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Abstract

This paper extends the family of smooth transition autoregressive (STAR) models

by proposing a speci�cation in which the autoregressive parameters follow random

walks. The random walks in the parameters capture permanent structural change

within a regime switching framework, but in contrast to the time varying STAR

(TV-STAR) speci�cation introduced by Lundbergh et al (2003), structural change

in our random walk STAR (RW-STAR) setting follows a stochastic process rather

than a deterministic function of time. We suggest tests for RW-STAR behaviour

and study the performance of RW-STAR models in an empirical setting, focussing

on interpretation and out of sample forecast performance.
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1. Introduction

There is large empirical literature that documents nonlinear behavior in macroeco-

nomic and �nancial time series. Some authors (see e.g. Kim and Nelson (1989), Stock

and Watson (1996) or Clements and Hendry (1999)) have focussed on parameter in-

stability as a means of accounting for structural change. Others (see e.g. Teräsvirta

and Anderson (1992), Beaudry and Koop (1993) or Pesaran and Potter (1997)) have

focussed on modelling behavioral regimes and the transition between them. An implicit

distinction between these two types of nonlinearity is that the �rst embodies a notion of

permanent change while the second embodies transitory changes between �xed states.

However, this distinction is made only occasionally, because usually the researcher is

interested in modelling just one type of nonlinearity, rather than discriminating between

them or simultaneously accounting for both.

Recent work by Lundbergh et al (2003) has incorporated structural instability into a

regime switching framework, by developing a time-varying smooth transition autoregres-

sive (TV-STAR) model. This model allows for smooth transition between two distinct

regimes, but in contrast to other regime switching models in which regime speci�c para-

meters remain constant, the regime speci�c parameters in the TV-STAR model evolve

according to a deterministic function of time. The main advantage of this speci�cation

is that it allows the underlying dynamics of each regime to change, so that in a business

cycle context the dynamics of a recession are allowed to change, as are the dynam-

ics of an expansion. Lundbergh et al (2003) use a logistic function in time to model

the variation in their regime parameters, so that all changes in these parameters are

monotonic. This monotonicity seems appropriate for capturing the inevitable e¤ects of

phenomena such as global warming or the internet on the economy. However, monotonic

changes are questionable if one believes that the direction of parameter variation might

change at di¤erent points in time, as might be the case if exogenous stochastic shocks

or government policies are primarily responsible for instigating structural change.

One might make the TV-STAR model more �exible by using a non-monotonic func-

tion of time to generate parameter changes, but such an approach would still restrict the

sorts of changes that recessions (or expansions) could undergo. In particular, the TV-
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STAR model would still be unable to account for parameter changes resulting from sto-

chastic in�uences. Given this limitation we therefore explore an alternative approach, by

introducing and studying a random walk smooth transition autoregressive (RW-STAR)

model. The RW-STAR model di¤ers from the TV-STAR model in that it allows the

regime parameters to follow random walk processes, so that in a business cycle setting

the characteristics of recessionary and expansionary regimes can change over time, but

in a stochastic rather than a deterministic fashion. It di¤ers from the more standard

random walk autoregressive (RWAR) speci�cation in that it allows for regime dependent

behavior. Our aims in developing the RW-STAR model are to o¤er an alternative way

of capturing permanent parameter change in a setting that is already nonlinear, and

also to look at the issue of whether observed �shifts" in business cycle characteristics

are deterministic or more stochastic in nature.

We organize our work as follows. In Section 2, we de�ne our RW-STAR model and

compare its main properties to standard RWAR, STAR and TV-STAR models. We

discuss tests for RW-STAR behavior in Section 3, which also contains a small Monte

Carlo exercise that examines the size and power of some of our tests. Section 4 illustrates

our tests and modelling strategies on OECD industrial production data. Here, we also

investigate and compare various aspects of the in-sample and out of sample performance

of linear, RWAR, LSTAR, TV-STAR and RW-STAR models, providing forecast density

evaluation as well as point forecast evaluation. Finally, in Section 5 we provide some

concluding remarks.

2. The RW-STAR Model

2.1. The model

The standard STAR model of order p for a univariate time series yt (see eg Teräsvirta

(1994)) is given by

yt = �
0
1wt + �

0
2wtG(st; 
; c) + "t (2.1)

where "t � nid(0; �2); �j = (�j0; �j1; ::::; �jp)0 for j = 1; 2; wt = (1; yt�1; :::::; yt�p)0 and
G(st; 
; c) is a transition function which is continuous in st and bounded by zero and
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one. The argument st of G(st; 
; c) is usually yt�d with d > 0; but st is sometimes an

exogenous variable such as a policy or leading indicator variable. If one sets st = t then

one obtains the TV-AR model discussed by Lin and Teräsvirta (1994). Di¤erent forms

of the transition function give rise to di¤erent types of regime switching behavior. The

most popular choice for G(st; 
; c) is the logistic function with

G(st; 
; c) = (1 + exp [�
(st � c)])�1 (2.2)

which gives rise to a logistic STAR (LSTAR) model, but another common choice is the

exponential function given by

G(st; 
; c) = 1� exp
�
�
(st � c)2

�
; (2.3)

which gives rise to an exponential STAR (ESTAR) model. In each case the centrality

parameter c determines the location of the two regimes that correspond to extreme

values of G(st; 
; c) (i.e. zero or one), while the smoothing parameter 
 > 0 determines

the speed of transition between regimes with respect to changes in the transition variable

st. For an LSTAR model, G(st; 
; c) = 0 and G(st; 
; c) = 1 correspond to "lower"

and "upper" regimes, and these are often interpreted as recessionary and expansionary

regimes when modelling business cycles. For an ESTAR model, G(st; 
; c) = 0 and

G(st; 
; c) = 1 correspond to "inner" and "outer" regimes. A key feature of these two

STAR speci�cations is that although the behavior of yt is regime dependent, there is no

long-run structural change because the set of possible regimes remains constant.

The RW-STAR model replaces the �1 and �2 parameter vectors in the standard

STAR model by time-varying parameter vectors �1;t and �2;t that follow random walk

processes given by

�j;t = �j;t�1 + �jt: (2.4)

for j = 1, 2: We assume that �j;t � nid(0; 
2�j), which allows us to treat the result-

ing model as a conditionally Gaussian state-space model (see Harvey (1989)), with a

measurement equation given by

yt = �
0
1;twt + �

0
2;twtG(st; 
; c) + "t: (2.5)
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Equation (2.4) implies stochastic variation in the parameters of (2.5), so that observa-

tions taken from a RW-STAR process will di¤er from LSTAR observations in that they

will be conditionally heteroskedastic. A process following equation (2.5) with (2.4) will

di¤er from an autoregressive process with random walk coe¢ cients (a RWAR process)

in that it will exhibit regime dependent behavior. We will just consider using (2.2) in

(2.5) in our empirical work in Section 3.2, although our above de�nition of RW-STAR

models includes other possible speci�cations for G (with 0 < G < 1). The model is

completed by making an assumption about the correlation structure between "t and �t:

Here we make the simplifying assumptions that 
2� = I2

2�j is a diagonal matrix and
that "t is uncorrelated with each of the p elements in each �j;t:

The primary motivation for the RW-STAR model is to allow for stochastic, but

permanent changes in the autoregressive parameters in an LSTAR setting, and it is

useful to consider some points relating to how (2.4) a¤ects the time variation in �1;t and

�2;t: A preliminary observation is that (2.4) implies that structural change is permanent.

A "return to normalcy" assumption (see eg, Lin and Teräsvirta (1999)) given by �j;t =

�j�j;t�1 + �jt would be less restrictive, but would not imply permanent change.

Next, we can observe that since �1;t and �2;t follow random walks, realizations will

typically wander, or follow paths that might change direction at any point in time. It

is, however, possible for parameters to follow monotonic paths for an extended period

of time. Movement in the �j parameters in a business cycle context means that the

dynamic characteristics of recessions and expansions can change over time. Individual

elements in �j;t can remain �xed (if the relevant component in 
2�j is zero), but in

general the variation in each element in �j;t will become more pronounced, the larger

the corresponding variance component in 
2�j . This contrasts with the TV-STAR model

outlined below, where parameter paths are typically monotonic, and all of them move

together.

A �nal observation is that (2.4) implies that �1;t and �2;t change in each period, in

response to each �t: This provides a convenient way of capturing structural change that

gradually evolves over many periods, and it is appropriate for modelling changes due

to the phasing in of a particular policy, or the gradual adoption of a new technology.

Equation (2.4) is not well suited for capturing random but infrequent permanent struc-
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tural change, although one could explicitly deal with this by specifying a process for �t
in which non-zero values are very rare. Equation (2.2) in Nyblom (1989) provides an

example of how this might be done.

Related work by Kim and Nelson (1999) and McConnell and Perez-Quiros (2000)

has studied infrequent changes in the mean and variance parameters associated with

each state in a Markov switching model of US output growth. These authors wanted

to determine whether the gap between recessionary and expansionary growth rates has

narrowed and whether there has been a decline in the volatility of output growth. Both

papers �nd evidence of a structural shift in 1984 (Q1), but neither allows for gradual

structural change. The RW-STAR model studied here explicitly caters for gradual

change in mean, and it also allows for implicit changes in variance. Thus one could

couch the narrowing gap and volatility decline questions within a RW-STAR framework,

allowing for gradual rather than sudden changes in business cycle characteristics.

The RW-STAR model provides a way of modelling stochastic but permanent struc-

tural change in an LSTAR setting, and it can be contrasted against the TV-STAR

model introduced by Lundbergh, Teräsvirta and van Djik (2003), that provides a way

of modelling deterministic permanent structural change within the same setting. This

latter model combines the STAR model with the time varying autoregressive (TV-AR)

model of Lin and Teräsvirta (1994) to obtain

yt=
�
�01wt + �

0
2wtG(st; 
1; c1)

�
[1�G(t; 
2; c2)]+

�
�03wt + �

0
4wtG(st; 
1; c1)

�
G(t; 
2; c2) + "t

(2.7)

where G(t; 
2; c2) is a logistic transition function as in (2.2). Equation (2.7) shows that

this model can be interpreted as a STAR model in which the autoregressive parameters

undergo gradual and deterministic changes from �1 to �3; and from �2 to �4: Lundbergh

et al (2003) test each of the 214 series analyzed in Stock and Watson�s (1996) study

of parameter instability, and �nd that their testing procedure supports a TV-STAR

speci�cation in 17% of (the di¤erenced versions of) these series. They also develop a

TV-STAR model of the help wanted index in the USA, and show that this model has

good in-sample and out of sample properties.
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3. Modelling procedure

A typical nonlinear model building strategy starts with a linear approximation to

the DGP, and then tests for particular forms of nonlinearity that might characterize the

data. LM type tests are often used when contemplating nonlinear alternatives, because

they avoid the complicated exercise of having to estimate a (potentially inappropriate)

nonlinear alternative, while still at the model speci�cation stage. Teräsvirta (1994) and

Lundbergh at al (2003) both base their model speci�cation strategies on speci�c-to-

general approaches that employ outward looking LM tests, although both also use a

general-to speci�c approach when re�ning their chosen nonlinear speci�cation.

Our model speci�cation strategy follows the broad principles advocated by these

previous authors, and involves �rst choosing a linear autoregressive model for the series

using a model selection criterion such as AIC, and then testing outwards for various

nonlinear alternatives. Our basic testing tools are adaptations of Teräsvirta�s (1994)

linearity test against STAR behavior, and Nyblom�s (1989) test for the constancy of

parameters over time. Nyblom�s test allows the parameters of the AR(p) process to

follow a martingale under the alternative, and therefore it is particularly appropriate

for �nding evidence that parameters follow random walks. Another possibly appropriate

parameter constancy test might be Lin and Teräsvirta�s (1999) test that allows each of

the AR(p) parameters to follow AR(q) processes under the alternative. This latter test

is interesting because it exploits the conditional heteroskedasticity associated with the

stochastic variation in random coe¢ cients, but we do not explore its properties here.

In the context of an AR(p) model, the LM STAR test statistic is the (F-version of

the) test of H0 : �2 = �3 = 0 in the auxiliary model

yt = �
0
1wt + �

0
2wtst + �

0
3s
3
t + "t; (3.1)

as discussed in Eitrheim and Teräsvirta (1996). If st = yt�d where the delay parameter

d is unknown, then one typically conducts a sequence of tests with di¤erent d, and then

uses the test result with the lowest p-value to guide the choice of yt�d: Nyblom�s (1989)

test applied to an AR(p) model is based on the test statistic

L = T�2
TP
t=1
Z 0t(cW )�1Zt; (3.2)
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where Zt =
PT
t=1wtet (with et being the residuals obtained from the AR(p)), andcW = T�1(

PT
t=1wtw

0
t)b�2e (with b�2e = T�1(

PT
t=1 e

2
t )). The test statistic has a non-

standard distribution under the null, but critical values are tabulated in Nyblom (1989).

Luukkonen et al (1988) discuss the size and power properties of the above STAR test,

while Nyblom (1989) discusses the size and power properties of his parameter constancy

test. To get a feeling for how well these tests perform in di¤erent nonlinear situations,

we undertake a small Monte-Carlo study in Section 3.1 below.

Each of the above tests look for just one type of nonlinearity, but if both types are

found, then one might view this as evidence of RW-STAR behavior. A "procedure"

that rejected linearity in favour of a RW-STAR speci�cation when each of the STAR

and Nyblom tests rejected linearity would have distorted size if one were to view it as a

"test", but in principle one can adjust critical values to account for this. Alternatively,

one might consider a single test with an RW-STAR alternative, but the development of

a direct test of linearity against RW-STAR behavior is beyond the scope of this paper.

As a compromise we note that if a STAR model has been estimated, then one

can test STAR nonlinearity against RW-STAR nonlinearity, by applying the Nyblom

parameter constancy test to the linearised version of the STAR model. To operationalize

this, one �xes the parameters 
 and c in the STAR model at b
 and bc to evaluate the
variables in wtG(st; 
; c); and then treats (2.1) as the linear regression which holds under

the null of parameter constancy. The calculation of the test statistic L in (3.2) then

involves setting Zt =
PT
t=1 xt�t (with xt being (wt; wtG(st; b
;bc)); and �t being the

residuals obtained from the linearised STAR(p) model), and cW = T�1(
PT
t=1 xtx

0
t)b�2�

(with b�2� = T�1(
PT
t=1 �

2
t )). This procedure is somewhat informal (especially since we

use wtG(st; b
;bc) to approximate wtG(st; 
; c)), but we call it our RW-STAR test because
high values of L will be consistent with a RW-STAR speci�cation.

When considering the estimation of a RW-STAR speci�cation, our suggested mod-

elling strategy is to start by performing STAR tests on an AR(p) model chosen by AIC

(or some other model selection procedure). Typically, one will perform a sequence of

STAR tests, corresponding to a sequence of possible transition variables (st = yt�d; for

d = 1; 2; : : : ; p), and then focus on the test result (and corresponding d�) that gives rise

to the lowest p-value. If that result is statistically signi�cant (one may want to adjust
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critical values to account for the fact that one has conducted a sequence of tests rather

than just one test), then it is worthwhile looking for evidence of parameter instability.

This can be done in one of several ways. To look for random walk variation one could

simply perform Nyblom�s test on the AR(p) model, and/or one might estimate the

STAR(p) model (with transition variable st = yt�d�) implied by the STAR tests, and

then test for RW-STAR behavior conditional on that estimated STAR(p) model. Alter-

natively one might simply use the TV-STAR test developed by Lundbergh et al (2003)

to look for evidence of parameter instability within a STAR framework. Rejection of

the null for any of these parameter stability tests suggests that it will be worthwhile at-

tempting the estimation of a RW-STAR(p) model (with transition variable st = yt�d�).

We discuss estimation below. Obviously if the sequence of STAR tests does not lead

to a rejection of the null hypothesis, then attempts to estimate a RW-STAR model are

unlikely to be successful.

3.1. Performance of the nonlinearity tests

The speci�cation procedure described above relies on a sequence of tests rather

than a single direct test, to provide evidence of RW-STAR behavior. Given this, it is

potentially useful to determine how the various nonlinearity tests embodied in (3.1) and

(3.2) will behave in a RW-STAR setting, and what these tests are likely to �nd when

related forms of nonlinearity are present in the data. We therefore undertake a small

Monte Carlo study to explore these issues.

Our study involves �ve DGPs, which include two models without regimes (an AR(4)

and a RWAR(4)), and three STAR models (STAR(4), TV-STAR(4) and RW-STAR(4))

in which the transition variable is yt�1: We include the TV-STAR DGP in our exper-

iments because researchers might be considering both RW- and TV-STAR models as

possible alternatives, and it is potentially useful to know how our tests perform in each

case. We use four lags in each of our models to ensure that our DGPs have non-trivial

dynamics, and we (roughly) calibrate our DGP coe¢ cients to estimated models based

on an aggregated index of seven OECD7 data described below. These DGPs are re-

ported in Appendix A, and they are taken to represent the sorts of series that might be
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encountered in practice.

We consider seven sets of nonlinearity tests in our study. The �rst is a Nyblom

(1989) test for constancy of parameters, and this is followed by tests for STAR and

TV-STAR behavior in situations where the delay parameter d is known. The TV-

STAR test is outlined in Lundbergh et al (2003), and we include it in our experiments

because we expect it to have power against RW-STAR speci�cations. The fourth test

rejects linearity when both the Nyblom and STAR tests reject this null, and it provides

information on when both sorts of nonlinearity (i.e. regime switching and non constancy

of parameters) appear to be present in the data. The �nal three tests repeat the previous

three tests, but in a more realistic setting where the researcher does not know the delay

parameter. In these last three cases, the test conclusion is based on the lowest p-value

found for d = 1; : : : ; 4. Of the full set of seven tests, only the �rst three are likely

to have nominal size, but since the remaining "tests" may provide the researcher with

information that might aid subsequent model speci�cation, it is useful to know the

extent of any size distortion. We do not include our RW-STAR test in our Monte Carlo

study, due to the practical di¢ culties involved in estimating an LSTAR model for each

replication1, but we illustrate its use in our empirical application below.

We report rejection frequencies for the thirty �ve experiments (7 tests on each of 5

DGPs) in Table 1. Each experiment is based on 10,000 replications of samples of 400,

and all tests are conducted on the last 300 observations at the 5% level of signi�cance.

Key �ndings are as follows:

(i) The Nyblom test has reasonable power (57.54%) against the RW-STAR DGP, and

little power against the other STAR DGPs.

(ii) The STAR test has moderate power against the RW-STAR DGP (52.77% in a

known transition delay setting), although it also has similar power against other

nonlinear DGPs. Thus, it appears that in contrast to the Nyblom test, the STAR

test is sensitive to di¤erent sorts of nonlinearity, rather than just the STAR form

1Estimation of LSTAR models often involves the maximization of badly behaved likelihoods when

the true DGP is not LSTAR. Under such circumstances, an automated estimation program that does

not involve human intervention is very unlikely to �nd the global maximum.
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of nonlinearity.

(iii) The joint use of both nonlinearity tests is unreliable, in the sense that given a

RW-STAR DGP, the probability that both tests will reject linearity is only about

30%.

(iv) Not surprisingly, the rejection frequencies for the STAR tests that minimize p-

values over d = 1; : : : ; 4 are considerably higher than those using the correct

delay. This indicates that one needs to use results from these sets of tests quite

conservatively.

(v) The TV-STAR tests had good power (76.16% and 86.52%) against the RW-STAR

processes.

Overall the simulations suggest that RW-STAR behavior can be detected relatively

easily, although without the additional information supplied via the Nyblom tests, it

seems quite possible that the researcher might confuse RW-STAR and TV-STAR DGPs.

4. Modelling industrial production of selected OECD countries

In this section we provide a detailed analysis of the nonlinearity properties of GDP

indicators for various countries. Our aim is to compare the abilities of di¤erent nonlinear

speci�cations with respect to capturing both long-run and short-run structural change,

and to compare the forecasting abilities of each type of model.

4.1. The data

Our data consists of seasonally adjusted values of the logarithmic monthly indices

of industrial production for US, Japan, France, Germany, UK and an aggregated in-

dex of seven OECD countries, abstracted from the OECD Main Economic Indicators.

Observations from January 1962 to December 1999 are used for testing and in-sample

estimation, and observations from January 2000 to December 2003 are used for fore-

casting. The French data has been adjusted for the e¤ects of strikes in 1968, prior to

undertaking any analysis, and two outlying observations are removed from each of the
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German and United Kingdom series. All analysis is based on (100�) annual growth
rates (�rst di¤erenced data) which are approximately stationary. The six data series

are illustrated in Figure 1, which shows the cyclical behavior of each series. Prelim-

inary analysis �nds that 12 lag AR(p) speci�cations are appropriate for all countries

except for the OECD (where an AR(10) speci�cation seems more appropriate), and all

subsequent testing and modelling is based on the 12 lag speci�cation.

4.2. Linearity tests

We �rst undertake a set of tests to assess the extent of nonlinearity in each series. We

focus on looking for evidence of regime switching, structural change and combinations

of these characteristics, and report the results of our tests in Table 2.

In Table 2, the p-values for the LSTAR tests (column 5) relate to the minimum p-

value obtained when using Teräsvirta�s (1994) third order LSTAR tests for d = 1; : : : ; 12:

We choose to present this test in addition to the STAR test in (3.1) because of its

superior power against LSTAR processes, and our belief that as business cycle indicators,

indices of industrial production were more likely to follow LSTAR processes than ESTAR

processes. Our reported p-values, ranging from 0.0000 (for the United Kingdom and

OECD) to 0.0403 (for Japan), show clear evidence of regime switching in each of the

six series, supporting the estimation of an LSTAR speci�cation for each country. In

each case, the reported value of dL (in column 4) corresponds to the delay giving rise

to the minimized p-value, but we note that for each country there are always several

values of dL that gave rise to a statistically signi�cant test statistic. The STAR tests in

(3.1) (see column 8 for p-values and column 7 for the delay that achieves the minimum

p-value) re�ect very similar �ndings. The reported results suggest that each country

index follows a STAR type process, and further testing (not reported) shows that there

are several choices of dS that lead to statistically signi�cant test results.

We next test for non-constancy in parameters. The p-values obtained for the Nyblom

tests provide strong evidence of non constant parameters in the Japanese series, and

weaker evidence of this for the United Kingdom. These tests do not assume regime

switching and are not really tests of RW-STAR behavior, but the observation that both
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STAR and Nyblom tests are statistically signi�cant for Japan and the UK suggests that

parameter non-constancy and regime switching are present in each of these two series.

Since the LSTAR tests have found strong evidence of a LSTAR type nonlinearity in each

of the six series, we next estimate LSTAR models (with the delay reported in Table 4),

and base our RW-STAR tests on these models. P-values for these RW-STAR tests are

reported in column 6. These tests do not �nd evidence of RW-STAR characteristics,

except for possibly in the Japanese case. We note, however, that the Lundbergh et

al (2003) tests for TV-STAR behavior (in column 9 in Table 2) all �nd very strong

evidence of parameter change in an LSTAR framework, and we use these latter tests to

justify the estimation of both TV-STAR and RW-STAR models.

4.3. Development of baseline models

We start by estimating the linear and RWAR models that we will use as reference

points for assessing the relative merits of RW-STAR models. All linear models are

initially based on AR(12) speci�cations, and for each country we remove the least sta-

tistically signi�cant coe¢ cients, one at a time, until such time as AIC stops improving.

Summary results for these linear models are reported in Table 3.

We base our RWAR models on our (reduced) linear models and equation (2.4), and

estimate them by using the Kalman �lter to compute the prediction error decomposition

of the likelihood. The AR coe¢ cient state variables �t are obtained by �ltering, condi-

tional on the last observation yt�1 for t = 1; 2; : : : ; T; and their estimation is improved

by smoothing through a backwards recursion algorithm so that they are re-estimated

using all past observations up to yt�1. We use the estimated b� from our (reduced) linear
models as seeds for the random walk processes by making the assumption that �t=0 is

distributed N( b�; Q1 ) for large Q1. We initially set the variance �2" equal to 1, and as
the state variances, which re�ect the degree of variation of the time varying parameters

in the state vector are likely to be very small, we transform them into log variances

and initilise them at -5 (and then later we use the delta method to obtain asymptotic

standard errors when we convert log variances back to into variances). Details relating

to the use of the Kalman �lter can be found in Harvey (1989), Kim and Nelson (1999)
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and Durbin and Koopman (2000).

The estimated RWAR models for Germany, UK and the OECD are very similar to

their linear counterparts, in that their random coe¢ cients stay very close to the corre-

sponding linear (and constant) parameter estimates. In contrast, the random coe¢ cients

for the intercept and �rst lag terms in the RWAR models for the United States, Japan

and France all show considerable variation, leading to a noticeable reduction in both the

sum of squared errors (ESS) and AIC. Figure 2 illustrates/compares the relevant OLS

and RWAR coe¢ cients for these last three countries, while summary statistics relating

to all countries are presented in Table 3. The reported ESS for the RWAR models are

based on smoothed estimates, and they are scaled up to account for the observations

that are lost when starting up the estimation of the random coe¢ cients. The reported

AIC measures for the RWAR models are also adjusted to allow direct comparability

with AIC for the linear (and other) models.

The LSTAR models are estimated using nonlinear least squares. Given that the joint

estimation of 
 and c is often di¢ cult (see Teräsvirta (1994)), we use a preliminary grid

search to �nd good starting values for these parameters and we standardize the transition

function during estimation. For each country except the OECD aggregate, we use the

transition variable that minimized the p-value for the LSTAR tests, �rst estimating

equation (2.1) with (2.2) and p = 12, and then imposing coe¢ cient restrictions on the

model, one at a time, until AIC stopped improving. In the �rst instance, we were unable

to obtain satisfactory estimates for the OECD case by following this procedure, but we

had no problems once we used yt�2 as the transition variable, rather than yt�1: An

LSTAR test supported this alternative transition variable (the p-value is 0.0003). Most

of the restrictions that were imposed during the reduction of the general LSTAR(12)

model were simple exclusion restrictions (imposed when a coe¢ cient estimate was clearly

statistically insigni�cant), but on several occasions restrictions of the form �1k = � �2k
were imposed (after testing that this was appropriate). This latter sort of restriction

implies that some of the dynamic features that characterize recessionary phases of the

business cycle, disappear during expansionary phases of the cycle.

Key features of our estimated LSTAR models are reported in Table 4, and the

implied transition functions are illustrated in Figure 3. The transition functions are
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steep for all countries excepting Japan and Germany, so that for most countries, small

changes in the transition variable can cause quite sharp changes in dynamics. The upper

regimes for Japan and Germany contain relatively few observations, but estimates are

precise, presumably because transition between regimes is slow in this case. Diagnostic

testing �nds no serial correlation in the residuals of these LSTARmodels and simulations

show that all of them are stationary. As should be the case, the sum of squared residuals

for the LSTAR models are lower than those for the corresponding linear models, but

AIC is also lower for each country, suggesting that LSTAR models provide a better

representation of the data than the linear models. Comparing the �t of the LSTAR

and RWAR models, we �nd that although the RWAR model �ts better in the US and

Japanese cases, the converse is true in the remaining cases.

The procedures that we use to estimate our TV-STAR models are very similar to

those used for the LSTAR models, although we use simulated annealing rather than a

grid search to �nd good starting values for c1; c2; 
1 and 
2. See Brooks and Morgan

(1999) for discussion on simulated annealing. For each country, we use the transition

variable (in column 7 of Table 2) that minimized the p-value for the TV-STAR tests,

and as above, we �rst estimated a very general version of equation (2.7) (with p = 12),

and then removed insigni�cant autoregressive variables one by one until such time as

AIC stopped improving.

The important features of the �nal TV-STAR speci�cations are reported in Table

5, and transition functions in yt�d and t are respectively illustrated in Figures 4 and 5.

With the exceptions of the United Kingdom and the OECD, the transition functions in

yt�d were steeper than those for the LSTAR models, and the centers of all transition

functions in yt�d also moved. The TV-STAR lower regime for the UK contains relatively

few observations, but estimates are precise, presumably because transition between

regimes is slow in this case. The transition functions in time are steep, and with the

exception of Germany, all indicate structural change in about the mid seventies (about a

third of the way through the sample). All models pass serial correlation tests and appear

to be stochastically stationary. Not surprisingly, the sums of squared errors associated

with these models are lower than those for the corresponding LSTAR models, but AIC

is also lower. The TV-STAR model also has better �t than the RWAR model.
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4.4. Estimation of RW-STAR models

Our estimation of the RW-STAR models is based on the Kalman �lter and is

analogous in many respects to our estimation of the RWAR models. In this case our

time varying parameters are (�1;t; �2;t)0, and we start estimation by assuming that the

starting values for (�1;t; �2;t)0 are distributed N( (�1; �2)0 P1 ) where (�1; �2) = (b�1;b�2) are the (reduced) estimated LSTAR(12) coe¢ cients and P1 is diagonal with large
elements. As before, we initially set the variance �2" equal to 1, and after transforming

the variances of the state vector into logs, we initilise them at -5. For each country, the

RW-STAR models uses the same transition variable (i.e. yt�d) as in the LSTAR model.

The key di¤erences between the estimation of these two models is that the RW-STAR

model has additional parameters (
 and c) associated with transition function, and that

this model contains two sets of time varying parameters rather than just one.

We speci�ed 
 and c in our RW-STAR models as constant rather than time varying

parameters, because of the well known problems in jointly estimating these parameters

in LSTAR contexts and our desire to keep this "�rst pass" at estimating RW-STAR

models relatively simple. This speci�cation embodies the palatable assumption that

demarcation between recessions and expansions stays constant through-out the sample,

but it also assumes (perhaps unrealistically) that the speed of transition between these

phases is always the same. It turned out that our treatment of 
 and c as constant

parameters did not su¢ ciently simplify the estimation problem, and although we would

have liked to let 
 be a free parameter, we resorted to conditioning on 
 after experi-

encing di¢ culties with convergence. For each country, we conditioned on the value of 


obtained from the corresponding LSTAR model. In general, we were able to estimate c

as a free parameter, although for the US model we had to restrict c to ensure that each

regime contained su¢ cient observations to allow the estimation of (�1;t; �2;t)0:

As noted above, the estimation of time varying parameters in a RW-STAR model is

quite di¤erent from that in a RWAR model because there are now two sets of coe¢ cients

to estimate rather than one. This is not an innocuous di¤erence, because all sample

observations in�uence the estimation of each �t in the RWAR case, while the value of

G(yt�d; 
; c) in the RW-STAR case determines whether an observation will in�uence
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the estimated b�1;t, the estimated b�2;t, or both b�1;t and b�2;t: Insu¢ cient variation in
G(yt�d; 
; c) in RW-STAR models can lead to estimation problems that resemble those

that are sometimes experienced when estimating the � parameters in LSTAR models. In

particular, identi�cation problems can occur if G(yt�d; 
; c) ' 0 for most of the sample,
(such a sample will contain very little information about the upper regime parameters),

and a similar lack of information can a¤ect the identi�cation and estimation of the lower

regime parameters if G(yt�d; 
; c) ' 1 for most of the sample. The location of c (and

to a lesser extent the value of 
) in�uences the values that G(yt�d; 
; c) can take, with

estimation problems being more severe, when c implies just a few observations in one

of the regimes. The problem is alleviated if 
 is quite small (because a small 
 often

allows G(yt�d; 
; c) to take values that are well away from 0 and 1), and it would also

be alleviated if we impose cross regime restrictions on the � parameters, because then

observations that fall in one of the regimes could in�uence the estimation of parameters

associated with both regimes. Given that one is estimating how parameters move in a

RW-STAR model (as opposed to estimating �xed parameters in an LSTAR model), one

might expect this sort of identi�cation problem to be much more severe in a RW-STAR

setting. Thus, it is important to pay close attention to the estimated values of c (and

also 
) for RW-STAR models, and to check that the implied transition function is likely

to allow the identi�cation of (�1;t; �2;t)0.

We report summary results for our RW-STAR models in Tables 6a, and in general

these models �t better than RWAR models (US is an exception), but not as well as

TV-STAR models (Japan is an exception). Table 6a also contains details about the

estimated transition functions and they are illustrated in Figure 6. In general the

RW-STAR transition functions have centers that are closer to the median of the data

than their LSTAR counterparts, although this is not true in the Japanese case. Here,

although the centre (2.91%) is near upper end of the distribution of the Japanese data,

we are able to identify movement in the upper regime parameters, because the small


 ensures that G(yt�d; 
; c) is su¢ ciently often away from 0: See Figure 6. The centre

of the German RW-STAR transition function is also quite large (2.21%), but again a

graph of the German transition functions show that G(yt�d; 
; c) is often away from 0, so

we are not concerned about a lack of identi�cation. The interesting point with respect
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to the Japanese and German cases is that the lower regimes in these cases are better

interpreted as periods when growth is not strong, rather than recessionary regimes.

Only when growth gets very strong do these economies venture into their upper regimes.

As mentioned above, in the US case unrestricted estimation of c caused identi�cation

problems (indeed the estimation algorithm placed c outside the range of the data), but

once we imposed the restriction that �2 < c < 2; the estimation algorithm converged

to a solution that was likely to allow precise estimation.

We report the start values, end values and variation in each of our smoothed RW-

STAR coe¢ cients in Tables 6b to 6g, and provide graphs of the some of these coe¢ cients

in Figure 7. The tables show that many of the coe¢ cients experience very little �uc-

tuation, but we see substantial �uctuation in at least three or four of the coe¢ cients

for each country. In all countries, we see variation in at least one of the coe¢ cients

for each regime, and usually it is one of the intercepts (�10t or �20t) or low order AR

coe¢ cients that varies the most. Figure 7 plots the three most variable coe¢ cients for

each country. Here, we see that movement in the coe¢ cients is not always monotonic,

as would be predicted by a TV-STAR model. For the US, it is interesting to note that

coe¢ cient movements are very similar to those in Figure 2.

4.5. Forecast performance

This section evaluates the RWAR, LSTAR, TV-STAR and RW-STAR speci�cations

by comparing their one-step-ahead forecast performance with AR models. The forecast-

ing sample covers 48 months from January 2000 to December 2003, and all forecasts

are bona �de in the sense that model speci�cations are not updated over the forecasting

period. Given recent claims (see e.g. Clements and Smith (2000)) that the forecasting

advantages associated with nonlinear models may not become apparent if evaluation is

based solely on forecast root mean squared error (RMSE) criteria, we provide a broad

forecast analysis that includes Diebold Mariano (1995) tests for equality of forecasting

accuracy (DM tests), Pearson goodness of �t tests (GOF tests) as modi�ed by An-

derson (1994), and the forecast density evaluation methods (FDE methods) suggested

by Diebold, Gunther and Tay (1998). Our analysis follows recent work by Boero and
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Marrocu (2004), who provide an accessible overview of GOF tests and FDE methods.

Table 7 provides an evaluation of point forecasts for each of our models. Here, we

see that when assessing RMSE, there are no clear winners or losers. The AR model

is best (i.e. lowest) for two countries but also worst (highest) for two countries, and

the same is true for the TV-STAR model. The RW-STAR model is neither best nor

worse for any country. DM tests applied to the mean squared forecasting errors indi-

cate some statistically signi�cant di¤erences, with the forecasts from RW-STAR models

outperforming RWAR forecasts for the United States, and outperforming the LSTAR

and TV-STAR models for Japan.

The remainder of our evaluation techniques are based on probability integral trans-

forms (zt) of the actual realization (yt) with respect to a model�s forecast density pt(yt);

i.e. zt =

Z yt

�1
pt(u)du = Pt(yt)

The set of probability integral transforms will be i.i.d. U(0; 1) random variables if the

forecast density follows the true density, and the forecast density evaluation methods

that we use are all based on this fact. We plot our (transformed) empirical forecast den-

sities to gain a visual impression of whether or not they are uniform, and use Lilliefor�s

(1967) critical values of the Kolmogorov Smirnov tests to draw 95% con�dence bands

for the observed zt under the null that that they are i.i.d. U(0; 1): The independence

aspect of the i:i:d:U(0; 1) hypothesis are tested by applying Ljung-Box tests to the auto-

correlations of (zt� z); (zt� z)2 and (zt� z)3 , while the GOF tests look for departures
from the uniform distribution by looking at features such as the location, scale and

skewness of the (transformed) forecast distribution. We use six autocorrelations for our

Ljung-Box tests, and eight partitions of our forecast density for our GOF tests.

We obtain our one-step-ahead forecast densities by using a modi�ed bootstrap

method which draws from a U(0; 1) distribution that has been indexed to the cumulative

distribution of the in-sample errors. When obtaining the bootstrap sample, the cumu-

lative distributions are made continuous by scaling the intermediate points between any

two consecutive indexed errors that have been drawn. One step ahead forecast densities

for RWAR and RW-STAR models are simulated by sampling both smoothed state errors

and smoothed observation errors.
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Plots of the empirical distribution function (versus the theoretical distribution) of

the zt series are provided in Figure 8. The interesting feature of these plots is that

all six TV-STAR models perform well, while most other forecasts (excepting those for

Germany) deviate outside the bands that should contain an i.i.d. U(0; 1) distribution

with 95% con�dence. In most cases this deviation is not severe, with only the US

LSTAR and UK RWAR straying a long way from the con�dence bands.

The Ljung-Box tests for the autocorrelation of the zt series and its powers (see the

�rst three columns of Table 8) �nd little evidence of dependence in the transformed fore-

cast errors. This is consistent with the i.i.d. property that will characterize the forecast

density if it follows the true density, and it also indicates that the i.i.d. assumption that

is needed to use the 95% con�dence intervals in Figure 8, is roughly satis�ed.

The last three columns of Table 8 show why most of the empirical forecast densities

for LSTAR RWAR and RW-STAR models do not follow the true forecast densities. The

main problem appears to be with the empirical median, which di¤ers from the true

median in nearly all cases where the (transformed) forecasting densities stray from the

U(0; 1) distribution. This is consistent with Clements and Smith�s (2000) observation

that point forecasts from nonlinear models can be misleading. The statistics in the

"location" column indicate that the RW-STAR forecasts track the median a little better

than AR and LSTAR forecasts, and about the same as the RWAR forecasts. The last

two columns of Table 8 shows that there are only a few problems with scale and skewness.

5. Conclusion

The RW-STAR model proposed in this paper provides a potentially useful framework

for studying parameter change in regime switching environment. Using industrial pro-

duction data for several countries, we �nd evidence of non-constant parameters in a

setting where there is also evidence of regime switching, and we also �nd that RW-

STAR models seem to be able to capture this behavior. Some of our estimated random

walk coe¢ cients move very little, consistent with behavior implied by standard STAR

models, while some of our estimated random walk coe¢ cients gradually increase (or

decrease) over time, consistent with behavior implied by TV-STAR models. However,
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some of our RW-STAR models have coe¢ cients that change in ways that neither LSTAR

nor TV-STAR models can capture, and we therefore conclude that RW-STAR models

can provide a potentially useful way of capturing time variation in regime speci�c pa-

rameters.

Forecast density evaluations show that the TV-STAR models outperform the RW-

STAR models, and this suggests that TV-STAR models may have captured permanent

structural change better. The interesting thing here is that the TV-STAR models all

embody a sudden structural change in the early to mid seventies (and not in the early

eighties as documented by Kim and Nelson (1999a)), so that the TV-STAR predictions

are essentially LSTAR predictions based on data from the mid seventies onwards. It is

noteworthy that some of our RW-STAR coe¢ cients for the US, France and the UK seem

to track this structural change in the "seventies", and that some also change direction

at the time of the well known "volatility decline" in 1984. See Figure 7. The "bump"

in the US �11 coe¢ cient in 1990 might also be associated with the �rst Gulf war. It is

apparent that RW-STAR coe¢ cients can sometimes track historical episodes, and thus

it seems useful to undertake further research on the applications of RW-STAR models.

The RW-STAR models presented here are quite primitive, but in sample diagnostics

based on standardizes residuals �nd serial correlation only in the OECD model. This

might be removed by estimating, rather than �xing the transition parameter. Further,

after estimating the RW-STAR model and determining which parameters "move" and

which ones stay constant, it might also be useful to undertake a second estimation stage

that �xes and then reestimates those parameters that remained constant during the

initial estimation, despite their random walk speci�cation. We leave these re�nements

for future research.
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APPENDIX A: DGPS FOR THE POWER SIMULATIONS

The coe¢ cients in these DGP are taken from estimated versions of these models applied

to the twelfth di¤erenced (logs of) the OECD data. The �rst four simulated values for all

DGPs are obtained from the generating process N(1.3,1.7), and then subsequent values

are based on following. We generate 10,000 replications of samples of 400 observations

and conduct our tests on the last three hundred simulated observations.
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AR(4) MODEL:

yt = 0:08 + 0:8yt�1 + 0:2yt�2 � 0:1yt�3 � 0:3yt�4 + "t; where "t � N(0:0:35):

AR(4) MODEL WITH RANDOM COEFFICIENTS:

�0 = [0:03;�0:6; 0:4; 0:4;�0:2]
�t = �t�1 + �t;where �1;t � N(0; 0:01)
yt = x

0
t�t + "t;

where "t � N(0:0:35); and xt = [1; yt�1; yt�2; yt�3; yt�4]

LSTAR(4) MODEL:

yt = 0:03 + 0:8yt�1 � 0:2yt�2 � 0:3yt�3 � 0:1yt�4+
(0:07� 0:6yt�1 + 0:4yt�2 + 0:4yt�3 � 0:2yt�4) (1 + exp(�2:72(yt�1 + 0:2)))�1 + "t;
where "t � N(0:0:35):

TV-STAR(4) MODEL

�1 = [0:34; 0:8;�0:1;�0:6;�0:5]
�2 = [0:27; 0:96; 0:04;�0:1; 0:02]
�3 = [0:03; 0:63; 0:06; 0:3; 0:06]

�4 = [0:06; 0:8; 0:4; 0:3;�0:6]
yt = x

0
t�1(1�G(t))(1�G(yt�1)) + x

0
t�2(1�G(t))G(yt�1)+

x
0
t�3G(t)(1�G(yt�1)) + x

0
t�4G(t)G(yt�1) + "t

where "t � N(0:0:35); xt = [1; yt�1; yt�2; yt�3; yt�4] , G(yt�1) = (1 + exp(�16(yt�1 � 0:35)))�1

and G(t) = (1 + exp(�2:72(t=300� 0:3)))�1

RW-STAR(4) MODEL

Initial values of parameters

�1;0 = [0:03; 0:8;�0:2;�0:3;�0:1]
�2;0 = [0:07;�0:6; 0:4; 0:4;�0:2]
�1;t = �1;t�1 + �1;t;where �1;t � N(0; 0:01) and
�2;t = �2;t�1 + �2;t;where �2;t � N(0; 0:01):

yt = [ x
0
t x

0
tG(yt�1) ]

"
�1;t

�2;t

#
+ "t;

where "t � N(0:0:35); xt = [1; yt�1; yt�2; yt�3; yt�4]
and G(yt�1) = (1 + exp(�2:72(yt�1 + 0:74)))�1
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Table 1: Power of Nonlinearity Tests (% rejections)
(10,000 replications of samples of 300, nominal test size is 5%)

TEST
DGP NYBLOM STAR TVSTAR N&STAR STAR TVSTAR N&STAR

(kd) (kd) (kd) (ud) (ud) (ud)
AR(4) 2.13 5.00 4.77 0.15 15.46 12.82 0.51
RWAR(4) 68.24 52.52 84.75 31.77 69.18 88.70 46.63
STAR(4) 5.37 51.54 34.24 3.48 84.32 67.54 4.82
TVSTAR(4) 13.73 48.66 62.30 7.68 96.09 93.62 13.50
RWSTAR(4) 57.54 52.77 76.16 29.95 73.21 86.52 43.18

The DGPs are given in Appendix A. The symbol (kd) indicates that the test assumes
knowledge of the delay (i.e. d = 1), while the symbol (ud) indicates that the test
minimises the p-value over d = 1; : : : ; 4.

Table 2: P-Values for Nonlinearity Tests
AR BASED TESTS STAR BASED TESTS

Country Nyblom TV-AR dL LSTAR RW-STAR dS STAR TVSTAR
United States 0.2090 0.3376 1 0.0075 0.2553 11 0.0328 0.0868
Japan 0.0003 0.0000 1 0.0403 0.1068 3 0.0055 0.0000
France 0.1780 0.2499 9 0.0107 0.7100 9 0.0252 0.0217
Germany 0.2380 0.0090 1 0.0131 0.9497 5 0.0061 0.0074
United Kingdom 0.0891 0.7120 1 0.0000 0.8826 1 0.0009 0.0017
OECD7 0.2380 0.0668 1 0.0000 0.1553 1 0.0000 0.0000

dL is the transition variable lag that minimises the p-value for the LSTAR test and dS
is the transition variable lag that minimises the p-value for the STAR and TVSTAR
tests

Table 3: Summary Details of Linear and RWAR models
(e¤ective sample of 444 observations from 1963:1 to 1999:12)

LINEAR MODELS RWAR MODELS
Country Parameters ESS AIC Parameters ESS AIC
United States 8 196.86 2.06 16 174.15 1.97
Japan 8 634.17 3.23 16 553.89 3.13
France 6 691.05 3.31 12 662.13 3.29
Germany 9 944.45 3.63 18 919.93 3.64
United Kingdom 5 742.26 3.37 10 726.87 3.37
OECD7 6 155.18 1.81 12 152.05 1.82

Linear models are AR(12) models after statistically insigni�cant coe¢ cients have been
removed. RWAR models are the (reduced) AR models with random walk coe¢ cients.
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Table 4: Summary Details of LSTAR models
(e¤ective sample of 444 observations from 1963:1 to 1999:12)

Country Parameters d bc b
 ESS AIC
United States 12 1 -0.43 78.56 184.76 2.01
Japan 19 1 2.72 2.06 573.26 3.18
France 17 9 -1.51 1 633.71 3.27
Germany 20 1 2.81 1.77 855.67 3.58
United Kingdom 15 1 0.91 1 659.61 3.30
OECD7 10 2 -0.28 1 136.98 1.71

Reported data relates to LSTAR(12) models, after statistically insigni�cant coe¢ cients
have been removed. A 1 reported in the b
 column means that the LSTAR model is
e¤ectively a threshold model.

Table 5: Summary Details of TV-STAR models
(e¤ective sample of 444 observations from 1963:1 to 1999:12)

Country Parameters d bc1 b
1 bc2 b
2 ESS AIC
United States 28 11 -0.22 1 1975:03 1 161.01 1.95
Japan 24 3 -0.41 1 1976:10 1 512.90 3.09
France 27 9 -1.01 106 1976:04 1 577.24 3.22
Germany 30 5 -0.89 1 1968:01 1 793.24 3.55
United Kingdom 33 1 -2.77 0.63 1972:11 1 578.84 3.26
OECD7 28 1 -0.24 2.67 1974:12 1 119.55 1.65

Reported data relates to TVSTAR(12) models, after statistically insigni�cant coe¢ -
cients have been removed. A 1 reported in the b
1 column means that the LSTAR
features of the model are e¤ectively threshold features. A1 reported in the b
2 struc-
tural change in the model is e¤ectively a structural shift.

Table 6a: Summary Details of RW-STAR models
(e¤ective sample of 444 observations from 1963:1 to 1999:12)

Country Parameters d bc b
 ESS AIC
United States 22 1 0.97 78.56 172.82 1.99
Japan 36 1 2.91 2.06 479.35 3.08
France 32 9 -1.02 1 597.28 3.28
Germany 38 1 2.21 1.77 807.19 3.61
United Kingdom 28 1 0.78 1 653.86 3.35
OECD7 18 2 -0.28 1 130.76 1.70

RW-STAR models are random walk versions of the reduced LSTAR models. A 1
reported in the b
 column means that the LSTAR features of the model are e¤ectively
threshold features.
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Table 6b: State Variables for RW-STAR model for the United States

Parameter Start Value End Value. ���
�10t 0.2872 0.2923 0.0156
�11t -0.0543 -0.1337 0.0337
�12t 0.0649 0.0658 0.0007
�13t 0.1172 0.1172 0.0000
�14t 0.2168 0.0248 0.0195
�19t (= ��19t) 0.0755 0.0755 0.0000
�110t (= ��210t) 0.0285 0.0285 0.0000
�112t (= ��212t) -0.0267 0.0899 0.0153
�20t 0.3339 0.3339 0.0069
�21t 0.2394 0.2394 0.0046b�" = 0:6601

Coe¢ cient �jk refers to the coe¢ cient for the kth lag in the jth regime.

Table 6c: State Variables for RW-STAR model for Japan
Parameter Start Value End Value ���
�11t -0.1532 -0.3579 0.0181
�12t 0.1069 0.0770 0.0106
�13t 0.5523 0.1200 0.0259
�14t 0.1101 0.3029 0.0134
�15t 0.0991 0.1016 0.0011
�18t 0.0937 0.1077 0.0071
�19t 0.0979 -0.0628 0.0147
�110t -0.1084 -0.1046 0.0022
�112t -0.0956 -0.0943 0.0034
�20t 12.6554 12.6555 0.0046
�21t -3.7354 -3.7343 0.0041
�26t 1.1913 -0.0160 0.0583
�27t -0.8388 -0.8388 0.0001
�28t -1.1028 -0.4503 0.0462
�29t -0.7151 -0.7219 0.0061
�210t 0.8301 0.8420 0.0056
�211t -0.9470 -0.9516 0.0035b�" = 1:1266

Coe¢ cient �jk refers to the coe¢ cient for the kth lag in the jth regime
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Table 6d: State Variables for RW-STAR model for France
Parameter Start Value End Value ���
�11t -1.8134 -0.4309 0.0000
�13t (= ��23t) 0.2667 -0.1052 0.0463
�14t (= ��24t) -0.1398 -0.1405 0.0000
�16t 0.1167 0.1595 0.0000
�18t 0.4387 -0.1514 0.0000
�19t -0.4330 -0.2398 0.0000
�111t (= ��211t) -0.2811 0.2694 0.0312
�112t -0.0588 -0.0588 0.0000
�20t 0.1005 0.1005 0.0000
�21t 1.7170 0.0100 0.0135
�25t 0.1127 0.1124 0.0005
�26t 0.1192 0.0765 0.0000
�27t 0.0753 0.0763 0.0008
�28t -0.2879 0.3023 0.0000
�29t 0.5890 0.3957 0.0000b�" = 1:1968

Coe¢ cient �jk refers to the coe¢ cient for the kth lag in the jth regime

Table 6e: State Variables for RW-STAR model for Germany
Parameters Start Value End Value ���
�10t 0.1033 0.0992 0.0018
�11t -0.3619 -0.3620 0.0003
�13t 0.1720 0.1700 0.0008
�14t 0.1324 0.1391 0.0013
�15t 0.1563 0.1552 0.0006
�16t 0.2282 0.1506 0.0081
�110t -0.0343 -0.0343 0.0001
�111t -0.0642 -0.0659 0.0008
�20t 1.9762 1.3597 0.0464
�21t -0.5374 -0.5374 0.0000
�22t -0.7379 -0.7379 0.0001
�23t -0.2538 -0.2538 0.0002
�25t -0.4426 -0.4426 0.0002
�26t -0.5371 -0.6719 0.0139
�27t -0.2809 -0.2809 0.0002
�210t 0.3352 0.3351 0.0006
�211t 0.6504 0.0859 0.0549
�212t 0.4913 0.4617 0.0061b�" =1.4058

Coe¢ cient �jk refers to the coe¢ cient for the kth lag in the jth regime
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Table 6f: State Variables for RW-STAR model for UK
Parameters Start Value End Value ���
�10t 0.1535 0.1535 0.0000
�13t 0.0634 0.0787 0.0042
�14t 0.1162 0.1162 0.0000
�15t 0.1609 0.1609 0.0000
�18t 0.1646 0.1646 0.0000
�21t -0.0372 -0.2574 0.0138
�22t -0.1317 -0.1317 0.0000
�23t 0.2400 -0.1222 0.0406
�24t -0.2076 -0.2076 0.0000
�25t -0.1053 -0.0462 0.0256
�27t -0.0854 -0.0854 0.0000
�28t -0.3264 -0.3264 0.0000
�29t -0.1564 -0.1564 0.0000b�" = 1:2410

Coe¢ cient �jk refers to the coe¢ cient for the kth lag in the jth regime

Table 6g: State Variables for RW-STAR model for OECD7
Parameters Start Value End Value ���
�10t 0.1794 0.1207 0.0044
�11t 0.5880 0.4853 0.0149
�12t 0.1897 0.1897 0.0000
�18t 0.1088 0.1088 0.0000
�21t -0.7187 -0.7187 0.0000
�23t 0.2979 0.2979 0.0000
�24t 0.1728 0.1728 0.0002
�210t -0.1513 -0.0489 0.0099b�" = 0:5533

Coe¢ cient �jk refers to the coe¢ cient for the kth lag in the jth regime

Table 7: Out of Sample One Step Ahead Forecast RMSE
(48 observations from 2000:1 to 2003:12)

AR RWAR LSTAR TV-STAR RW-STAR
USA 0.4318 0.4868 � 0.4577 0.4449 0.4843
Japan 1.4388 1.3396 1.5605 � 1.5403� 1.3423
France 0.8426 0.8292 0.8165 0.7826 0.7919
Germany 1.1984 1.1982 1.1751 1.1743 1.1815
UK 1.0254 1.0263 1.0763 1.0886 1.0544
OECD 0.4877 0.4842 0.4980 0.5333 0.5043

The lowest RMSE is indicated in bold type while the highest RMSE is indicated in
italics. A star indicates that the Diebold Mariano test rejects H0: The MSE of RW-
STAR and starred forecasts are equivalent against the alternative that the RWSTAR
forecasts better at the 5% level of signi�cance.

5



Table 8: P-Values of Forecasting Performance Tests
(48 observations from 2000:1 to 2003:12)

Model Ljung-Box Q6 Statistics Goodness of Fit Statistics
(z � z) (z � z)2 (z � z)3 Location Scale Skewness

USA
AR 0.6601 0.1119 0.6009 0.0005 0.5637 0.0209
RWAR 0.0032 0.5311 0.0496 0.0039 0.5637 0.5637
LSTAR 0.6928 0.2374 0.8210 0.0005 0.3865 0.0094
TV-STAR 0.2730 0.6645 0.7510 0.1489 1.0000 0.3865
RW-STAR 0.1707 0.4478 0.4868 0.0015 0.2484 0.0094

JAPAN
AR 0.0821 0.3024 0.3094 0.0209 0.0015 0.0094
RWAR 0.1383 0.4337 0.4908 0.0833 0.0039 0.0202
LSTAR 0.1662 0.4549 0.5263 0.0209 0.0209 0.0833
TV-STAR 0.1901 0.7677 0.1891 0.2482 0.5637 0.2482
RW-STAR 0.3696 0.1914 0.4587 0.0209 0.0039 0.0833

FRANCE
AR 0.4088 0.2320 0.7966 0.0209 0.0209 0.2482
RWAR 0.8205 0.2755 0.8852 0.0433 0.0094 0.2482
LSTAR 0.3914 0.3137 0.7456 0.0039 0.0433 0.1489
TV-STAR 0.4789 0.5492 0.6906 0.0433 0.7729 0.5637
RW-STAR 0.6377 0.1769 0.5690 0.0094 0.0039 0.7729

GERMANY
AR 0.5517 0.7171 0.8408 0.0833 0.7729 0.0433
RWAR 0.5468 0.9705 0.9456 0.0433 0.7729 0.5637
LSTAR 0.7394 0.9581 0.9527 0.0833 0.5637 0.2482
TV-STAR 0.9646 0.5953 0.8966 0.1489 0.7729 0.5637
RW-STAR 0.7030 0.7572 0.8478 0.2482 1.0000 0.0209

UK
AR 0.2524 0.3305 0.0528 0.0002 1.0000 0.3865
RWAR 0.5105 0.7572 0.4150 0.0001 0.7729 0.0094
LSTAR 0.0770 0.6259 0.0818 0.0005 0.7729 0.1489
TV-STAR 0.0427 0.6065 0.0590 0.1489 0.7729 0.2482
RW-STAR 0.2040 0.4989 0.4850 0.0005 1.0000 0.5637

OECD
AR 0.2548 0.3778 0.1440 0.0039 0.0833 0.0209
RWAR 0.3549 0.6066 0.2707 0.0015 0.1489 0.0209
LSTAR 0.2266 0.7298 0.0570 0.0094 0.0833 0.0433
TV-STAR 0.6097 0.3955 0.0439 0.1489 1.0000 0.7729
RW-STAR 0.3549 0.6066 0.2707 0.0039 0.8330 0.2482

The Ljung Box statistics test that the (transformed) forecasts are i.i.d., while the

goodness of �t statistics test that the moments of the transformed forecast match
those from a U(0,1) distribution.
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Figure 1: First Difference of (100 X Log of) Industrial Indices for OECD Countries
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Figure 3: Transition Functions for LSTAR models of the First Differences of (100 X Log of)
Industrial Production Indices for OECD Countries
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Figure 4: Transition Functions for TV-STAR Models of the First Diffeences of (100 X Log of)
Industrial Production Indices for OECD Countries
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Figure 5: Transition Functions in Time for TV-STAR Models of the First Differences of (100 X Log of)
Industrial Production Indices for OECD Countries
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Figure 6: Transition Functions for the RW-STAR Models of the First Differences of (100X Log of)
Industrial Production Indices for OECD Countries
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Figure 7: Selected Random Walk Coefficients from the RW-STAR Models
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Figure 8a: Empirical vs Theoretical Densities of Transformed
Forecasts for the United States (with 95% con�dence bands)
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Figure 8b: Empirical vs Theoretical Densities of Transformed
Forecasts for Japan (with 95% con�dence bands)
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Figure 8c: Empirical vs Theoretical Densities of Transformed
Forecasts for France (with 95% con�dence bands)
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Figure 8d: Empirical vs Theoretical Densities of Transformed
Forecasts for Germany (with 95% con�dence bands)
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Figure 8e: Empirical vs Theoretical Densities of Transformed
Forecasts for the United Kingdom (with 95% con�dence bands)
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Figure 8f: Empirical vs Theoretical Densities of Transformed
Forecasts for the OECD (with 95% con�dence bands)
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