      (MdAPES) 
Selection    Trial   
Approach 1 2 3 4 5 6 7 8 9 10 
AIC 25.3 21.0 21.9 18.6 25.8 26.7 25.1 22.9 21.6 26.1 
BIC 27.0 21.0 22.9 20.1 26.7 28.6 27.2 24.4 23.3 27.9 
HQ 25.6 20.2 21.9 19.0 26.1 27.2 25.0 22.9 22.2 25.9 
MCp 25.3 21.0 22.1 18.8 25.7 26.4 25.1 23.0 21.6 26.3 
GCV 26.0 21.5 23.6 19.1 25.8 25.1 25.5 23.1 22.1 25.8 
FPE 25.5 21.0 21.8 18.6 25.8 26.7 25.1 22.8 21.6 26.1 
Enc 26.3 21.6 23.9 18.9 25.7 25.1 25.9 23.2 22.1 25.9 
Val 27.3 23.2 25.9 20.4 26.9 27.5 28.1 24.4 25.2 27.4 

 
(b)  Interquartile range of the APES (IQR) 
Selection    Trial   
Approach 1 2 3 4 5 6 7 8 9 10 
AIC 50.3 46.3 43.0 41.3 58.8 55.4 50.5 47.2 44.3 54.1 
BIC 51.5 47.7 44.2 44.1 61.3 61.7 54.8 51.5 51.6 55.0 
HQ 51.3 46.8 43.4 41.5 58.8 54.9 50.6 47.3 46.5 53.1 
MCp 50.3 46.1 43.0 40.7 58.9 55.2 50.5 47.4 44.3 54.3 
GCV 52.1 48.0 45.1 41.3 57.7 51.9 50.8 44.9 44.2 52.5 
FPE 50.9 46.3 42.7 41.3 58.8 55.4 50.5 46.6 44.3 54.1 
Enc 52.6 48.0 44.5 41.2 57.7 52.4 51.6 44.8 44.2 52.5 
Val 56.8 57.6 48.8 45.1 62.4 61.1 58.5 48.9 52.9 57.1 

 
( c)  Ranking of  the MdAPES 
Selection    Trial   
Approach 1 2 3 4 5 6 7 8 9 10 Mean
AIC 1 2 2 1 3 4 2 2 1 4 2.2
BIC 7 5 5 7 7 8 7 7 7 8 6.8
HQ 4 1 2 5 6 6 1 3 6 2 3.6
MCp 1 4 4 3 1 3 2 4 1 6 2.9
GCV 5 6 6 6 3 1 5 5 4 1 4.2
FPE 3 2 1 1 3 4 2 1 1 4 2.2
Enc 6 7 7 4 1 1 6 6 4 3 4.5
Val 8 8 8 8 8 7 8 8 8 7 7.8

 
(d)  Ranking of the IQR 
Selection    Trial    
Approach 1 2 3 4 5 6 7 8 9 10 Mean 
AIC 1 2 2 4 4 5 1 4 3 4 3.0 
BIC 5 5 5 7 7 8 7 8 7 7 6.6 
HQ 4 4 4 6 3 3 4 5 6 3 4.2 
MCp 2 1 3 1 6 4 2 6 4 6 3.5 
GCV 6 7 7 3 1 1 5 2 2 2 3.6 
FPE 3 3 1 5 5 6 3 3 5 5 3.9 
Enc 7 6 6 2 2 2 6 1 1 1 3.4 
Val 8 8 8 8 8 7 8 7 8 8 7.8 
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Table 3 
Median absolute prediction error as a percentage of the standard deviation  
(MdAPES) for subcategories of the simulated data 
 
(a)  Forecast horizon 
 Selection  Trial   
Horizon Approach 1 2 3 4 5 6 7 8 9 10
short AIC 18.6 15.5 15.5 13.0 17.7 19.2 17.3 17.7 15.6 20.7
 BIC 19.6 16.2 17.1 14.5 19.4 20.1 18.6 19.2 17.1 21.9
 HQ 19.1 15.4 15.6 13.4 17.8 19.3 17.3 17.8 16.2 20.3
 MCp 18.6 15.4 15.6 13.2 17.6 19.0 17.3 17.7 15.6 20.9
 GCV 18.4 15.4 16.3 13.8 17.0 17.5 17.5 17.6 15.9 20.4
 FPE 18.7 15.5 15.5 13.0 17.7 19.2 17.3 17.8 15.6 20.7
 Enc 18.5 15.4 16.3 13.6 16.9 17.5 17.6 17.6 15.9 20.9
 Val 20.1 18.4 19.3 15.0 19.1 19.3 19.0 19.2 19.0 20.6
long AIC 34.5 26.7 32.1 25.8 40.5 38.2 36.8 30.7 29.4 36.6
 BIC 38.1 26.3 32.5 28.2 39.6 41.2 39.3 33.1 32.9 39.4
 HQ 35.8 25.7 32.5 26.2 40.0 38.4 36.9 31.5 31.1 35.9
 MCp 34.5 26.8 32.2 26.1 40.5 37.5 36.8 30.8 29.4 37.1
 GCV 35.8 27.8 33.6 27.6 40.7 35.7 36.5 30.8 31.6 36.4
 FPE 34.9 26.7 32.1 25.8 40.5 38.2 36.8 30.7 29.4 36.6
 Enc 36.3 27.8 33.8 27.1 40.7 36.0 36.9 31.0 31.4 36.5
 Val 38.8 28.5 33.7 28.6 39.2 36.9 41.8 31.3 31.5 38.9

Note: annual (short 1-3, long 4-6); quarterly (short 1-4, long 5-8); 
 monthly (short 1-9, long 10-18) 
 
(b)  Sample size 
 Selection  Trial   
Sample Approach 1 2 3 4 5 6 7 8 9 10
small AIC 34.7 35.6 34.7 29.6 47.2 43.6 36.2 38.7 34.5 41.5
 BIC 39.4 36.5 36.5 34.3 47.6 48.3 38.5 42.1 37.4 46.1
 HQ 36.3 35.4 34.8 30.9 47.7 43.5 35.9 39.3 36.1 41.6
 MCp 34.7 35.5 34.8 29.0 47.2 44.0 36.2 38.9 34.5 41.8
 GCV 36.1 38.1 36.7 31.3 47.0 41.0 35.8 38.1 35.4 41.0
 FPE 35.8 35.6 34.6 29.6 47.2 43.6 36.2 38.5 34.5 41.5
 Enc 36.4 37.9 36.6 31.0 47.0 41.2 36.4 38.2 35.2 41.3
 Val 42.7 39.2 38.6 31.5 43.4 43.8 40.0 38.9 37.9 44.9
large AIC 17.0 11.4 12.8 11.6 11.1 15.8 17.3 13.2 13.5 15.6
 BIC 17.5 12.0 12.7 11.9 11.7 16.9 18.2 13.4 13.7 16.3
 HQ 17.1 11.1 12.4 11.5 11.4 16.3 17.3 13.3 12.9 15.7
 MCp 17.0 11.4 12.8 11.6 11.0 15.1 17.3 13.2 13.5 15.6
 GCV 17.4 11.8 13.0 11.3 11.2 14.8 17.5 13.4 13.4 15.7
 FPE 17.0 11.4 12.8 11.6 11.1 15.8 17.3 13.2 13.5 15.6
 Enc 17.3 11.8 13.0 11.3 11.2 14.8 17.5 13.5 13.4 15.7
 Val 17.2 13.2 14.4 13.0 14.0 16.7 19.0 14.5 15.0 15.6

Note: annual (small 24, large 40), quarterly (small 24, large 60); 
monthly (small 48, large 96) 
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Table 3 (continued) 
 
 (c)  Type of data 
 Selection  Trial   
Type Approach 1 2 3 4 5 6 7 8 9 10
annual AIC 48.4 32.6 42.5 45.3 46.9 43.2 44.6 48.5 36.5 31.4
 BIC 49.7 32.1 43.2 46.0 46.9 42.3 45.2 49.3 37.4 39.0
 HQ 48.4 32.8 43.7 45.3 46.9 42.3 45.7 48.5 36.5 31.4
 MCp 48.4 32.6 42.5 45.3 46.9 43.2 44.6 48.5 36.5 31.4
 GCV 48.4 35.3 44.6 41.1 50.0 46.1 43.6 40.2 38.9 32.3
 FPE 48.4 32.6 42.5 45.3 46.9 43.2 44.6 48.5 36.5 31.4
 Enc 50.7 34.7 43.5 38.6 50.0 45.9 50.1 41.1 37.3 35.7
 Val 52.3 25.2 42.1 41.8 53.6 40.8 46.8 40.2 36.5 31.2
quarterly AIC 23.5 23.3 23.5 24.9 22.7 26.1 24.1 24.7 26.4 29.1
 BIC 23.5 23.3 22.9 27.0 22.7 26.3 24.4 26.4 27.8 29.3
 HQ 23.5 23.3 22.9 26.7 22.7 26.4 24.2 25.0 26.5 29.3
 MCp 23.5 23.4 23.5 24.6 22.7 26.4 24.1 25.1 26.4 29.6
 GCV 24.3 23.2 25.7 24.4 21.9 24.5 25.2 23.8 24.7 29.0
 FPE 23.5 23.3 23.2 24.9 22.7 26.1 24.1 24.7 26.4 29.1
 Enc 24.4 23.2 25.7 24.4 21.9 24.5 25.2 23.8 24.7 29.0
 Val 24.5 24.7 25.6 27.1 23.6 27.5 25.5 26.8 28.1 29.7
monthly AIC 23.7 18.9 18.5 14.4 25.3 24.6 23.0 19.5 18.6 24.0
 BIC 26.1 19.2 19.8 16.2 26.6 28.1 26.1 21.3 19.5 26.0
 HQ 24.5 18.1 18.6 14.8 25.7 25.1 22.6 19.3 18.8 23.6
 MCp 23.7 18.9 18.7 14.4 25.3 24.4 23.0 19.5 18.6 24.2
 GCV 24.4 19.5 19.2 15.3 25.6 22.6 23.2 20.7 19.4 24.0
 FPE 24.1 18.9 18.5 14.4 25.3 24.6 23.0 19.4 18.6 24.0
 Enc 24.4 19.5 19.2 15.3 25.6 22.6 23.2 20.7 19.4 24.0
 Val 26.3 21.6 23.1 16.3 26.8 25.1 27.0 21.1 22.2 25.4

 
 
 
 
Table 4 
Mean ranking of the MdAPES for subcategories 
 
 
Selection Forecast Horizon Sample Size    Type of Data 
Approach short long small large annual quarterly monthly 
AIC 2.8 2.3 2.7 2.5 2.4 2.9 1.9 
BIC 7.3 6.2 7.0 6.6 5.3 4.6 7.1 
HQ 4.4 4.0 4.4 3.5 4.2 4.9 3.3 
MCp 3.4 3.7 3.9 3.1 4.1 5.0 3.0 
GCV 2.8 4.4 3.5 4.4 5.2 2.7 4.4 
FPE 4.2 3.7 3.7 4.0 5.2 4.6 3.2 
Enc 3.8 5.5 4.2 5.0 5.9 3.5 5.4 
Val 7.3 6.2 6.6 6.9 3.7 7.8 7.7 

Note: annual (short 1-3, long 4-6); (small 24, large 40) 
      quarterly (short 1-4, long 4-8); (small 24, large 60) 
       monthly (short 1-9, long (10-18); (small 48, large 96) 
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Table 5 
All time series from the Makridakis  
M3 Competition 
 
Selection  
Approach MdAPES IQR(APES)
AIC 36.2 61.9
BIC 37.5 63.2
HQ 37.0 61.9
MCp 36.3 61.6
GCV 36.7 63.4
FPE 36.2 62.0
Enc 36.6 64.2
Val 37.6 64.1

 
 
Table 6 
Subcategories of time series from the Makridakis M3 Competition 
 
  Selection    Selection 
Category  Approach MdAPES  Category  Approach MdAPES
Forecast short AIC 27.7  Type of annual AIC 45.8
Horizon  BIC 28.7     Data  BIC 45.0
  HQ 28.3    HQ 45.0
  MCp 27.7    MCp 45.8
  GCV 28.7    GCV 47.2
  FPE 27.7    FPE 45.8
  Enc 28.8    Enc 49.2
  Val 28.9    Val 45.0
 long AIC 47.0   quarterly AIC 35.2
  BIC 48.1    BIC 35.8
  HQ 47.6    HQ 35.3
  MCp 47.2    MCp 35.2
  GCV 47.5    GCV 35.6
  FPE 47.0    FPE 35.2
  Enc 47.2    Enc 35.6
  Val 48.6    Val 33.9
Sample small AIC 47.6   monthly AIC 36.0
Size  BIC 47.7    BIC 37.7
  HQ 47.6    HQ 37.1
  MCp 47.3    MCp 36.2
  GCV 49.2    GCV 36.5
  FPE 47.6    FPE 36.0
  Enc 49.4    Enc 36.2
  Val 50.2    Val 38.3
 large AIC 35.2  Note:    
  BIC 36.8     Annual Quarterly Monthly 
  HQ 36.2  Forecast    
  MCp 35.4  Horizon    
  GCV 35.6           short    1-3    1-4    1-9 
  FPE 35.3           long    4-6    5-8  10-18 
  Enc 35.5  Sample Median (divides small vs large) 
  Val 36.7  Size    40    44     116 
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