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Abstract

This paper extends current theory on the identification and estimation of vector time series

models to nonstationary processes. It examines the structure of dynamic simultaneous equa-

tions systems or ARMAX processes that start from a given set of initial conditions and evolve

over a given, possibly infinite, future time horizon. The analysis proceeds by deriving the ech-

elon canonical form for such processes. The results are obtained by amalgamating ideas from

the theory of stochastic difference equations with adaptations of the Kronecker index theory of

dynamic systems. An extension of these results to the analysis of unit-root, partially nonstation-

ary (cointegrated) time series models is also presented, leading to straightforward identification

conditions for the error correction, echelon canonical form. An innovations algorithm for the

evaluation of the exact Gaussian likelihood is given and the asymptotic properties of the ap-

proximate Gaussian estimator and the exact maximum likelihood estimator based upon the

algorithm are derived. Examples illustrating the theory are discussed and some experimental

e v i de nc e i s al so pr e se nte d. (Keywords:  ARMAX, partially nonstationary, Kronecker index theory identification)
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1 Introduction

The concept of cointegration, due to Granger (1981), has proven to be an extremely useful

tool in the analysis of many economic and financial time series and it has given rise to an

extensive literature. Lucid surveys of this development can be found in Banerjee, Dolado,

Galbraith, and Hendry (1993) and Hatanaka (1996). Following the seminal papers by Engle and

Granger (1987) and Johansen (1991), much of the empirical and theoretical work on cointegration

has been conducted in the context of vector autoregressive, AR, processes but more recently

interest has been shown in extending the ideas to more general models. Yap and Reinsel (1995)

and Lütkepohl and Claessen (1997), for example, consider estimation problems associated with

cointegrated autoregressive moving-average, ARMA, processes, as does Dhrymes (1998). In such

treatise it is commonly supposed that results on the identification of stationary vector time series

models associated with the work of E. J. Hannan and M. Deistler (Hannan (1974, 1976), Deistler

(1983, 1985) and Hannan and Deistler (1988)), can be readily extended to the analysis of unit-

root nonstationary and partially nonstationary (cointegrated) processes without modification.

As the results presented below will show, such an assumption significantly understates the

theoretical issues associated with such an extension and is only partially correct.

This paper will provide a detailed discussion of the structure of nonstationary dynamic

simultaneous equations systems of the form

A(L)yt + B(L)xt = ξt, t = 1, . . . , T. (1.1)

In equation (1.1) the vector yt = (y1t, . . . , yvt)
′ denotes a v component observable output process

and xt = (x1t, . . . , xut)
′, if present, is a u component vector of observable exogenous input

variables. The v × v and v × u matrix operators A(z) = A0 + A1z
1 + · · · + Apz

p and B(z) =

B0 + B1z
1 + · · · + Bpz

p in the unit-delay or lag operator L, viz. Lyt = yt−1, determine the

basic evolutionary properties of yt and the stochastic disturbance, ξt = (ξ1t, . . . , ξvt)
′, which is

unobserved, determines how chance or random influences enter the system. The endogenous

process yt is assumed to evolve over the time period t = 1, . . . , T , according to the specification

given in (1.1) starting from initial values given by yt and xt for t = 1 − p, . . . , 0.

With economic and financial phenomena it will rarely if ever be appropriate to think of the

process as having evolved unchanged from the infinite past. Conditioning on initial values, which

is what the current paradigm implies and which corresponds to common current practice in the

analysis of nonstationary time series, is therefore only natural. Thus we are faced with the task

of analysing a discrete time, time invariant and causal dynamic system where time, following a

finite sequence of initial values, is explicitly confined to the positive integers.

It will be assumed that ξt is a full rank, zero mean, stationary process with covariance

E[ξtξ
′
t+τ ] = Γξ(τ) = Γξ(−τ)′, τ = 0,±1,±2, . . ., Γξ(τ) = 0 for |τ | > p. It is well known (see

Hannan, 1971, Theorem 10’ and the associated discussion) that this implies the existence of a

sequence of zero mean, uncorrelated random variates εt, t = 1−p, . . . , 0, 1, . . . , T , defined on the
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same probability space as ξt such that ξt = M(L)εt, t = 1, . . . , T, where E[εtε
′
t] = Σε is positive

definite and, without loss of generality, the v×v matrix operator M(z) = M0+M1z
1+· · ·+Mpz

p

satisfies det(M(z)) 6= 0, |z| < 1.1 Expressed in the form

A(L)yt + B(L)xt = M(L)εt, t = 1, . . . , T, (1.2)

equation (1.1) gives us an autoregressive moving-average model with exogenous variables, com-

monly referred to as an ARMAX system.

An ARMAX process of the type described above clearly violates the standard conditions

for yt to be stationary. More importantly, we wish to explicitly allow for unit root, partially

nonstationary behaviour and hence we will assume that detA(z) has ζ ≤ v roots of unity,

all other zeroes of detA(z) lie outside the unit circle, and that the individual series yi,t, i =

1, . . . , s, are asymptotically-stationary after first differencing, i.e., △yt = (1−L)yt = yt −yt−1,

t = 1, . . . , T , is I(0).2 The process yt is said to be integrated of order one, I(1), although

the possibility of individual, but not all, elements yi,t being I(0) without differencing is not

excluded. If ζ is strictly less than v then it can be shown (see Section 3.5 of Dhrymes (1998)

for example) that there are ̺ = v − ζ linear combinations of the yi,t, i = 1, . . . , v, that are

asymptotically-stationary even though yt is integrated. It is this feature, of course, that is

referred to as cointegration and yt is said to be cointegrated with cointegrating rank ̺.

A specification often assumed in the analysis of ARMAX systems is the reduced form

simply identified ARMAX(pa, pb, pm) structure in which the normalisation A0 = M0 = Iv is

imposed and the degrees pa = δ [A(z)], pb = δ [B(z)] and pm = δ [M(z)] are prescribed where

δ [A(z)] equals the degree of [A(z)] and so on. The coefficient matrices Au, 1 ≤ u ≤ pa, Bu,

1 ≤ u ≤ pb, and Mu, 1 ≤ u ≤ pm, are then free to vary subject to the identifiability conditions

that [A(z) : B(z) : M(z)] is left coprime and the matrix [Apa : Bpb
: Mpm ] has full row rank,

see Hannan (1971, 1976). This is the structure considered in Dhrymes (1998, Section 1.4.2)

and Hsiao (1997, Section 3), for example. Questions relating to the choice of model structure

and identification are not straightforward however, even in the stationary case. As pointed out

by Hannan, the reduced form simply identified ARMAX(pa, pb, pm) specification is actually

over-identifying in the sense that it excludes particular structures from consideration. In fact,

from Theorem 5.1 of Gevers (1986) we know that a simply identified ARMAX model can only

represent a system in which the McMillan degree is a multiple of v, and it is not canonical.

As pointed out by Lütkepohl and Poskitt (1996), such features can lead to serious practical

problems when investigating observed time series. Reduced form simply identified ARMAX

structures will generate similar problems for the current class of processes a fortiori.

In the analysis of cointegrated systems it has proved to be advantageous for both theoretical

and practical purposes to separate the long-run behaviour of the system from the more transient

dynamics by using the error correction, EC, form of the model due to Engle and Granger (1987).

It seems sensible, therefore, to contemplate combining the advantages of the EC specification

with the merits of the echelon canonical form of ARMAX processes, and consider modelling
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an observed time series using an error correction - autoregressive moving-average with exoge-

nous variables - expressed in echelon form, a specification that we will henceforth denote by

the acronym ECARMAXE . ECARMAXE specifications offer a flexible class of models with

which to capture the dynamics of a system under study and recent work of Lütkepohl and

Claessen (1997) and Poskitt (2003) indicates that in practice it is possible to construct a more

parsimonious but equally adequate representation of an observed multiple time series using

an ECARMAXE model rather than a more conventional ARX model whilst incurring little

increase in either numerical or analytic complexity.

The structure of an ECARMAXE model is characterized by a set of v + 1 nonegative

integers, namely, v Kronecker indices, that specify the polynomial degrees of the rows of A(z),

B(z) and M(z), and the cointegrating rank. The nature of this structure is examined in Sections

3 and 4 following Section 2 in which the general framework of the discussion is outlined whilst

establishing additional definitions and notational conventions. In Section 3 the Kronecker index

theory is extended to nonstationary ARMAX systems as described in (1.2). In Section 4

this extension is adapted and further expanded to cover partially nonstationary processes and

the canonical form of ECARMAXE specifications is established, thereby providing a rigorous

foundation for the empirical implementation of these models.

As a prelude to the discussion in Sections 3 and 4 note that approaches to the Kronecker

index theory that parallel the development in Akaike (1974) and which depend on Hilbert space

ideas involving prediction spaces stretching back into the infinite past are commonly used in the

analysis of stationary processes, as are derivations that construct the indices from the stationary

autocovariance sequence. See for example Hannan and Deistler (1988), or Reinsel (1993), and

the references contained therein. Such approaches are obviously not available here.

Motivated by results of Phillips (1991) indicating that the best way to proceed when analysing

cointegrated systems is via maximum likelihood incorporating all prior knowledge about the

presence of unit roots and the short run dynamics, Section 5 provides an algorithm for evaluating

the Gaussian likelihood of an ECARMAXE model and presents the asymptotic distribution of

the approximate Gaussian estimator and the exact maximum likelihood estimator. Section 5

also presents some simulation results. The paper ends in Section 6 with some brief remarks.

Most proofs are provided in the Appendix.

2 The Model, Assumptions and Preliminary Results

Isolating the input variables xt and εt on the right hand side of (1.2) gives

A(L)yt = N(L)wt, t = 1, . . . , T, (2.1)

where w′
t = (ε′t : −x′

t)
′ and N(z) = (M(z) : B(z)). For fixed values of v and u let [A : N] denote

the set of pairs [A(z) : N(z)] such that M0 = A0 and detA(0) 6= 0. Now set δ [A(z) : N(z)] equal

to the degree of [A(z) : N(z)], defined as max1≤i≤v δi [A(z) : N(z)] where δi [A(z) : N(z)] , i =
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1, . . . , v denotes the polynomial degree of the ith row of [A(z) : N(z)]. Let {[A : N]}p denote

the set {[A : N] : δ [A(z) : N(z)] = p}, with p finite. For [A(z) : N(z)] ∈ {[A : N]}p define the

coefficient sequence {Φ0,Φ1,Φ2, . . . ,ΦT+p−1} via the recursive relationships

i
∑

j=0

AjΦi−j = Ni, i = 0, . . . , p, and

p
∑

j=0

AjΦi−j = 0, i = p + 1, . . . , T + p − 1. (2.2)

Using standard nomenclature, {Φ0,Φ1,Φ2, . . . ,ΦT+p−1} will be referred to as the impulse re-

sponse sequence. Note that by construction ‖Φi‖ < ∞, i = 0, 1, . . . , T + p − 1, , where ‖ · ‖
denotes the Euclidean norm, and the condition that detA(0) 6= 0 implies that the power series

Φ(z) = limT→∞
∑T+p−1

0 Φiz
i will be convergent for |z| < c for some c > 0. If detA(z) 6= 0,

|z| ≤ 1, then ‖Φi‖ → 0 at an exponential rate as i → ∞, c = 1, and A(z) is said to be stable.

Assumption 2.1 : The series yt is an I(1) process that admits an ARMAX rep-

resentation as in (1.2), or equivalently (2.1), with [A(z) : N(z)] ∈ {[A : N]}p where:

(i) detA(z) = (1 − z)ζd(z), ζ ≤ v, and d(z) is stable, (ii) det(M(z)) 6= 0, |z| < 1,

(iii) the normalisation M0 = A0, detA0 6= 0, is imposed, and (iv) Σε > 0.

The equations in (2.2) define a mapping from [A(z) : N(z)] to Φ(z) which is sufficient to

determine the characteristics of the data generating mechanism in the stationary case by virtue

of the Wold representation theorem, see Lemma 1 of Deistler (1983). The properties of a process

satisfying Assumption 2.1 also depend on the homogenous solution to equation (2.1) when viewed

as a stochastic difference equation, however, and it is this feature, amongst others, that serves

to distinguish the current situation from the stationary case.

2.1 A Realization Theorem

For completeness let us briefly review the structure of the solutions to (2.1). It is well known that

the solution to a difference equation can be expressed as the sum of a particular solution and a

homogeneous solution and this is reflected in the following theorem relating the specification in

(2.1) to the representation of yt in input-output final form.

Theorem 2.1 The process yt admits an ARMAX representation of the form

A(L)yt = N(L)wt, t = 1, . . . , T,

with [A(z) : N(z)] ∈ {[A : N]}p and initial conditions given by (y′
t : w′

t)
′, t = 1 −

p, . . . , 0, if and only if yt admits a linear input-output representation

yt =

t+p−1
∑

s=0

Φswt−s + mt, t = 1 − p, . . . , 0, 1, . . . , T, (2.3)

in which the conditions
∑p

j=0 AjΦi−j = 0, i = p+1, . . . , T+p−1, and
∑p

j=0 Ajmt−j =

0, t = 1, . . . , T , are satisfied.
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The final form in (2.3) expresses yt as a function of current and past values of the input, the

initial values and the coefficients. The system is therefore described as being causal and time

invariant, time invariance meaning that the coefficient values are held constant over time.

Re-expressing the final form using the original partition of wt into εt and xt and employing

an obvious notation for the corresponding partition of the impulse response sequence we obtain

the following mean value for yt conditional on the initial values and the exogenous inputs,

µy(t) = mt −
t+p−1
∑

s=0

Φx,sxt−s, t = 1, . . . , T, (2.4)

where mt is calculated deterministically from the initial values. The covariance function is

Γy(t, s) =

s+p−1
∑

r=0

Φε,r+(t−s)ΣεΦ
′
ε,r , t ≥ s,

=

t+p−1
∑

r=0

Φε,rΣεΦ
′
ε,r+(s−t) , t < s,

= Γy(s, t)
′ , t, s = 1, . . . , T. (2.5)

Since a Gaussian process with mean (2.4) and covariance (2.5) can be readily constructed we

will, for ease of exposition, assume that yt is Gaussian.

2.2 Identification

Suppose then that εt is a zero mean Gaussian process with variance Σε for t = 1−p, . . . , 0, 1, . . . , T

and let Λξ = [Γξ(t− s)], t, s = 1, . . . , T , denote the Tv×Tv block Toeplitz covariance matrix of

ξt, t = 1, . . . , T , where Γξ(τ) = Γξ(−τ)′ =
∑p−τ

j=0 MjΣεM
′
j+τ , τ = 0, 1, . . . , p, and is otherwise

zero. Then the function

f(yT
1 |y0

1−p,x
T
1−p; λ) =

T
∏

t=1

f(yt|yt−1
1−p,x

t
1−p; λ)

= (2π)−Tv/2(detΛξ)
− 1

2 exp(−(ξT
1 )′Λ−1

ξ ξT
1 /2) , (2.6)

where yT
1 = (y′

1, . . . ,y
′
T )′, y0

1−p = (y′
1−p, . . . ,y

′
0)

′ and so on, defines the partial likelihood for

the parameter vector λ′ = (β′ : σ′) where β = vec[A0 : · · · : Ap : B0 : · · · : Bp : M0 : · · · : Mp]

contains the structural coefficients and σ = vech[Σε] the scale parameters, Cox (1975). Note

that the density of the endogenous variable is conditional on both the initial values and the

exogenous input.

Assumption 2.2 : The statistic y0
1−p is, using statistical parlance, ancillary for λ

and (2.6) defines the partial likelihood for λ where the exogenous process satisfies

Assumption 2.3. There are no restrictions on σ other than those that ensure Σε > 0

and there are no joint restrictions linking the elements of σ to those of β.
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Assumption 2.3 : Let 〈△x〉t|t−1 =
∑t+p−2

j=1 Lj△zt−j denote the projection of △xt

on to the space spanned by △zt−1
2−p where △zt = (△y′

t,△xt)
′, t = 2− p, . . . , T . Then

there exist constants Φ and λ, 0 < Φ < ∞ and 0 ≤ λ < 1, such that ||Ls|| < Φλs as

s → ∞. The exogenous disturbance △ηt = △xt − 〈△x〉t|t−1 is a Gaussian process

that is independent of εt and limT→∞ T−1
∑T

t=1 △ηt△η′
t−τ = Γ△η(τ) a.s. where

Γ△η(τ), τ = 0, 1, 2, . . . is a positive definite sequence.

Presuming that Assumptions 2.1, 2.2 and 2.3 hold, identification can now be defined by

the standard requirement that equality between the likelihood values f(yT
1 |y0

1−p,x
T
1−p; λ) and

f(yT
1 |y0

1−p,x
T
1−p; λ

∗) for all yT
1 , y0

1−p and xT
1−p implies that λ = λ∗, otherwise there would exist

parameter values λ and λ∗ with λ 6= λ∗ such that λ and λ∗ are observationally equivalent.

Given that there are no constraints linking the elements of σ to those of β, and M0 = A0, Σε is

determined uniquely by σ without further ado. Additional constraints must be placed upon β,

however, in order to select a characteristic element from within each observational equivalence

class. Theorem 2.1 implies that this can be done by constructing a one-to-one correspondence

between the initial values and [A(z) : N(z)], on the one hand, and Φs, s = 0, . . . , T +p−1, and

ms, s = 1− p, . . . , T , on the other, so that yT
1 and f(yT

1 |y0
1−p,x

T
1−p; λ) are uniquely determined

once y0
1−p and xT

1−p are known and the value of λ has been given.

3 The Kronecker Index Theory for Nonstationary ARMAX Pro-

cesses

Consider re-couching Theorem 2.1 in terms of a sequence of block Hankel matrices of finite di-

mension derived from the input-output representation. To this end, set Kτ = [Φτ : mτ−p+1] τ =

0, 1, . . . , T + p− 1, and define HR,T to be the Rv × (T + p−R)(v + u + 1) block Hankel matrix

with Ki+j−1 in the (i, j)th (v × (v + u + 1)) block, i = 1, . . . , R, j = 1, . . . , T + p − R. That is,

HR,T =















K1 K2 . . . KT+p−R

K2 K3 . . . KT+p−R+1

...
...

. . .
...

KR KR+1 . . . KT+p−1















.

Let hR,T (i, r) denote row (i − 1)v + r of HR,T , i = 1, . . . , R, r = 1, . . . , v. From the Hankel

structure of HR,T it follows that if hR,T (i, r) lies in the linear span of hR,T (i1, r1), . . . ,hR,T (iL, rL)

where ij < i, j = 1, . . . , L, then row hR+1,T (i + 1, r) of HR+1,T lies in the linear span of

hR+1,T (i1 + 1, r1), . . . ,hR+1,T (iL + 1, rL). Thus the block Hankel matrix sequence HR,T , R =

1, . . . , T + p − 1 exhibits similar linear dependence properties to those found in the infinite

dimensional block Hankel matrix conventionally analysed in the stationary case (cf. Hannan and

Deistler (1988, expression 2.3.5), for example, or Reinsel (1993, expression 3.2)). Arguments that
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parallel those employed in the stationary case can therefore be used to establish corresponding

results.

Our interest centers on how the properties of HR,T , R = 1, . . . , T + p − 1, can be used to

determine the structure of the input-output system.4 If we define the rank of the sequence as

sup1≤R≤T+p−1[ρ(HR,T )] where ρ(HR,T ) denotes the rank of HR,T then the following corollary to

Theorem 2.1 indicates that the rank provides a partial characterisation of the system equivalent

to the McMillan degree.

Corollary 3.1 : The process yt admits an ARMAX representation of the form

A(L)yt = N(L)wt, t = 1, . . . , T , for all T > vp, with initial conditions given by

(y′
t : w′

t)
′, t = 1 − p, . . . , 0, if and only if sup1≤R≤T+p−1[ρ(HR,T )] = ρ(Hp,T ) ≤ vp.

The characterisation is completed by selecting a basis for the row space of Hp+1,T , thereby

obtaining a unique parameterisation for the operator pair [A(z) : N(z)] in which

(i) arc,0 = nrc,0, r, c = 1, . . . , v,

(ii) arr(z) = 1 + arr,1z + · · · + arr,nrz
nr ,

arc(z) = arc,nr−nrc+1z
nr−nrc+1 + · · · + arc,nrz

nr and

(iii) nrc(z) = nrc,0 + nrc,1z + · · · + nrc,nrz
nr , r = 1, . . . , v, c = 1, . . . , u + v,

where

nrc =

{

min(nr + 1, nc) for c < r

min(nr, nc) for c ≥ r .

A pair [A(z) : N(z)] satisfying (i)–(iii) is said to be in echelon form and the nonnegative integers

ni, i = 1, . . . , v are called the Kronecker indices. Such a pair defines a canonical structure called

an echelon canonical form.

Theorem 3.1 For all T > vp a nonstationary ARMAX process yt is uniquely

defined via the initial conditions (y′
t : w′

t)
′, t = 1 − p, . . . , 0, and the representation

p
∑

j=0

Ajyt−j =

p
∑

j=0

Njwt−j , t = 1, . . . , T,

when the pair [A(z) : N(z)] ∈ {[A : N]}p are in echelon canonical form.

Since by assumption p is finite ρ(Hp,T ) = n1 + · · ·+nv ≤ vp is bounded and the echelon form

depends on fixed, finite values of the Kronecker indices, as it does in the stationary case. It is

clear, however, that the values nr, r = 1, . . . , v, are not invariant with respect to a reordering

of the elements of yt, for if P denotes an arbitrary permutation matrix then

Pyt =

t+p−1
∑

s=0

PΦswt−s + Pmt, t = 1 − p, . . . , 0, 1, . . . , T,

and the linear dependences in the Hankel matrix sequence that previously generated the Kro-
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necker indices may no longer hold for the permuted sequence

(P ⊗ IR)HR,T =















PK1 PK2 . . . PKT+p−R

PK2 PK3 . . . PKT+p−R+1

...
...

. . .
...

PKR PKR+1 . . . PKT+p−1















,

R = 1, . . . , T + p − 1. To this extent the echelon canonical form is only unique modulo such

rotations. Following an argument that exactly parallels the development of Gevers (1986, pp.

1750-1751), however, we can establish the following version of Gevers’ Lemma 2.4, which yields

a unique invariant form.

Lemma 3.1 : The variables in yt = (y1t, . . . , yvt)
′ can be permuted such that the

Kronecker indices of (yr(1)t, . . . , yr(v)t)
′ are arranged in descending order, nr(1) ≥

nr(2) ≥ · · · ≥ nr(v), where r(j), j = 1, . . . , v, denotes a permutation of 1, . . . , v that

induces the ordering. The nr(j), j = 1, . . . , v, are unique and are referred to as the

Kronecker invariants.

Thus if P now denotes a permutation matrix such that P(1, . . . , v)′ = (r(1), . . . , r(v))′ then

Pyt = (yr(1)t, . . . , yr(v)t)
′ has an echelon form ARMAX representation with Kronecker indices

(nr(1), . . . , nr(v)) equal to the Kronecker invariants. When expressed in terms of the Kronecker

invariants the coefficient matrix A0 = M0 is lower triangular, the representation of the system

is canonical and the ordered variables yr(j)t, j = 1, . . . , v possess unique characterisations.

Example:(i) Suppose that yt is a v component process generated by the reduced form structure

yt + Ayt−1 = εt + Mεt−1, t = 1, . . . , T,

with initial values y0 and ε0. Then Φ0 = I, Φ1 = M−A = D, Φj = (−A)j−1D, j = 2, 3, . . . , T ,

and mt = (−A)td, t = 0, 1, . . . , T , where d = y0 − ε0. Hence, from Theorem 2.1,

yt = εt +
t

∑

s=1

(−A)s−1Dεt−s + (−A)td, t = 1, . . . , T,

as can be verified by a direct sequence of successive substitutions, and

HR,T =















(D : d) (−A)(D : d) . . . (−A)T−R+1(D : d)

(−A)(D : d) (−A)2(D : d) . . . (−A)T−R+2(D : d)
...

...
. . .

...

(−A)R−1(D : d) (−A)R(D : d) . . . (−A)T (D : d)















.

From HR,T , R = 1, . . . , T , it is clear that sup1≤R≤T+p−1[ρ(HR,T )] = ρ(H1,T ) ≤ v and the

Kronecker indices nr ≤ 1, r = 1, . . . , v. Assume that ρ(H1,T ) = k < v. Then the Kronecker
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invariants are nr(j) = 1, j = 1, . . . , k, nr(j) = 0, j = k + 1, . . . , v, and the echelon form of

(yr(1)t, . . . , yr(k)t, yr(k+1)t, . . . yr(v)t)
′ is given by

A0 =

[

Ik 0

∗ Iv−k

]

and A1 =

[

∗ 0

0 0

]

with M0 = A0 and M1 = D + A1 where ∗ indicates a block of the (k : (v − k))′ × (k : (v − k))

partitioned matrix whose entries are not restricted by the canonical form . 2

3.1 Special Features

Although the current situation shares several features in common with the stationary case cer-

tain critical differences do arise. In particular, in the stationary case boundedness of the rank of

the infinite block Hankel matrix [Φ(i− j +1)]{i,j=1,...,∞} is associated with rationality and leads

to the conclusion that the canonical representation will be coprime, see Hannan and Deistler

(1988) for a self-contained discussion of rational transfer functions, coprimeness and other re-

lated issues. For a nonstationary process of the type being considered here the Hankel matrices

in the sequence HR,T , R = 1, . . . , T + p − 1, all have finite size and hence finite rank, but the

echelon form need not be coprime.

Example:(i’) Observe that the canonical structure given in Example:(i) is applicable whatever

the values of A and M. Thus, if A = M = −I and d = y0 − ε0 6= 0 where, without loss of

generality, d1 6= 0, then sup1≤R≤T+p−1[ρ(HR,T )] = 1 and a simple calculation shows that

A0 = M0 =















1 0 . . . 0

−d2/d1 1 . . . 0
...

...
. . .

...

−dv/d1 0 . . . 1















and A1 = M1 has first row (−1, 0, . . . , 0) and is otherwise zero. Expressed in terms of the

individual components we have y1,t − y1,(t−1) = ε1,t − ε1,(t−1) with initial values y1,0 and ε1,0,

and yi,t − εi,t = (di/d1)(y1,t − ε1,t) for i = 2, . . . , v, t = 1, . . . , T . Solving the echelon form

leads to the representation yi,t − di = εi,t, i = 1, . . . , v, t = 1, . . . , T . Note that the constants

di = yi,0−εi,0, i = 1, . . . , v, are definitive whereas the stationary solutions to yt−yt−1 = εt−εt−1,

for t ∈ Z = {0,±1,±2, . . .} are given by yt = d∗ + εt where d∗ is arbitrary. 2

This example illustrates that in a nonstationary world with fixed starting points coprimeness is

not a generic property of the canonical form. In order to examine the non-coprime situation in

a little more depth and assess the practical implications, let us extend the above example.

Example:(ii) Presume that yt is observed for t = 0, 1, . . . , T , and it is known that nr = 1,
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r = 1, . . . , v, but the coefficients A and M in the echelon form

yt + Ayt−1 = εt + Mεt−1, t = 1, . . . , T,

are unknown. Suppose also that there exist first stage estimates ε̄t of εt for t = 0, 1, . . . , T ,

such that T−1
∑T

t=0 ||ε̄t − εt||2 = O(HT /T ) a.s. where HT is an increasing sequence of values

such that HT /T → 0 as T → ∞. At least two versions of such estimates are available. The

first is given by the residuals from an AR of order hT = [c(log T )a], c > 0, a > 1, fitted to yt,

t = 1, . . . , T , supposing the initial values yt, t = −hT + 1, . . . , 0, are available. Proposition 3.1

of Poskitt (2003) tells us that HT = O(log T ) at most for this estimate. The second possibility

is to construct residuals using instrumental variable estimates of A and M, see inter alia Yap

and Reinsel (1995). Substituting ε̄t−1 for εt−1 in yt = −Ayt−1 + Mεt−1 + εt it can be seen

that second stage least squares estimates of A and M can be obtained by solving the normal

equations

[−ĀT : M̄T ]

T
∑

t=1

[

yt−1y
′
t−1 yt−1ε̄

′
t−1

ε̄t−1y
′
t−1 ε̄t−1ε̄t−1

]

=

T
∑

t=1

[yty
′
t−1 : ytε̄

′
t−1] . (3.1)

Now assume that A = M = C where C has singular values on the interval (0, 1] and y0 6= ε0.

Examining the components of 3.1 we find that

T−1
T

∑

t=1

yt−1y
′
t−1 = T−1

T−1
∑

t=1

εtε
′
t + T−1

T−1
∑

t=1

{εtd
′(−C′)t + (−C)tdε′t} +

T−1
T−1
∑

t=1

(−C)tdd′(−C′)t + y0y
′
0/T

= Σε + RT + O(l2(T )) a.s.

where l2(T ) = (log log T/T )
1
2 and RT = T−1

∑T−1
t=1 (−C)tdd′(−C′)t > 0. The second and

third terms are O(l2(T )) with probability one because the process ut = vec(εtd
′(−C′)t) =

((−C)td× Iv)εt is a martingale difference sequence and therefore vec(T−1
∑T−1

t=1 εtd
′(−C′)t) =

T−1
∑T−1

t=1 ut = O(l2(T )). By the same arguments

T−1
T

∑

t=1

yty
′
t−1 = T−1

T
∑

t=2

εtε
′
t−1 + T−1

T
∑

t=2

{εtd
′(−C′)t−1 + (−C)tdε′t−1} +

T−1
T

∑

t=2

(−C)tdd′(−C′)t−1 + y1y
′
0/T

= −CRT + O(l2(T )) a.s. .

Now, trivially,

T−1
T

∑

t=1

ε̄t−1y
′
t−1 = T−1

T
∑

t=1

εt−1y
′
t−1 + T−1

T
∑

t=1

(ε̄t−1 − εt−1)y
′
t−1 .
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The second term on the right hand side is bounded in norm by

T−1{(
∑

t

||yt−1||2)(
∑

t

||ε̄t−1 − εt−1||2)}1/2 = O({HT /T}1/2)

and the first term

T−1
T

∑

t=1

εt−1y
′
t−1 = T−1

T
∑

t=2

εt−1ε
′
t−1 + T−1

T
∑

t=2

εt−1d
′(−C′)t−1 + ε0y

′
0/T

= Σε + O(l2(T )) a.s. .

Thus we can conclude that T−1
∑T

t=1 ε̄t−1y
′
t−1 = Σε + O(l2(T )) + O({HT /T}1/2). Similarly

T−1
T

∑

t=1

ytε̄
′
t−1 = T−1

T
∑

t=2

εtε
′
t−1 + T−1

T
∑

t=2

(−C)tdε′t−1 + y1ε
′
0/T + O({HT /T}1/2

= O(l2(T )) + O({HT /T}1/2) a.s.

and the equality

T−1
T

∑

t=1

(

ε̄t−1ε̄
′
t−1 − εt−1ε

′
t−1

)

= T−1
T

∑

t=1

(ε̄t−1 − εt−1)(ε̄t−1 − εt−1)
′ +

T−1
T

∑

t=1

(

εt−1(ε̄t−1 − εt−1)
′ + (ε̄t−1 − εt−1)ε

′
t−1

)

implies that T−1
∑T

t=1 ε̄t−1ε̄
′
t−1 equals Σε + O(l2(T )) + O({HT /T}1/2) with probability one as

T → ∞.

If d 6= 0 and the largest singular value of C is bounded away from one then ‖(−C)td‖ < Cλt

for some C > 0, λ < 1, RT = O(T−1), and the large sample behaviour of [ĀT : M̄T ] will reflect

that yt is asymptotically stationary. If, however, d 6= 0 and C has at least one singular value of

unity, then the magnitude of RT as T increases will be such that it will dominate the O(l2(T ))

and O({HT /T}1/2) remainder terms that appear in the sums of squares and cross products that

appear in 3.1. From Lemma A.2 of Poskitt (2000) it follows that

[−ĀT : M̄T ] = [(−CRT : 0) + o(1)]





(

Σε + RT Σε

Σε Σε

)−1

+ o(1)



 a.s. .

Using standard formulae for partitioned inversion we can therefore conclude that [ĀT : M̄T ]

will converge to the value [C : C ] as the time horizon increases. The consistency observed

in the nonstationary case stems from the fact that mt = (−C)td plays an important part in

determining the evolution and structure of the process and feeds information about the param-

eters through to the observed statistics, information that is inevitably lost in the asymptotically

stationary case because mt converges to zero at an exponential rate. 2
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4 Cointegration and the Error Correction Echelon Form

We now specialise the results of the previous sections to unit-root nonstationary cointegrated

systems and investigate the consequences of the identification conditions presented above for the

analysis of partially nonstationary ARMAX structures.

First, consider interchanging the roles of yt and εt in (1.2). Making the replacements yt 7→ εt

M(z) ↔ A(z), and wt 7→ zt where zt = (y′
t : x′

t)
′ we obtain

M(L)εt = N(L)zt, t = 1, . . . , T,

with initial values (ε′t : z′t)
′, t = 1 − p, . . . , 0. The arguments employed in the previous section

can now be repeated to produce the following parallel to Theorem (3.1).

Theorem 4.1 The values of the stochastic disturbance εt are given uniquely via the

initial values (ε′t : y′
t : x′

t)
′, t = 1 − p, . . . , 0, and the expression

p
∑

j=0

Mjεt−j =

p
∑

j=0

Ajyt−j +

p
∑

j=0

Bjxt−j , t = 1, . . . , T,

where [A(z) : B(z) : M(z)] satisfy the conditions

(i’) arc,0 = mrc,0, r, c = 1, . . . , v,

(ii’) mrr(z) = 1 + mrr,1z + · · · + mrr,nrz
nr ,

mrc(z) = mrc,nr−nrc+1z
nr−nrc+1 + · · · + mrc,nrz

nr r, c = 1, . . . , v,

(iii’) arc(z) = arc,0 + arc,1z + · · · + arc,nrz
nr r, c = 1, . . . , v and

brc(z) = brc,0 + brc,1z + · · · + brc,nrz
nr r = 1, . . . , v c = 1, . . . , u.

Note that the canonical form in (i’)–(iii’) employs the same normalisation as previously, namely

that A0 = M0 with unit diagonal elements, and δr [A(z) : B(z) : M(z)] = nr, r = 1, . . . , s, as

before, but additional exclusion constraints are placed on the elements of M(z), rather than

A(z) as in (i)–(iii). Those elements not so restricted are freely varying. This differs from what

is commonly found in the literature on echelon forms and for clarity we will therefore call this

structure the inverse echelon canonical form. The terminology is based on the fact that the

derivations leading to Theorem (3.1) parallel the manipulations used to invert the ARMAX

system in order to represent the stochastic disturbance in terms of the model parameters and

the observables when constructing the likelihood function, see Proposition 5.1. The alterna-

tive identification convention used in the inverse echelon canonical form has no bearing on the

uniqueness properties of the representation but the modification turns out to be particularly

convenient when discussing cointegration.
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4.1 Error Correction and the Kronecker Indices

In order to facilitate discussion in a general framework let zt = (y′
t : x′

t)
′, as above, and consider

embedding equation (1.2) in the ARMA system

Ψ(L)zt = Θ(L)et, t = 1, . . . , T, (4.1)

with initial conditions (z′t, e
′
t)
′, t = 1 − p, . . . , 0, where Ψ(z) =

∑p
j=0 Ψjz

j , Θ(z) =
∑p

j=0 Θjz
j

and et = (ε′t : η′
t)
′ is an s = v + u component white noise process with covariance matrix

Σ(ε,η). Assume that zt satisfies Assumption 2.1 and has cointegrating rank ̺. To isolate the

integrated components of the process we can apply the following variant of the Beveridge-Nelson

decomposition:

Proposition 4.1 : Let K(z) =
∑

j≥0 Kjz
j. Then K(z) = K(1)z + (1 − z)L(z)

where L(z) =
∑

j≥0 Ljz
j , L0 = K0, Lj = −∑

i≥j+1 Ki, j = 1, . . . . Furthermore,

if
∑

j≥0 jp‖Kj‖ ≤ ∞ then
∑

j≥0 jp−1‖Lj‖ ≤ ∞.

The result is obtained by writing the identity K(z) ≡ K(1)z +
∑

j≥0 Kj(z
j − z) and then

rearranging terms using the telescoping sum zj − z =
∑j−1

i=1 (zi+1 − zi), j ≥ 2. See Phillips and

Solo (1992), who provide an interesting example of the use of this decomposition in a rather

different context. Applied to (4.1) the proposition leads to the EC representation

Ψ̃(L)△zt + Πzt−1 = Θ(L)εt, t = 1, . . . , T, (4.2)

with the same initial conditions where Π = Ψ0 + Ψ1 + · · · + Ψp and Ψ̃(z) = Ψ̃0 + Ψ̃1z + · · · +
Ψ̃p−1z

p−1 with Ψ̃0 = Ψ0 and Ψ̃i = −(Ψi+1 + · · · + Ψp), i = 1, . . . , p − 1. The only term that

involves potentially integrated variables in levels is Πzt−1 and it is the coefficient matrix Π that

summarises the cointegrating relations.

Consider now the identification of (4.2). Suppose that the original ARMA system in (4.1)

is expressed in inverse echelon canonical form and let αp = vec[Ψ0, . . . ,Ψp,Θ0, . . . ,Θp]. Then

conditions (i’)–(iii’) of Theorem (3.1) can be expressed in the form of the imposition of linear

constraints R{n1,...,ns}αp = r{n1,...,ns} where R{n1,...,ns}, d × s2p, and r{n1,...,ns}, d × 1, d =

2s2(p + 1) − (
∑ ∑

i<j{min(ni, nj) + min(ni, nj + 1)} + (s + 1)
∑

i ni), are known. In addition,

the EC representation is obtained via the parametric transformation

[Ψ̃0, . . . , Ψ̃p−1,Π,Θ0, . . . ,Θp] = [Ψ0, . . . ,Ψp,Θ0, . . . ,Θp]

[

S 0

0 Is(p+1)

]
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where S is the s(p + 1) × s(p + 1) matrix



































Is 0 0 0 · · · · · · · · · Is

0 0 0 0 · · · · · · · · · Is

0 −Is 0 0 · · · · · · · · · Is

0 −Is −Is 0 · · · · · · · · · Is

...
...

...
. . .

...
...

...
...

...
...

...
...

. . .
...

...
...

0 −Is −Is −Is · · · −Is 0 Is

0 −Is −Is −Is · · · −Is −Is Is



































.

This implies that

α̃p = vec[Ψ̃0, . . . , Ψ̃p−1,Π,Θ0, . . . ,Θp] =

([

S′ 0

0 Is(p+1)

]

⊗ Is

)

αp

and hence that R̃{n1,...,ns}α̃p = r{n1,...,ns} where

R̃{n1,...,ns} = R{n1,...,ns}

([

S−′
0

0 Is(p+1)

]

⊗ Is

)

.

Since the mapping from αp to α̃p is one-to-one it follows that the original ARMA system in

(4.1) satisfies the constraints R{n1,...,ns}αp = r{n1,...,ns} if and only if the EC representation in

(4.2) satisfies R̃{n1,...,ns}α̃p = r{n1,...,ns}, and the identification of one implies that of the other.

Examining these restrictions in detail we find that for any nonzero Kronecker index nr <

p, r = 1, . . . , s, ψrc,j is freely varying for j = 1, . . . , nr, but ψrc,j = 0, j = nr + 1, . . . , p, c =

1, . . . , s. It follows that ψ̃rc,j is freely varying for j = 1, . . . , nr − 1 but ψ̃rc,j = 0, j = nr, . . . , p−
1, c = 1, . . . , s. If nr = p then the ψrc,j , j = 1, . . . , nr, c = 1, . . . , s, are all freely varying and

the same is true for ψ̃rc,j , j = 1, . . . , nr − 1, c = 1, . . . , s. Thus the restrictions R̃{n1,...,ns}α̃p =

r{n1,...,ns} incorporate the conditions that δr[Ψ̃(z)] = nr − 1, r = 1, . . . , s. We also have that

Ψ̃0 = Θ0 and Θ(z) is subject to the same restrictions in R̃{n1,...,ns}α̃p = r{n1,...,ns} as in

R{n1,...,ns}αp = r{n1,...,ns}. Thus Θ(z) presents as the MA operator of an inverse echelon

canonical form with Kronecker indices nr, r = 1, . . . , s in both (4.1) and (4.2).3

There are s2 fewer parameters in Ψ̃(z) and Θ(z) than in the original pair [Ψ(z) : Θ(z)]

and the degrees of freedom so released are taken up by the elements of Π. Thus far Π remains

unrestricted. By assumption, however, detΨ(z) = ψ(z)(1 − z)ζ where ψ(z) is stable and ζ < s

and it is well known (see, inter alia, Yap and Reinsel, 1995, Section 2) that the rank of Π = Ψ(1)

equals s − ζ. Consequently, additional restrictions must be applied over and above those given

by R̃{n1,...,ns}α̃p = r{n1,...,ns} if we require a particular cointegrating rank ̺ = s − ζ to hold.

In order to link the identification of Π to that of the original specification note that if

rank(Π) = ̺ then Π = FG′, where F and G are (s × ̺) matrices with full column rank. To
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ensure a one-to-one correspondence between Π and its reduced rank factorisation we follow a

standard procedure. Since the columns of G are linearly independent there exists a nonsingular

(̺× ̺) matrix E, constructed from a sequence of elementary column transformations, such that

Γ = GE is column equivalent to G and in reduced column-echelon form. Post-multiplying F

by E−′
leads to an identified pair [Υ : Γ] with Υ = FE−′

. The condition that rank(Π) = ̺ is

thereby obtained by imposing an additional ̺2 constraints on Γ and leaving the elements of Υ

unconstrained.

Let (4.2) denote an EC representation in which the operator pair [Ψ̃(z) : Θ(z)] are in

inverse echelon canonical form but with the added restrictions δr[Ψ̃(z)] = nr − 1, where nr > 0,

r = 1, . . . , s, imposed, and Π = ΥΓ′ where Υ and Γ are (s× ̺) matrices with full column rank

and Γ is in reduced column-echelon form. Then the upshot of the preceding argument is that

the structure in (4.2) is identified and is equivalent to an inverse echelon canonical form ARMA

representation (4.1) in which the cointegrating rank ̺ has been imposed.

If any of the Kronecker indices are zero, nq = 0, 1 ≤ q ≤ s, say, then the qth row of Ψ̃(z)

and Π are equal and hence the qth row of (4.1) and (4.2) are identical. From the structure

of the echelon form this implies that the variable zq,t can be expressed as a contemporaneous

linear combination of the remaining variables in the system, and the innovations, and therefore

it will inherit all its dynamics from these other variables. Hence zq,t must be either I(0) or

cointegrated with some of the other variables so that ̺ ≥ 1. More generally, assume that the

variables have been permuted such that the system is represented in terms of the Kronecker

invariants. If nr(s) = · · · = nr(s−q+1) = 0 and nr(j) ≥ 1, j = 1, . . . , s − q, then some relatively

straightforward manipulations indicate that

Π =

[

Π11 Π10

Π01 Iq

]

where Π11,Π10 and Π01 are ((s− q)× (s− q)), ((s− q)× q) and (q× (s− q)) coefficient matrices

respectively. Obviously the rank of this matrix is at least q, so ̺ ≥ q.

There are two basic conclusions to be drawn from the above analysis: First, that the condi-

tions for identifying the short-run dynamics in an EC inverse echelon canonical form, conditions

(EC i’)–(EC iii’) of Theorem 4.2 below, can be separated from those that identify the long-run

relationships, (EC iv’)–(EC v’) of Theorem 4.2. Moreover, the long-run relationships can be

present amongst any of the variables in zt. Second, that specifying an original dynamic system

in which one or more of the Kronecker indices are zero amounts to a presumption that cointegra-

tion is present, the static equations corresponding to the zero indices representing the associated

long-run equilibrium relationships assumed. On the whole it seems unlikely that preconditions

of the latter type will be imposed a-priori in a pure time series setting as the data is usually

left to speak for itself and such precise information is rarely available. On the other hand, for

some relatively simple economic models the short-run dynamics and long-run relationships can

be written down directly, see Wickens and Breusch (1988) for example.
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More generally, if a dynamic simultaneous equations perspective is taken then conclusions

about the cointegrating structure are often implicit in the model formulation and the assump-

tions made. In the notation of the current section the dynamic structural equation (1.2) corre-

sponds to the specialisation Ψ11(z) = A(z), Ψ12(z) = B(z), Θ11(z) = M(z) and Θ12(z) = 0

where Ψij(z) and Θij(z) i, j = 1, 2 denote partitions of the s× s operators Ψ(z) and Θ(z) into

the first v and last u rows and columns. Adding the restrictions that Ψ21(z) = Θ21(z) = 0 and

Σ(ε,η) = diag(Σε,Ση) amounts to the imposition of the assumption that xt is strictly exogenous,

see Engle, Hendry, and Richard (1983). If we also suppose that Ψ22(z) = D(z)(1 − z) where

D(z) is stable then

Π =

[

A(1) B(1)

0 0

]

and ̺ ≤ v. But following the argument employed by (Hsiao, 1997, p. 653) we find that the

possibility that ̺ < v is ruled out, for otherwise there would exist a nonzero vector v such that

v′A(1) = 0, implying that v′B(1)xt is asymptotically-stationary, contradicting the assumption

that xt =
∑t

s=1 ut + x0, t = 1, . . . , T , where D(L)ut = Θ22(L)ηt. Thus ̺ = v,

Π =

[

A(1)

0

]

[

Iv : A(1)−1B(1)
]

,

and, following Wickens (1996), the variables in xt may be regarded as the common trends of

Stock and Watson (1988).

The strength of the previous conclusion, which corresponds to that drawn by Hsiao (1997),

obviously depends critically on the stringency of the assumptions. If the previous coefficient

conditions are relaxed by replacing Ψ21(z) = 0 by Ψ21,0 = 0 so that Ψ21(z) = Ψ21,1z
1 + · · · +

Ψ21,pz
p and the requirement that Ψ22(z) = D(z)(1 − z) is dropped then a range of different

possibilities for the cointegrating structure are possible. In particular, the dichotomy between

the endogenous and exogenous variables and that between the short-run dynamics and long-run

equilibrium relationships need no longer coincide. Such a system, in which xt exhibits feedback

but is weakly exogenous, might be appropriate where xt contains policy instruments determined

via a partial adjustment process or control variates determined via a linear-quadratic control

rule, for example. For a discussion of causality and feedback in the context of non-stationary

processes and exogeneity see Hosoya (1977) and Geweke (1984) respectively.

4.2 The Error Correction Echelon Form

In the light of the previous discussion, the most general result concerning the canonical structure

of our original partially nonstationary ARMAX model is as follows:

Theorem 4.2 Let

p−1
∑

j=0

D̃j△zt−j + Πzt−1 =

p
∑

j=0

Mjεt−j , t = 1, . . . , T, (4.3)
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denote an EC representation in which zt = [y′
t : x′

t]
′, D̃0 = D0, D̃i = −(Di+1 +

· · ·+Dp), i = 1, . . . , p−1, and Π = D0 +D1 + · · ·+Dp, where D(z) = [A(z) : B(z)]

and the polynomial operators in
[

D̃(z) : Π : M(z)
]

satisfy the conditions

(EC i’) ãrc,0 = mrc,0, r, c = 1, . . . , v,

(EC ii’) mrr(z) = 1 + mrr,1z + · · · + mrr,nrz
nr ,

mrc(z) = mrc,nr−nrc+1z
nr−nrc+1 + · · · + mrc,nrz

nr r, c = 1, . . . , v,

(EC iii’) ãrc(z) = ãrc,0 + ãrc,1z + · · · + ãrc,nrz
nr−1 r, c = 1, . . . , v and

b̃rc(z) = b̃rc,0 + b̃rc,1z + · · · + b̃rc,nrz
nr−1 r = 1, . . . , v c = 1, . . . , u.

where nr > 0, r = 1, . . . , v, and Π = ΥΓ′ where

(EC iv’) Υ and Γ are (v × ̺) and ((v + u) × ̺) matrices with full column rank and

(EC v’) Γ is in reduced column-echelon form.

Then under Assumptions 2.1, 2.2 and 2.3 the structure in (4.3) is identified and is

equivalent to an inverse echelon canonical form ARMAX representation in which

the cointegrating rank ̺ ≤ v has been imposed.

It is the system in Theorem (4.2) that has previously been christened an ECARMAXE form.

In order to prevent a proliferation of notation the same symbolism is employed in Theorem

(4.2) for the cointegrating relationships as was adopted above, namely Π = FG′ = ΥΓ′, only

now Υ = FE−′
and Γ = GE are (v × ̺) and ((v + u)× ̺) matrices with full column rank. The

reduced column-echelon form is a mathematical artifact often employed in matrix algebra that

serves here to solve the statistical identification problem. In such a matrix the first nonzero

entry in any column is unity and appears below the first nonzero entry in the preceding column.

All other entries in the same row as the first nonzero entry in any column are zero. If, after

suitable permutation denoted by RG, the first ̺ rows of G are linearly independent then the

reduced column-echelon form becomes

RGE = RΓ =

[

I̺

Γ̺

]

.

This gives the triangular structure Γ′zt−1 = [I̺ : Γ′
̺]R

′zt−1 introduced by Phillips (1991). For

the reduced column-echelon form Γ any arrangement of the variables is permitted and this allows

the system to be ordered according to the permutation induced by the Kronecker invariants,

which need not coincide with the reordering implicit in the triangular structure.

5 Parameter Estimation

Given that the ECARMAXE form is identified we are now interested in estimating the unknown

parameters in λ. Suppose that ̺ and nr(i), i = 1, . . . , v, are given and that the variables and

equation system have been ordered according to the permutation r(1), . . . , r(v) induced by the

Kronecker invariants to give the unique invariant form. Let
{

λ : ̺ , (nr(1), . . . , nr(v))
}

denote the
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set of parameter values λ = (β′ : σ′)′ such that β satisfies conditions (EC i’)–(EC v’) and let

λ̃T denote the maximum likelihood estimator. By definition λ̃T is the value of λ that maximises

LT (λ) = log{f(yT
1 |y0

1−p,x
T
1−p; λ)} over

{

λ : ̺ , (nr(1), . . . , nr(v))
}

,

λ̃T = argλ∈{λ:̺,(nr(1),...,nr(v))} max LT (λ) .

The determination of λ̃T will necessitate the use of numerical optimisation techniques and the

function evaluations required to implement such numerical methods can be readily computed in

practice using the following algorithm.

Proposition 5.1 Suppose that yt admits an ARMAX representation as in Theorem

4.2. Then for t = 2, . . . , T and q = min{t − 1, p} set

M〈t,q〉 = Γξ(q)[Σt−q|t−q−1M
′
0]
−1 (5.1)

and for j = q − 1, . . . , 1,

M〈t,j〉 = [Γξ(j) −
q

∑

r=j+1

P〈t,r〉P
′
〈t−j,r−j〉][Σt−j|t−j−1M

′
0]
−1 (5.2)

where P〈t,j〉 = M〈t,j〉Σ
1
2

t−j|t−j−1 and Σt|t−1 = Σ
1
2

t|t−1(Σ
1
2

t|t−1)
′,

Σ
1
2

t|t−1 = M−1
0

[

Γξ(0) −
q

∑

r=1

M〈t,r〉Σt−r|t−r−1M
′
〈t,r〉

] 1
2

(5.3)

with initial value Σ
1
2

1|0 = M−1
0 Γξ(0)

1
2 . Then the partial log-likelihood function

LT (λ) = log(
T

∏

t=1

f(yt|yt−1
1−p,x

t
1−p; λ))

= −
T

∑

t=1

1

2
(v log(2π) + log(det(Σt|t−1)) + ε′〈t|t−1〉Σ

−1
t|t−1ε〈t|t−1〉)

where

ε〈1|0〉 = M−1
0





p−1
∑

j=0

D̃j△z1−j + Πz0





and

ε〈t|t−1〉 = M−1
0





p−1
∑

j=0

D̃j△zt−j + Πzt−1 −
q

∑

j=1

M〈t,j〉ε〈t−j|t−j−1〉



 , t = 2, . . . , T.

The recursive calculations given in (5.1) -(5.3) are derived from the finite span Wiener-Hopf equa-

tions due to Rissanen and Barbosa (1969) applied to the MA(p) process ξt =
∑p

j=0 Mjεt−j .
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They are constructed from the Cholesky factorisation of the covariance matrix of (ξ′1, . . . , ξ
′
T )′

via a Gram-Schmidt orthonormalisation based on ξ〈t|t−1〉, the projection of ξt on to the space

spanned by ξt−1, . . . , ξ1. This gives a square-root, orthonormal version of what is often re-

ferred to as the innovations algorithm. Proposition 5.1 follows by noting that M〈t,0〉 ≡ M0 and

ξ〈t|t−1〉 =
∑q

j=1 M〈t,j〉ε〈t−j|t−j−1〉, t = 2, . . . , T , and
∑q

j=0 M〈t,j〉ε〈t−j|t−j−1〉 =
∑p

j=0 Mjεt−j =
∑p−1

j=0 D̃j△zt−j + Πzt−1 for t = 1, . . . , T . The detailed steps of the argument, which can be

deduced by consulting the manipulations presented in Rissanen and Barbosa op. cit., are omit-

ted.1

It is of interest to observe that if M(z) = M0 then the model in equation (4.3) reduces to

p−1
∑

j=0

D̃j△zt−j + Πzt−1 = ut, t = 1, . . . , T, (5.4)

where ut = M0εt, a cointegrated ARX structure with row degrees nr(i), i = 1, . . . , v. In this

case it is relatively straightforward to verify that the recursions in (5.1)–(5.3) yield M〈t,j〉 = 0,

1 ≤ j ≤ q, and Σt|t−1 = Σε for all t = 1, . . . , T . We are thereby lead to the conclusion that

ε〈t|t−1〉 = εt and that the partial log-likelihood function can be reexpressed as

LT (λ) = −Tv

2
log(2π) − T

2
log(detΣu) − 1

2

T
∑

t=1

u′
tΣ

−1
u ut (5.5)

where Σu = M0ΣεM
′
0, because M0 is lower triangular with leading diagonal equal to the

identity and hence detM0 = 1. Expressions (5.4) and (5.5) coincide with those commonly

considered in the analysis of cointegrated autoregressive systems, following Johansen (1991).

To investigate the statistical properties of λ̃T consider the estimator λ̂T obtained by max-

imising the following approximation to the partial log-likelihood function,

La
T (λ) = −Tv

2
log(2π) − T

2
log(detΣε) −

1

2

T
∑

t=1

ε′tΣ
−1
ε εt (5.6)

where εt for t = 1, . . . , T are calculated from the recursion

εt = M−1
0





p−1
∑

j=0

D̃j△zt−j + Πzt−1 −
p

∑

j=1

Mjεt−j



 ,

starting from the initial values εt = 0, t = 1 − p, . . . , 0. Then λ̂T = (β̂
′

T , σ̂′
T )′ where σ̂T =

vech[Σ̄T ] | ˆβT

, Σ̄T = T−1
∑T

t=1 εtε
′
t, and β̂T is given by the solution to the score equations

∑T
t=1(∂ε′t/∂β)Σ̄

−1
T εt = 0. These equations can be solved numerically, leading to the iterative

Newton-Raphson approximation

β̂
(i+1)

T = β̂
(i)

T −
(

T
∑

t=1

∂ε′t
∂β

Σ̄
−1
T

∂εt

∂β′

)−1 (

T
∑

t=1

∂ε′t
∂β

Σ̄
−1
T εt

)

| ˆβ(i)

T

(5.7)
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where, by definition, β̂
(i)

T is the ith iterate. It is λ̂
(i)

T that is commonly referred to as the Gaussian

estimator and it is this estimator that is considered by Yap and Reinsel (1995) and Dhrymes

(1998). We will now specialise (5.7) to the ECARMAXE form.

Rearranging equation (4.3) so as to isolate the common parameters in D0 = [A0 : B0] and

M0 = A0 gives

A0(yt − εt) + B0xt +

p−1
∑

j=1

D̃j△zt−j + ΥΓ′zt−1 −
p

∑

j=1

Mjεt−j = 0 . (5.8)

Following Poskitt (1992) let us now rewrite the left hand side by vectorising each term. The first

two terms become (yt − εt) + ([(yt − εt)
′ : x′

t]⊗ Iv)ζ where ζ = vec([A0 − I : B0]) and the third

is −(ξp−1(L)′ ⊗△z′t ⊗ Iv)δ where ξp−1(z)′ = (z, z2, . . . , zp−1) and δ = vec(D1 : · · · : Dp−1). The

fourth term becomes −(z′t−1Γ⊗ Iv)υ where the parameter vector υ = vec(Υ) and the fifth term

gives (ξp(L)′ ⊗ e′t ⊗ Iv)µ, where µ = vec(M1 : · · · : Mp). In the derivation of these expressions

the well known rule vec(ABC) = (C′ ⊗ A)vecB has been employed. Set θ = (δ′ : ζ′ : µ′ : υ)′.

The vector θ contains the parameters of D(z), M(z) and Υ not restricted to be unity. For

any ECARMAXE form with
∑v

i=1 nr(i) ≤ vp the exclusion constraints implicit in (EC i’)–

(EC iii’) are simply incorporated by deleting the corresponding elements of θ. To complete

the parameterisation of the model let γ = vec(Γ̺) denote the coefficients in (RΓ)′ = [I̺ : Γ′
̺]

not restricted to be zero or one in the echelon form. This gives us a freely varying parameter

vector β = (θ′, γ ′)′ of dimension dβ = dθ + dγ , where dθ = (v + u + 1)
∑v

i=1 nr(i) − (v + u)v +
∑∑

i6=j nr(i)r(j) + v̺ and dγ = ̺(v +u− ̺), such that λ = (β′, σ′)′ ∈
{

λ : ̺ , (nr(1), . . . , nr(v))
}

.

Treating (5.8) as an implicit function of the stochastic disturbance, the data and β and

differentiating with respect to β we find that ∂εt/∂β′ = −Wt where Wt = [Wθt : Wγt] equals

the v × dβ matrix obtained by selecting the appropriate columns of

[ξp−1(L)′ ⊗ Wδt : (Wδt − [Wµt : 0]) : −ξp(L)′ ⊗ Wµt : Wυt : Wγt]

where the v× v(v +u), v× v2, v× ̺v and v× ̺(v +u− ̺) derivative processes Wδt, Wµt, Wυt

and Wγt are generated from

p
∑

j=0

Mj [Wδ(t−j) : Wµ(t−j) : Wυ(t−j) : Wγ(t−j)] = [△z′t ⊗ Iv : e′t ⊗ Iv : z′t−1Γ ⊗ Iv : Υ ⊗ z′t−1H] ,

H′ = [0 : I(v+u−̺)]R
′. The Gaussian iterations of (5.7) can then be expressed as

β̂
(i+1)

T =

(

T
∑

t=1

W′
tΣ̄

−1
T Wt

)−1 (

T
∑

t=1

W′
tΣ̄

−1
T [Wtβ + εt]

)

| ˆβ(i)

T

. (5.9)

Now let β̃
(i)
T denote the iterate obtained by substituting ε〈t|t−1〉 for εt, ∂ε〈t|t−1〉/∂β′ =

−W〈t|t−1〉 for −Wt and Σt|t−1 for Σ̄T in (5.9). On convergence β̃
(i)
T will yield a critical point

of the partial likelihood, but to ensure that the iterates β̃
(i)
T will converge to β̃T when T is
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sufficiently large the iterations must be initiated using a consistent estimator. Suppose that the

iterations commence at β̃
(0)
T = β̂

(0)

T = β̄T where β̄T denotes a preliminary estimator chosen such

that NT (β̄T − β) = Op(1), NT = diag[T
1
2 Idθ

: T Idγ
]. Then we have the following result.

Theorem 5.1 If Assumptions 2.1, 2.2 and 2.3 hold and, in addition, the operator

M(z) is invertible, then the iterates β̃
(i)
T and β̂

(i)

T obtained using the initial value β̄T

are asymptotically equivalent in the sense that ‖NT (β̃
(i)
T − β̂

(i)

T )‖ = op(1) for all i ≥ 1

as T → ∞. Moreover, both estimators converge in distribution to
a
βT = (

a
θ
′

T ,
a
γ
′

T )′

where: √
T (

a
θT −θ)

D→ N(0,V−1
θ )

where

Vθ = lim
T→∞

T−1E[
T

∑

t=1

W′
θtΣ

−1
ε Wθt] ,

the asymptotic information matrix for θ; the vectors
√

T (
a
θT −θ) and T (

a
γT −γ) are

asymptotically mutually uncorrelated; and T (
a
γT −γ) = T vec(

a
Γ̺,T −Γ̺) where the

components of (
a
Γ̺,T −Γ̺) satisfy the asymptotic mixed-normality result

vec

(

[
T

∑

t=1

H′zt−1z
′
t−1H]1/2[

a
Γ̺,T −Γ̺)]

)

D→ N(0,Vγ)

where

Vγ = ((Υ′[M(1)ΣεM(1)′]−1Υ)−1 ⊗ I(v+u−̺)) .

When applying Theorem 5.1 Vθ and Vγ can be consistently estimated by replacing the

unknown parameters in β by their Gaussian maximum likelihood values and substituting a

consistent estimate for Σε, whilst dropping the expectation from Vθ. Two simple estimates of

Σε that can be constructed as a by-product of the output from the algorithm in Proposition 5.1

are Σ̃1,T = T−1
∑T

t=1 ε〈t|t−1〉ε
′
〈t|t−1〉 and Σ̃2,T = T−1

∑T
t=1 Σt|t−1.

Corollary 5.1 Both Σ̃1,T and Σ̃2,T are consistent estimators of Σε. Moreover,√
Tvech(Σ̃1,T −Σε) and

√
Tvech(Σ̃2,T −Σε) have the same limiting distribution as√

Tvech(T−1
∑T

t=1 εtε
′
t − Σε).

Finally, the initial estimator β̄T must be chosen. One such estimate can be obtained by

first using instrumental variables with instruments chosen from yt−τ , xt−τ and zt−τ−1 plus

△zt−τ−1, . . . ,△zt−τ−p, for τ > p, to calculate ζ̄T , ῡT and γ̄T , and δ̄T , respectively. From these

estimates ξT,t, to use an obvious notation, can be generated and then µ̄T can be evaluated using

the spectral factorization method of Tunnicliffe-Wilson (1972), as suggested by Yap and Reinsel

(1995, Section 3.3) and Dhrymes (1998, pp. 325-326). Alternatively, µ̄T can be obtained by

implementing the technique proposed by Brockwell and Davis (1988) following a preliminary

pass through Proposition 5.1 with Γξ(τ) replaced by Γξ,T (τ) = T−1
∑T−τ

t=1 ξT,tξ
′
T,t+τ .
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Example:(ii’) In order to provide some indication of the possible impact of the results outlined

above a sequence of Monte-Carlo experiments have been conducted using the data generating

mechanism yt + Ayt−1 = εt + Mεt−1, t = 1, . . . , T, where the pair [A : M] accord with the

structure considered in Example (ii), namely A = M = C. The behaviour of the maximum

likelihood and Gaussian estimates [ÃT : M̃T ] and [ÂT : M̂T ] constructed from a single iteration

of the Newton-Raphson (Scoring) algorithm initiated at [ĀT : M̄T ] has been monitored. The

behaviour of [ÃT : M̃T ] and [ÂT : M̂T ] was examined by calculating the observed mean-squared

error, the results of which are summarised by presenting the empirical mean and the average

squared Euclidean distance between the estimate and the true value [C : C], labelled M.S.E. in

the tables that follow.

In all cases v = 2, n1 = n2 = 1 and the coefficient values were given by either

C =

[

−0.5 0.5

−0.4 0.6

]

or C =

[

−0.6 0.4

1.4 0.4

]

.

In the first case, process P1, the zeroes of det(I + Cz) are 1.1 ± ı0.8888 and in the second,

process P2, ζ1 = −1.25 and ζ2 = 1.0. The covariance matrix

Σε =

[

1.0 ρǫ

ρǫ 1.0

]

where ρǫ = 0.8 or 0.2

and the sample sizes considered were T = 50, 100, 150 and 250. All simulation results listed here

were based on 1000 replications.

The influence of the initial conditions was controlled by setting d = (1, 1)′d where the scalar d

was chosen so as to make ρy,m = det(RT )/ det(RT +Σε) equal to 0.1QT , QT = (log(T ))1/2l2(T ),

for P1, and 0.1 for P2. The rationale for this follows from observing that for both processes

ρy,m is the (asymptotic) coefficient of vector correlation (Hotelling, 1936) between yt and mt.

Process P1 is asymptotically-stationary and multiplication by the factor QT ensures that the

influence of the initial conditions does not die away too quickly, so that RT → 0 as T → ∞
but RT /l2(T ) = O((log(T ))1/2). For P2, of course, RT is O(1) and such re-scaling is not

necessary. For process P1 ρy,m = 0.1QT takes the values 0.0327, 0.0265, 0.0232 and 0.0194 for

T = 50, 100, 150 and 250, respectively, indicating that fluctuations in mt account for well below

5% of the observed variation in yt for both processes.

The values presented in Table 1 are typical of those obtained using different parameterisations

of process P1. The figures indicate a somewhat superior performance for [ÃT : M̃T ], with the

observed relative M.S.E. ‖ÃT − C : M̃T − C‖2/2‖C‖2 decreasing from 0.3319 when T = 50

to 0.0849 when T = 250 whereas ‖ÂT − C : M̂T − C‖2/2‖C‖2 decreases from 1.2133 to 0.255.

Equivalent results for P2 are given in Table 2. A striking feature of the figures given in this

second table is the relatively poor performance of [ÂT : M̂T ]. This presumably reflects aspects

of the Gaussian approximation that work less well in the presence of a unit root and further

emphasises the benefits of determining the maximum likelihood estimate.
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Although both P1 and P2 are in a sense pathological processes this is not obvious from the

figures reported in Tables 1 and 2. Mean-squared error does not capture the distributional prop-

erties of the estimators however. Figure (1) presents kernel density estimates of the distribution

of the Mahalanobis distance QT = (β̂T − β)′
(

∑T
t=1 W′

tΣ
−1
ε Wt

)†
(β̂T − β) compared to theo-

retical χ2 densities for process P1. Process P1 is asymptotically stationary and the specification

A = M means that it will also be asymptotically unidentified. Such a lack of identification is

well known to manifest itself in
∑T

t=1 W′
tΣ

−1
ε Wt having less than full rank and QT having fewer

degrees of freedom than might be anticipated on the basis of conventional asymptotic theory, see

Poskitt and Tremayne (1982) for example. Figure (1) lends clear testimony to this feature. For

P2 both A and M are identified and the estimates β̃
(i)
T and β̂

(i)

T can be readily calculated but

Theorem 5.1 is not applicable since the invertibility condition is violated. It seems reasonable

to conjecture that a similar theorem could be established that would allow for the singularity

present under the less restrictive condition det(M(z)) 6= 0, |z| < 1, of Assumption 2.1, but that

avenue will not be pursued here. See Tanaka (1996) for a discussion of the issues associated

with lack of invertibility. 2

6 Conclusion

This paper has filled an important gap in the identification theory of nonstationarity vector

ARMAX systems by showing that ECARMAXE models provide a canonical form for partially

nonstationary (cointegrated) ARMAX processes. It has established the asymptotic equivalence

of the Gaussian estimator β̂T and the maximum likelihood estimator β̃T constructed using an

innovations algorithm. It has also established the large sample distribution of both estimators in

such models. Examples illustrating the theory and some experimental evidence on the empirical

impact of the results have been presented.

The normality assumption underlying the analysis conducted in this paper is commonly

adopted in the literature on cointegration. Normality does not play a key role beyond motivating

the estimators, however, and it seems likely that the asymptotic properties of β̂T and β̃T can

be extended to more general processes under much weaker regularity conditions.

In closing it is worth emphasizing that the identification conditions for an ECARMAXE

model depend on fixed, finite values of the Kronecker indices, nr, r = 1, . . . , v, and are applica-

ble at any sample size T > vp. This latter point is of significance for any future development

of exact finite sample distribution theory for β̂T and β̃T or, perhaps more importantly, Boot-

strapping methodology.

NOTES
1Observe that the possibility that M(z) is noninvertible is not ruled out. For such a process the minimum

mean squared error predictor of ξt based on ξt−1, . . . , ξ1, ξ〈t|t−1〉, is well defined and can be evaluated using the

algorithm in Proposition 5.1. Since the algorithm is structured in terms of the covariances E[ξtξ
′
t+τ ] = Γξ(τ) it

is independent of any assumptions concerning the invertibility of M(z). See Hannan (1974, Chapter III. 2) for a
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discussion of the synthesis of ξ〈t|t−1〉 when det(M(z)) = 0 on the unit circle.
2A process is said to be asymptotically-stationary, denoted I(0), if it admits a representation as in (1.1) or (1.2)

where A(z) is stable (see Section 2) and the exogenous input is also I(0).
3The term “freely varying” is used here to indicate that the echelon form imposes no restrictions on the value

of the parameter. Stability and minimum phase conditions will, of course, impose separate constraints that will

limit the admissible parameter values.
4A discussion of a closely related issue, known in the engineering literature as the partial realization problem, can

be found in Hanzon (1989).
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Appendix: Proofs

Proof of Theorem 2.1: Let yP,t =
∑t+p−1

s=0 Φswt−s, t = 1−p, . . . , 0, 1, . . . , T , where the impulse

response sequence is as given in (2.2). By construction
∑min(τ−1,p)

j=0 Ajz
j{∑τ−j−1

k=0 Φkz
k} =

∑min(τ−1,p)
l=0 Nlz

l for τ = 1, 2, . . . , T + p − 1, which when evaluated at τ = t + p gives

p
∑

j=0

AjyP,t−j =

p
∑

j=0

Aj{
t−j+p−1

∑

s=0

Φswt−j−s} =

p
∑

l=0

Nlwt−l

for t = 1, . . . , T . Hence yP,t provides a particular solution to (1.2).

Now let mt = yt − yP,t, t = 1 − p, . . . , 0, and set mt = −A−1
0 (

∑p
j=1 Ajmt−j), t = 1, . . . , T .

Then mt defines an appropriate complementary function and yP,t+mt gives the general solution

to (1.2) since by construction yt = yP,t + mt, t = 1 − p, . . . , 0, and

A(L)yt =

p
∑

j=0

Aj(yP,t−j + mt−j) = A(L)yP,t = N(L)wt, t = 1, . . . , T.
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Conversely, suppose that the process yt admits an input-output representation as in (2.3)

and that v × v coefficient values Aj , j = 0, . . . , p, exist such that the impulse response se-

quence satisfies the difference equation
∑p

j=0 AjΦi−j = 0, i > p and, similarly, mt solves
∑p

j=0 Ajmt−j = 0, t = 1, . . . , T . Then for t = 1, . . . , T .

p
∑

j=0

Ajyt−j =

p
∑

j=0

Aj{
t−j+p−1

∑

s=0

Φswt−j−s} +

p
∑

j=0

Ajmt−j =

p
∑

s=0

Nswt−s .

Proof of Corollary 3.1: Necessity follows by noting that the conditions
∑p

j=0 AjΦi−j =

0, i = p + 1, . . . , T + p − 1, and
∑p

j=0 Ajmt−j = 0, t = 1, . . . , T imply that

p
∑

j=0

Aj [Kp+1−j : · · · : KT+p−1−j ] = [0 : · · · : 0].

From the nonsingularity of A0 it follows that rows pv + r, r = 1, . . . , v, of Hp+1,T can be

expressed as linear combinations of rows (i − 1)v + r, i = 1, . . . , p, r = 1, . . . , v and hence that

ρ(Hp+1,T ) ≤ vp. Corollary 3.1.2.3–37 of Hanzon (1989) and the linear dependence properties of

HR,T , R = 1, . . . , T + p − 1, now imply that ρ(HR,T ) ≤ vp, R = p + 1, . . . , T + p − 1, and thus

sup1≤R≤T+p−1[ρ(HR,T )] = ρ(Hp,T ) ≤ vp.

To establish sufficiency suppose that sup1≤R≤T+p−1[ρ(HR,T )] = ρ(Hp,T ) ≤ vp. Then the

rows of Hp+1,T are linearly dependent and each of the last v rows can be expressed as a linear

combination of the rows that precede it. These row combinations generate a sequence of v × v

coefficient values Aj , j = 0, . . . , p, such that

[Ap : · · · : A0]









K1 K2 . . . KT−1

...
...

...

Kp+1 Kp+2 . . . KT+p−1









= [0 : · · · : 0] , (A.1)

where A0 is lower triangular and nonsingular, with leading diagonal equal to the identity, and

all of A0,A1, . . . ,Ap cannot be zero. That is,
∑p

j=0 AjΦi−j = 0, i = p + 1, . . . , T + p − 1, and
∑p

j=0 Ajmt−j = 0, t = 1, . . . , T . Appeal to Theorem 2.1 completes the proof.

Proof of Theorem 3.1: Selecting the first basis rows of Hp+1,T in natural order produces v

integers nr, r = 1, . . . , v, such that n1 + · · ·+nv = ρ(Hp+1,T ) and hp+1,T (1, 1), . . . ,hp+1,T (n1, 1)

through to hp+1,T (1, v), . . . ,hp+1,T (nv, v) form a basis for the rows of Hp+1,T . Expressing row

nrv + r of Hp+1,T as a linear combination of its linearly independent antecedents results in

an equation system analogous to (A.1) that may be solved uniquely for the coefficient values

arj,nr−nrj+1, . . . , arj,nr , r, j = 1, . . . , v. Equating arj,nr−s+1 to the (r, j)’th element of Anr−s+1,

s = 1, . . . , nrj , with arr,0 = 1, r = 1, . . . , v, and all other elements equal to zero, yields the

autoregressive operator A(z) = A0 + A1z
1 + · · · + Apz

p where p = max1≤r≤v(nr). Given A(z)

the coefficients of N(z) are obtained by evaluating
∑i

j=0 AjKi−j =
∑i

j=0 Aj [Φi−j : mi−p−j+1] =

[Ni : ∗], i = 0, . . . , p. By construction the row degrees of [A(z) : N(z)] equal the Kronecker
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indices, that is, δr [A(z) : N(z)] = nr, r = 1, . . . , v. The detailed steps in the above argument

follow those used by Hannan and Deistler (1988) in establishing their Theorem 2.5.1.

Thus, for any given ARMAX system HR,T , R = 1, . . . , T + p− 1, can be readily determined

and from these the rank ρ(Hp,T ), the Kronecker indices ni, i = 1, . . . , v, and the echelon form

can subsequently be constructed. Conversely, every ARMAX system such that [A(z) : N(z)]

satisfies (i), (ii) and (iii) obviously defines an echelon form representation with Kronecker indices

nr, r = 1, . . . , v.

Proof of Theorem 5.1: To show that ‖NT (β̂
(i)

T − β̃
(i)
T )‖ = op(1) we use the principle of

induction. Assume that NT (β̂
(i−1)

T − β) and NT (β̃
(i−1)
T − β) are Op(1). Substituting β̂

(i−1)

T =

β +N−1
T Op(1) in (5.9) and using the stochastic equicontinuity results given in Saikkonen (1996)

we obtain the asymptotic representation

NT (β̂
(i)

T − β) =

(

N−1
T

T
∑

t=1

W′
tΣ̄

−1
T WtN

−1
T

)−1

N−1
T

T
∑

t=1

W′
tΣ̄

−1
T εt |β +op(1) . (A.2)

A corresponding expression with β̂
(i)

T replaced by β̃
(i)
T , and W〈t|t−1〉 substituted for Wt, Σt|t−1

for Σ̄T , and ε〈t|t−1〉 for εt, also obtains. It follows that the probability limit of ‖NT (β̂
(i)

T − β̃
(i)
T )‖

will be zero if

N−1
T

T
∑

t=1

{

W′
tΣ̄

−1
T Wt − W′

〈t|t−1〉Σ
−1
t|t−1W〈t|t−1〉

}

N−1
T |β= op(1) (A.3)

and

N−1
T

T
∑

t=1

{

W′
tΣ̄

−1
T εt − W′

〈t|t−1〉Σ
−1
t|t−1ε〈t|t−1〉

}

|β= op(1) . (A.4)

Suppressing explicit evaluation at the point β for notational convenience, both (A.3) and (A.4)

are obtained by expressing the left hand side in terms of the differences ∇εt = εt − ε〈t|t−1〉,

∂∇εt/∂β′ = W〈t|t−1〉 − Wt = −∇Wt = −[∇Wθt : ∇Wγt] and ∇ΣTt = Σ̄T − Σt|t−1.

Consider first (A.3). Expanding each term in the summation as

W′
tΣ̄

−1
T Wt − W′

〈t|t−1〉Σ
−1
t|t−1W〈t|t−1〉 = ∇W′

tΣ
−1
t|t−1Wt + W′

tΣ
−1
t|t−1∇Wt

−∇W′
tΣ

−1
t|t−1∇Wt − W′

tΣ̄
−1
T ∇ΣTtΣ

−1
t|t−1Wt

we can see that the left hand side of (A.3) can be decomposed into four series. The fourth of

these, −∑T
t=1 N−1

T W′
tΣ̄

−1
T ∇ΣTtΣ

−1
t|t−1WtN

−1
T , is bounded in norm by

T
∑

t=1

‖Σ̄−1
T ‖ · ‖∇ΣTt‖ · ‖Σ−1

t|t−1‖ · ‖N
−1
T W′

t‖2 . (A.5)

But Σ̄T = Σε +o(1) by ergodicity and a direct application of Lemma (1) of Rissanen and Caines

(1979) tells us that Σt|t−1 converges to Σε at a geometric rate. The latter implies that there

exist constants Kσ and λσ with 0 ≤ Kσ < ∞ and 0 < λσ < 1, KσλT
σ > ‖Σ̄T − Σε‖, such that
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‖Σ−1
t|t−1‖ ≤ ‖Σ−1

ε ‖+ Kσλt
σ and ‖∇ΣTt‖ ≤ ‖Σ̄T −Σε‖+ ‖Σε −Σt|t−1‖ ≤ 2Kσλt

σ. It follows that

‖Σ̄−1
T ‖ · ‖∇ΣTt‖ · ‖Σ−1

t|t−1‖ ≤ 2 ‖Σ−1
ε ‖2{1 + o(1)}Kσλt

σ

and therefore A.5 is majorised by

2 ‖Σ−1
ε ‖2{1 + o(1)}

T
∑

t=1

Kσλt
σ‖N−1

T W′
t‖2 .

Now let ℓT = −2 log(T )/ log(λσ). Then

T
∑

t=1

Kσλt
σ‖N−1

T W′
t‖2 ≤ Kσ







T−1
ℓT
∑

t=1

‖Wθt‖2 + T−2
ℓT
∑

t=1

‖Wγt‖2 + λℓT
σ

T
∑

t=ℓT +1

‖N−1
T W′

t‖2







= Kσ

{

ℓT

T
(O(1) + Op(ℓT /T )) + λℓT

σ Op(1)

}

= op(1)

because
T

∑

t=1

‖N−1
T W′

t‖2 = T−1
T

∑

t=1

‖Wθt‖2 + T−2
T

∑

t=1

‖Wγt‖2 = Op(1) .

and ℓT /T → 0 as T → ∞ and λℓT
σ = T−2 by construction. Thus we can conclude that A.5 is

op(1) and hence −∑T
t=1 N−1

T W′
tΣ̄

−1
T ∇ΣTtΣ

−1
t|t−1WtN

−1
T = op(1).

The first two series in the decomposition of A.3 are bounded in norm by

T
∑

t=1

‖N−1
T ∇W′

t‖ · ‖Σ−1
t|t−1‖ · ‖N

−1
T W′

t‖ ≤ (‖Σ−1
ε ‖ + Kσ)

(

T
∑

t=1

‖N−1
T ∇W′

t‖2 ·
T

∑

t=1

‖N−1
T W′

t‖2

)

1
2

and the norm of the third is bounded by

T
∑

t=1

‖Σ−1
t|t−1‖ · ‖N

−1
T ∇W′

t‖2 ≤ (‖Σ−1
ε ‖ + Kσ)

T
∑

t=1

‖N−1
T ∇W′

t‖2 .

Thus these three series will converge to zero in probability if we can show that

T
∑

t=1

‖N−1
T ∇W′

t‖2 = op(1) . (A.6)

To establish A.6 note that simple manipulation of the equality between
∑q

j=0 M〈t,j〉ε〈t−j|t−j−1〉

and
∑p

j=0 Mjεt−j gives

q
∑

j=0

M〈t,j〉∇εt−j =

p
∑

j=0

(M〈t,j〉 − Mj)εt−j (A.7)
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and therefore the proof given by Rissanen and Caines (1979, pp. 312-314 ) that

T−1
T

∑

t=1

‖∇εt‖2 → 0 a.s. as T → ∞ , (A.8)

cf. Rissanen and Caines (1979, Equation A3.4), is directly applicable. Differentiating (A.7)

with respect to β and rearranging gives

q
∑

j=0

M〈t,j〉∇Wt−j =

p
∑

j=0

(M〈t,j〉 − Mj)Wt−j −
p

∑

j=0

∂(M〈t,j〉 − Mj)

∂β′ εt−j +

q
∑

j=0

∂M〈t,j〉

∂β′ ∇εt−j .

By Lemma (1) of Rissanen and Caines (1979) there exist constants Kµ and λµ, 0 ≤ Kµ < ∞,

0 < λµ < 1, such that ‖M〈t,j〉 −Mj‖ < Kµλt
µ uniformly in β and therefore the same is true for

‖∂(M〈t,j〉−Mj)/∂β′‖. A straightforward adaptation of the argument that gives (A.8) therefore

leads to the conclusion that T−1
∑T

t=1 ‖∇Wθt‖2 = o(1) and T−2
∑T

t=1 ‖∇Wγt‖2 = o(1) as

T → ∞, giving A.6 as required. Equation (A.3) now follows.

Now consider equation (A.4). First we bound the norm of the left hand side by

T
∑

t=1

‖N−1
T ∇W′

tΣ
−1
t|t−1εt‖ +

T
∑

t=1

‖N−1
T W′

tΣ
−1
t|t−1∇εt‖

−
T

∑

t=1

‖N−1
T ∇W′

tΣ
−1
t|t−1∇εt‖ −

T
∑

t=1

‖N−1
T W′

tΣ̄
−1
T ∇ΣTtΣ

−1
t|t−1εt‖ .

The fourth term

T
∑

t=1

‖N−1
T W′

tΣ̄
−1
T ∇ΣTtΣ

−1
t|t−1εt‖ ≤ 2 ‖Σ−1

ε ‖2{1 + o(1)}
T

∑

t=1

Kσλt
σ‖N−1

T W′
t‖ · ‖εt‖

≤ 2 ‖Σ−1
ε ‖2{1 + o(1)}Kσ

(

T
∑

t=1

λt
σ‖N−1

T W′
t‖2 ·

T
∑

t=1

λt
σ‖εt‖2

)

1
2

.

But
T

∑

t=1

λt
σ‖N−1

T W′
t‖2 ·

T
∑

t=1

λt
σ‖εt‖2 =

T
∑

t=1

λt
σ

(‖Wθt‖2

T 1/2
+

‖Wγt‖2

T 3/2

)

·
T

∑

t=1

λt
σ

‖εt‖2

T 1/2
.

Now observe that for any λ, 0 ≤ λ < 1,

T
∑

t=1

λt ‖Wθt‖2

T 1/2
≤ ℓT

T 1/2

ℓT
∑

t=1

‖Wθt‖2

ℓT
+ λℓT T 1/2

T
∑

t=ℓT +1

‖Wθt‖2

T

= O(log(T )/T 1/2) + O(T−3/2) (A.9)

where ℓT = −2 log(T )/ log(λ). An analogous derivation also gives

T
∑

t=1

λt‖εt‖2/T 1/2 ≤ O(log(T )/T 1/2) + O(T−3/2) (A.10)
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and

T
∑

t=1

λt ‖Wγt‖2

T 3/2
≤ ℓ2

T

T 3/2

ℓT
∑

t=1

‖Wγt‖2

ℓ2
T

+ λℓT T 1/2
T

∑

t=ℓT +1

‖Wγt‖2

T 2

= Op(log(T )2/T 3/2) + Op(T
−3/2) . (A.11)

Substituting these bounds into the above gives
∑T

t=1 ‖N−1
T W′

tΣ̄
−1
T ∇ΣTtΣ

−1
t|t−1εt‖ = op(1).

Equivalent bounds on the order of magnitude of the first three terms are derived using the

fact that both ‖∇εt‖ and ‖∇W′
t‖ converge to zero at a geometric rate in t. Confirmation of

this result is obtained by noting that the conditions ‖M〈t,j〉−Mj‖ < Kµλt
µ and det(M(z)) 6= 0,

|z| ≤ 1 when applied to (A.7) imply that

‖∇εt‖ ≤ Kε





t−1
∑

s=1

λ2s
ε

p
∑

j=1

λ2t
ε ‖εt−j−s‖ + λ2t

ε ‖ηε‖



 ≤ Kελ
2t
ε t





p
∑

j=1

t−1
∑

s=1

‖εt−j−s‖
t

+
‖ηε‖

t





for some Kε, Kµ ≤ Kε < ∞ and λε, λµ ≤ λ2
ε < 1, where ‖ηε‖ < ∞ bounds the influence of the

initial conditions. Hence ‖∇εt‖ ≤ λt
εMε where Mε < ∞ but exceeds

Kελ
t
εt





p
∑

j=1

t−1
∑

s=1

‖εt−j−s‖
t

+
‖ηε‖

t



 → 0 as t → ∞ .

Using the inequality ‖∇εt‖ ≤ λt
εMε we also have

‖∇Wt‖ ≤ KW





t−1
∑

s=1

λ2s
W

p
∑

j=1

λ2t
W ‖Wt−j−s‖ + λ2t

W ‖εt−j−s‖ + ‖∇εt−j−s‖ + λ2t
W ‖ηW ‖





≤ KW λ2t
W





p
∑

j=1

t−1
∑

s=1

λ2s
W (‖Wt−j−s‖ + ‖εt−j−s‖) + KW λ−j

W + ‖ηW ‖





≤ KW λ2t
W t3/2





p
∑

j=1

t−1
∑

s=1

‖Wt−j−s‖
t3/2

+
‖εt−j−s‖

t3/2
+

KW λ−p
W

t3/2
+

‖ηW ‖
t3/2



 ,

max{Kε, Mε} < KW < ∞,
√

λε < λW < 1, leading to the conclusion that ‖∇Wt‖ ≤ λt
W MW .

Applying these geometric bounds yields the inequalities

T
∑

t=1

‖N−1
T ∇W′

tΣ
−1
t|t−1εt‖ ≤

T
∑

t=1

‖N−1
T ∇W′

t‖(‖Σ−1
ε ‖ + Kσλt

σ)‖εt‖

≤ (|Σ−1
ε ‖ + Kσ)

T
∑

t=1

‖N−1
T ∇W′

t‖ · ‖εt‖

≤ (‖Σ−1
ε ‖ + Kσ)MW dβ

T
∑

t=1

λt
W ‖εt‖/T 1/2
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for the first term,

T
∑

t=1

‖N−1
T W′

tΣ
−1
t|t−1∇εt‖ ≤

T
∑

t=1

‖N−1
T W′

t‖(‖Σ−1
ε ‖ + Kσλt

σ)‖∇εt‖

≤ (|Σ−1
ε ‖ + Kσ)

T
∑

t=1

‖N−1
T W′

t‖ · ‖∇εt‖

≤ (‖Σ−1
ε ‖ + Kσ)Mε

T
∑

t=1

λt
ε‖N−1

T W′
t‖

for the second and, similarly,

T
∑

t=1

‖N−1
T ∇W′

tΣ
−1
t|t−1∇εt‖ ≤ (‖Σ−1

ε ‖ + Kσ)MεMW dβ

T
∑

t=1

λt
W λt

ε/T 1/2

for the third. But

T
∑

t=1

λt
W ‖εt‖/T 1/2 ≤ (T−1λW /(1 − λW )

T
∑

t=1

λt
W ‖εt‖2)1/2 = o(1)

by the Cauchy-Schwartz inequality and (A.10) and

T
∑

t=1

λt
ε‖N−1

T W′
t‖ ≤ (λε/(1 − λε)

T
∑

t=1

λt
ε‖N−1

T W′
t‖2)1/2 = op(1)

since (A.9) and (A.11) imply that
∑T

t=1 λt
ε‖N−1

T W′
t‖2 = op(1). Finally,

T
∑

t=1

λt
W λt

ε/T 1/2 ≤ (T−1λ2
W /(1 − λ2

W )λ2
ε/(1 − λ2

ε))
1/2 = o(1) .

Thus we have established (A.4).

The induction to show that ‖NT (β̂
(i)

T −β̃
(i)
T )‖ = op(1) for all i ≥ 1, as well as the convergence

in distribution to
a
βT , is now completed by verifying that the components of NT (β̂

(i)

T −β) converge

in distribution as stated. The proof of the latter follows along lines that parallel the developments

in Yap and Reinsel (1995) and Dhrymes (1998). Recall that for an ECARMAXE model the

constraints of the echelon form are incorporated by simply deleting appropriate elements of θ.

This implies that corresponding rows and columns in previous expressions involving Wt are

similarly removed and the same is true of (A.12)–(A.13) below. Hence the arguments of Yap

and Reinsel (1995 cf. § 4, see in particular the comment in § 4.1) and Dhrymes (1998 cf. § 6.4)

can be applied at this stage with very little modification. The argument proceeds by showing

that N−1
T

∑T
t=1 W′

tΣ̄
−1
T WtN

−1
T equals

[

T−1
∑T

t=1 W′
θtΣ

−1
ε Wθt 0

0 T−2
∑T

t=1 Υ′[M(1)ΣεM(1)′]−1Υ ⊗ H′zt−1z
′
t−1H

]

+ op(1) (A.12)
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and that N−1
T

∑T
t=1 W′

tΣ̄
−1
T εt can be rewritten as

[

T− 1
2
∑T

t=1 W′
θtΣ

−1
ε εt + op(1)

T−1
∑T

t=1(Υ
′M(1)−

′
Σ−1

ε ⊗ H′zt−1)εt + op(1)

]

. (A.13)

Both (A.12) and (A.13) are established by applying Proposition (4.1) to M(z) to give

M(1)Wγt = (Υ ⊗ z′t−1H) −
p−1
∑

j=0

M̃j△Wγ(t−j) .

The sums of squares and cross-products involving Wγt will therefore be dominated by the

components in (M(1)−1Υ ⊗ z′t−1H) since the process H′zt is integrated and △Wγt and Wθt

are asymptotically-stationary processes. Substituting (A.12) and (A.13) into (A.2) and applying

standard central limit theorems to (A.13) yields the required result.

Proof of Corollary 5.1: We have already shown that ‖∇εt‖ ≤ λt
εMε where Mε < ∞ and

0 < λε < 1. From the inequality ‖εtε
′
t − ε〈t|t−1〉ε

′
〈t|t−1〉‖ ≤ ‖∇εt‖2 + 2‖εt‖ · ‖∇εt‖ we therefore

obtain the upper bound

‖Σ̄T − Σ̃1,T ‖ ≤ T−1M2
ε

T
∑

t=1

λ2t
ε + T−1Mε

T
∑

t=1

‖εt‖λt
ε

≤ M2
ε

T (1 − λ2
ε)

+
Mε

(1 − λε)
1
2

√

∑T
t=1 ‖εt‖2λt

ε

T 2

and from (A.10) it follows that T
1
2 ‖Σ̄T − Σ̃1,T ‖ = o(1). Similarly, the inequality ‖∇ΣTt‖ ≤

2Kσλt
σ implies that ‖Σ̄T − Σ̃2,T ‖ ≤ 2Kσ/T (1− λσ) and hence that T

1
2 ‖Σ̄T − Σ̃2,T ‖ = o(1).
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Figure 1: Empirical Distribution of Mahalanobis Distance. Processes P1 with T = 150, ρǫ = 0.8
and ρy,m = 0.1QT . Kernel density estimate κ(QT ) obtained using Gaussian kernel with optimal
bandwidth.



Table 1 Experimental Outcomes for Process 1

ρy,m = 0.1QT and ρǫ = 0.8

T = 50 T = 100

[ÃT : M̃T ] -0.4879 0.4998 -0.4999 0.4827 -0.4991 0.4981 -0.5082 0.4933
-0.3896 -0.6019 -0.3854 -0.6329 -0.3985 -0.6027 -0.4019 -0.6143

M.S.E. = 0.7675 M.S.E. = 0.4325

[ÂT : M̂T ] -0.5919 0.6221 -0.6203 0.3936 -0.5880 0.5768 -0.5738 0.4461
-0.5740 -0.5581 -0.5248 -0.7848 -0.5179 -0.5560 -0.4813 -0.7049

M.S.E. = 2.8421 M.S.E. = 1.3445

T = 150 T = 250

[ÃT : M̃T ] -0.5099 0.4974 -0.5178 0.5010 -0.5040 0.5021 -0.5063 0.5003
-0.4076 -0.6044 -0.4070 -0.6091 -0.4047 -0.5986 -0.4031 -0.6049

M.S.E. = 0.2899 M.S.E. = 0.1989

[ÂT : M̂T ] -0.5529 0.5407 -0.5597 0.4072 -0.5412 0.5381 -0.5352 0.4780
-0.4818 -0.5770 -0.4573 -0.6706 -0.4758 -0.5662 -0.4419 -0.6504

M.S.E. = 0.8454 M.S.E. = 0.5973

Table 2 Experimental Outcomes for Process 2

ρy,m = 0.1 and ρǫ = 0.8

T = 50 T = 100

[ÃT : M̃T ] -0.6043 0.3953 -0.5919 0.3813 -0.5996 0.4010 -0.6003 0.3989
1.3912 0.3947 1.4078 0.3793 1.4007 0.4031 1.3989 0.3999

M.S.E. = 0.5257 M.S.E. = 0.2318

[ÂT : M̂T ] -0.5166 0.3062 -0.4732 0.4677 -0.6162 0.3080 -0.5387 0.4537
1.4587 0.3763 1.4872 0.7091 1.7816 0.4398 1.5289 0.5939

M.S.E. = 31.8905 M.S.E. = 16.1529

T = 150 T = 250

[ÃT : M̃T ] -0.6034 0.3976 -0.6102 0.4019 -0.6021 0.3985 -0.5964 0.3951
1.4004 0.4019 1.3970 0.4013 1.3959 0.3961 1.4009 0.3923

M.S.E. = 0.1646 M.S.E. = 0.0957

[ÂT : M̂T ] -0.5985 0.3327 -0.5812 0.4108 -0.5946 0.3728 -0.5753 0.4121
1.6700 0.4040 1.4764 0.5178 1.5292 0.3899 1.4553 0.4504

M.S.E. = 3.1711 M.S.E. = 0.8459
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