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Abstract

This paper provides an empirical analysis of a range of alternative single-factor
continuous time models for the Australian short-term interest rate. The models are
indexed by the level effect parameter for the volatility in the short rate process. The
inferential approach adopted is Bayesian, with estimation of the models proceeding via
a Markov Chain Monte Carlo simulation scheme. Discrimination between the alter-
native models is based on Bayes factors, estimated from the simulation output using
the Savage-Dickey density ratio. A data augmentation approach is used to improve
the accuracy of the discrete time approximation of the continuous time models. An
empirical investigation is conducted using weekly observations on the Australian 90
day interest rate from January 1990 to July 2000. The Bayes factors indicate that
the square root diffusion model has the highest posterior probability of all the nested
models.
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1 Introduction

Correct modelling of the instantaneous short rate is of particular importance in finance, as it

is this rate which is so fundamental to the pricing of fixed-income securities. Although there

is now a large number of model specifications for the short rate process, which model is the

most appropriate is still an open empirical question. One of the earliest papers to attempt

a formal comparison of a number of single-factor models is Chan, Karolyi, Longstaff, and

Sanders (1992). Using U.S. data, Chan et al. estimate a number of nested, single-factor short

rate models using a Generalized Method of Moments (GMM) approach. Controversially,

that study rejects the commonly adopted square root diffusion model of Cox, Ingersoll and

Ross (1985), whereby the volatility is proportional to the square root of the level of the

interest rate. Instead, their results favour a model in which volatility is more sensitive to

the current level of the interest rate, specifying an exponent for the so-called level effect

in the region of 1.5. More recent studies by Conley, Hansen, Luttmer, and Scheinkman

(1997), and Jones (2003), based on U.S. Federal Fund interest rates and Eurodollar rates

data respectively, have tended to confirm the findings of Chan et al., whilst the analyses

of Aït-Sahalia (1996) and Bliss and Smith (1998) provide more support for the square root

diffusion model. In particular, Bliss and Smith (1998) find that catering for structural breaks

in the U.S. interest rate series reduces the magnitude of the estimated level effect from the

high value estimated by Chan et al. Treepongkaruna and Gray (2003a) estimate alternative

single-factor models using data from several countries, including Australia. Although the

majority of their empirical results tend to favour a level effect parameter that exceeds 0.5,

the results are sensitive to the estimation techniques used, the frequency of observations and

the sampling period.

Such inconclusive findings regarding the extent of the level effect in interest rate mod-

els shed some doubt on the validity of derivative pricing methods that assume a particu-

lar value for the level effect parameter. For instance, Cox et al. (1985), Chen and Scott

(1992), Longstaff and Schwartz (1992) and Dai and Singleton (2000) adopt bond pricing and

term structure models on the assumption of a square root process for the short rate, whilst

Jamshidan (1987) and Cox et al. (1985) produce solutions for interest rate options assuming

that the level effect parameter is 0 and 0.5 respectively. Treepongkaruna and Gray (2003b)

demonstrate the impact on derivative pricing of different distributional assumptions for the

short rate process, adopting numerical evaluation procedures when the level effect parameter
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differs from either 0 or 0.5.

The aim of this paper is to perform a comparative analysis of alternative short rate

models for Australian interest rate data, with a view to determining, in particular, the

extent of the level effect that prevails empirically. We adopt a Bayesian inferential approach,

with the data augmentation method of Jones (1998, 2003), Elerian, Chib and Shephard

(2001) and Eraker (2001), used to reduce the bias associated with estimating continuous

time models with discretely observed data. The alternative models are nested in a general

single-factor diffusion process for the short rate, with each alternative model indexed by

the level effect parameter for the volatility. Estimation and model selection is performed

using a hybrid Gibbs/Metropolis-Hastings Markov Chain Monte Carlo (MCMC) algorithm.

The latent data used to augment the actual data observed at discrete intervals is integrated

out via the simulation algorithm. Model selection is based on posterior model probabilities

constructed from Bayes factors, calculated, in turn, using the Savage-Dickey density ratio;

see Verdinelli and Wasserman (1995). The methodology is applied to weekly observations

on the Australian 90 day interest rate from January 1990 to July 2000, with the results

compared with other empirical results in the literature.

The remainder of the paper is organized as follows. In Section 2 we discuss the range of

models under consideration. In Section 3 the Bayesian approach to estimation and model

selection is outlined, along with the algorithms used to estimate the model parameters and

the Bayes factors. In Section 4 we conduct an empirical analysis using Australian short-

term interest rate data. Results from the investigation suggest that the square root model

is given most support by the data, whilst the model that incorporates the high level effect

reported by Chan et al. (1992) is assigned negligible posterior probability. Some conclusions

are provided in Section 5.

2 The Models

This section outlines the models to be estimated, including details of their precise specifi-

cation. We adopt as the general model in which all other models are nested, the following

single-factor model for the short rate at time t, rt, described by the stochastic differential

equation (SDE),

drt = (θ + krt) dt+ σrδtdWt, (1)
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where k, µ = (θ/k), σ and δ denote respectively the mean reversion, long term mean,

volatility, and level effect parameter of the short rate process. The term dWt in (1) represents

the independent increments of a Wiener process, Wt. The alternative nested models are

indexed by different values for the level effect parameter δ, and are designated as: M1

(δ = 0) , M2 (δ = 0.5) , M3 (δ = 1.0) and M4 (δ = 1.5). The first two models, M1 and M2,

correspond to the Vasicek (1977) and Cox et al. (1985) (square root) models respectively.

Model M3 is a variation on the short rate model used by Courtadon (1982), whilst model

M4 corresponds to the empirical model estimated by Chan et al. (1992) for U.S. data. We

denote the general, unrestricted model, in which δ is a free parameter, as M0.

The numerical solution of the SDE in (1) requires that the model be represented in a

discrete time form. We apply the simplest of the discretization schemes, known as the Euler

scheme, with the resultant discrete time version of (1) given by

rt+∆t − rt = (θ + krt)∆t+ σrδt
√
∆tεt, (2)

where εt ∼ i.i.d.N (0, 1) and ∆t represents the time between each observation. When esti-

mating the parameters of (2), the interval ∆t should be made as small as possible to reduce

the bias associated with using a discrete time approximation to the continuous time process

in (1). This can be achieved by ‘augmenting’ the observed data set with higher frequency la-

tent data, added in between each pair of successive discrete time observations. By increasing

the number of augmented data points, the size of ∆t can be made smaller, and (2) made to

approximate (1) more accurately as a consequence; see Elerian, Chib and Shephard (2001)

for further discussion of this point.

3 Bayesian Methodology

3.1 Estimation of Bayes factors

This section provides details of the Bayesian approach to estimation and model selection

in the context of the five short rate models Mj, j = 0, 1, . . . , 4, described above. Bayesian

inference is characterized by the application of Bayes Theorem to produce the posterior

distribution of the parameters and/or unobserved latent variables of a model, Mj, given

the data. Since all inference is to be conducted in the context of the approximating model

in (2), augmented by the latent data, model Mj is formally defined as the version of (2)
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associated with jth value of δ, j = 1, 2, . . . , 4, with all posterior quantities also relating to

(2). However, any posterior results produced regarding the jth version of (2) are viewed as

evidence relating to the corresponding jth version of the exact (but intractable) model in

(1).

Denoting by r = (r1, r2, . . . , rT )
0 the (T × 1) vector of observations on the short rate,

Bayes Theorem is expressed as

p
¡
φj | r,Mj

¢
=

L(φj |Mj)× p
¡
φj |Mj

¢
p (r |Mj)

, (3)

where p
¡
φj | r,Mj

¢
denotes the posterior probability density function (pdf) of the unknowns

of modelMj, φj , conditioned on the observed data and the modelMj. As will be made clear

in subsequent sections, φj comprises both the unknown fixed parameters that characterize

Mj and the latent augmented data points that are introduced in order to render the discrete

time approximation of (1) more accurate. The posterior pdf is equivalent to the product

of the likelihood function, L(φj | Mj), and the prior pdf, p
¡
φj |Mj

¢
, normalized by the

marginal likelihood, p (r |Mj), where the latter is defined as

p (r |Mj) =

Z
φj

L(φj |Mj)p
¡
φj |Mj

¢
dφj. (4)

The marginal likelihood is a measure of the support for modelMj provided by the observed

data, r.

Given the alternative models,Mj, with associated prior probabilities P (Mj), j = 0, 1, . . . , 4,

where

P (M0) + P (M1) + · · ·+ P (M4) = 1, (5)

incorporation of model uncertainty leads to the following expression for the posterior prob-

ability for each model,

P (Mj | r) = p (r |Mj)× P (Mj)

p (r)
, (6)

where j = 0, 1, . . . , 4, and

p (r) =
4X

j=0

[p (r |Mj)× P (Mj)] . (7)

The ratio of the posterior probabilities for Mj and Mk,

P (Mj | r)
P (Mk | r) =

P (Mj)

P (Mk)
× p (r |Mj)

p (r |Mk)
, j 6= k = 0, 1, . . . , 4, (8)
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defines the posterior odds ratio for Mj versus Mk. Given the assumption of equal prior

probabilities, P (Mj) = P (Mk), j 6= k = 0, 1, . . . , 4, the expression in (8) collapses to the

ratio of marginal likelihoods, which is known as the Bayes factor,

BFjk =
p (r |Mj)

p (r |Mk)
, j 6= k = 0, 1, . . . , 4, (9)

which measures the support in the data for Mj relative to Mk.

As is clear from the expression in (4), calculation of the marginal likelihood for any

given model and, hence, calculation of the Bayes factor in (9) for each pair of models, may

be difficult because of the need to evaluate a complex integral involving a large number of

parameters and latent variables. In this paper we employ a simple method for estimating

(9) based on the Savage-Dickey density ratio. Partition the vector of unknowns for the

unrestricted model M0, φ0, as

φ0 =
£
δ, φ00/δ

¤0
, (10)

where δ is the scalar level parameter such that imposing the restriction δ = δ(j) in (2) defines

model Mj, j = 1, 2, . . . , 4, and φ0/δ represents the vector of parameters/latent factors in M0

not including δ. The vector φ0/δ is common to all four nested models M1 to M4. On the

condition that

p
¡
φ0/δ | δ = δ(j)

¢
= pj

¡
φ0/δ

¢
, (11)

where p(.) denotes a prior under modelM0 and pj(.) a prior under modelMj, j = 1, 2, . . . , 4,

then the Bayes factor in (9), for Mj versus M0, can be shown to collapse to the so-called

Savage-Dickey density ratio,

BFj0 =
p
¡
δ = δ(j) | r

¢
p
¡
δ = δ(j)

¢ , j = 1, . . . , 4, (12)

where

p (δ | r) =
Z

p (φ0 | r) dφ0/δ (13)

is the marginal posterior of δ under M0, and

p (δ) =

Z
p(φ0)dφ0/δ (14)
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is the marginal prior of δ under M0. Given the specification of a proper marginal prior

density for δ, the denominator in (12) can be calculated analytically. Given output from the

MCMC algorithm as applied to the unrestricted model, the ordinate in the numerator can

be estimated in a manner to be explained below.1

Table 1 contains a useful aid, reproduced from Kass and Raftery (1995), and based on

criteria first proposed by Harold Jeffreys, for the assessment of Bayes factors. Given equal

prior odds, the posterior probability for each model can be readily produced from the set

of four Bayes factors, with the models ranked according to the relative magnitudes of the

probabilities.

<< Insert Table 1 here>>

3.2 Augmentation of the Short Rate Data

As previously mentioned, a Bayesian approach to estimating continuous time processes with

discretely observed data, based on the introduction of latent augmented data, is presented in

Jones (1998, 2003), Elerian, Chib, and Shephard (2001) and Eraker (2001). An application

of this method within a term structure framework appears in Sanford and Martin (2004).

The method derives its theoretical foundations from Pedersen (1995), who shows that the

transition function of a discrete time approximation to a diffusion process provides an ac-

curate approximate to the actual transition function of the diffusion, as long as the time

increments of the approximation are sufficiently small. The approach adopted in the present

paper involves simulating augmented data points between the observed short rate data. The

inclusion of augmented data points reduces the time between observations, rendering the

discrete time approximation to the continuous time model more accurate. The augmented

short rate data is treated as a set of latent variables that are ultimately integrated out of
1For more detailed expositions of this approach to the calculation of Bayes factors see Verdinelli and

Wasserman (1995) and Koop and Potter (1999). See also Han and Carlin (2001) for a comparative review
of MCMC techniques for computing Bayes factors.
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the joint posterior via the MCMC algorithm.

We denote the actual short rate data, observed at time points t = 1 to t = T̃ , as

ro =
£
ro1, r

o
2, . . . , r

o
T̃

¤0
. (15)

We define a quantity h as the number of augmented observations added between each pair

of actual observations. The augmented short rate data set is then denoted by the following

([
³
T̃ − 1

´
× h]× 1) vector,

ra = [ra1+∆t, r
a
1+2∆t, . . . , r

a
1+h∆t, r

a
2+∆t,

. . . , ra2+h∆t, r
a
3+∆t, . . . , . . . , r

a
T̃−1+h∆t

]0. (16)

Combining the two vectors (15) and (16), the complete data set is given by

r = [ro1, r
a
1+∆t, r

a
1+2∆t, . . . , r

a
1+h∆t, r

o
2, r

a
2+∆t, (17)

. . . , ra2+h∆t, r
o
3, r

a
3+∆t, . . . , . . . , r

a
T̃−1+h∆t

, ro
T̃
]0,

where r is of dimension (T×1),with T = T̃+
³
T̃ − 1

´
×h. For notational clarity we re-express

r as

r = [r1, r2, r3, . . . , rt−1, rt, rt+1, . . . , rT−1, rT ]0, (18)

where the t subscript in (18) indicates the tth scalar element in r, with t = 1, 2, . . . , T. For

the purposes of estimation, it is not always necessary to distinguish between the observed

and augmented data sets explicitly. Hence we drop the superscripts on the elements of the

complete data set r and re-introduce them only if there is a need to identify the observed or

augmented sets of data explicitly.

3.3 Gibbs-MH MCMC Algorithm

In this section we describe the MCMC sampling scheme used to estimate the parameters

and the Bayes factors associated with the model in (2). As is clear from the expression in

(12), all four Bayes factors are based on estimation of the unrestricted version of the model,

M0, with the marginal prior and posterior of δ then evaluated at the values associated with

the four nested models. We now decompose the vector φ0/δ as

φ0/δ = [r
a0, ω00]

0
,
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with ra as defined in (16) and ω0 = [θ, k, σ]
0 . The joint posterior density for the full set of

unknowns for M0 can be expressed as

p (ra, ω0, δ | ro) ∝
T−1Y
t=1

p (rt+1 | rt, ω0, δ) p(ra)p (ω0) p (δ) , (19)

where the elements ra, ω0 and δ are assumed to be a priori independent, with p(ra), p (ω0)

and p (δ) denoting respectively the associated marginal priors pdf’s. The prior pdf for ra is

assumed to be uniform and the priors for ω0 and δ are detailed below. The product of the

component densities p (rt+1 | rt, ω0, δ) , t = 1, 2, . . . , T, defines the joint distribution for the
full vector r, where r comprises both observed and augmented data.

The joint posterior can be factored to reveal the full conditionals for each of the unknown

components ra, ω0, and δ. To begin, we consider the conditional posterior for a single element

of ra, raτ , τ = 1 +∆t, . . . , 1 + h∆t, . . . , T̃ − 1 +∆t, . . . , T̃ − 1 + h∆t,

p
¡
raτ | ra/τ , ω0, δ, ro

¢
= p (raτ | rτ+∆t, rτ−∆t, ω0, δ)

∝ p (rτ+∆t | raτ , ω0, δ) p (raτ | rτ−∆t, ω0, δ) , (20)

where ra/τ denotes the vector of all augmented data other than r
a
τ .Given theMarkovian nature

of the model in (2), the conditional posterior in (20) is a function only of the two elements

of the vector r that immediately precede and follow raτ , rτ−∆t and rτ+∆t respectively. These

conditioning elements may both constitute latent values, both constitute observed values, or

may constitute one latent and one observed value, depending on the value of τ .

For the parameter vector ω0, the conditional posterior is given by

p (ω0 | ra, δ, ro) ∝
T−1Y
t=1

p (rt+1 | rt, ω0, δ) p (ω0) , (21)

whilst the conditional posterior for δ is defined by

p (δ | ra, ω0, ro) ∝
T−1Y
t=1

p (rt+1 | rt, ω0, δ) p (δ) . (22)

The Gibbs-based sampling scheme is implemented by sampling iteratively from each of

the full conditionals (20), (21) and (22), until convergence. When the full conditional is a

known, closed form distribution, then efficient, standard sampling algorithms are available.

9



When this is not the case, we sample from the full conditional using a Metropolis-Hastings

(MH) algorithm. As described above, the data set is augmented with the higher frequency

latent data in order to allow ∆t to become smaller than the value associated with the

observed data. The trade off associated with using greater augmentation is that as ∆t −→ 0

convergence will occur more slowly. As Eraker (2001) points out, in the application of Gibbs

sampling to discretized SDE’s, in the limit, as ∆t −→ 0, the sampler will not converge.

The following algorithm is applied to estimate the model parameters for the unrestricted

model, and to calculate the Bayes factors for each of the nested models.

1. Specify initial values ω(0)0 , δ
(0) and ra(0)/τ , τ = 1+∆t, . . . , 1+h∆t, . . . , T̃−1+∆t, . . . , T̃−

1 + h∆t;

2. Set i = 1;

3. Sample the latent augmented short rate variable r
a(i)
τ from the full conditional

p
³
r
a(i)
τ | ra(i−1)/τ , ω

(i−1)
0 , δ(i−1), ro

´
; τ = 1 + ∆t, . . . , 1 + h∆t, . . . , T̃ − 1 + ∆t, . . . , T̃ −

1 + h∆t;

4. Sample ω(i)0 from the full conditional p
³
ω
(i)
0 | ra(i), δ(i−1), ro

´
;

5. Sample the volatility exponent δ(i) from the full conditional

p
³
δ(i) | ra(i), ω(i)0 , ro

´
;

6. Approximate p (δ | r) as a normal density function, with mean and variance calculated
from the set of iterates of δ up to and including the current iterate; see Verdinelli

and Wasserman (1995). For j = 1, 2, . . . , 4, estimate the ordinate of p (δ | r) at δ(j),bp(i) ¡δ = δ(j) | r
¢
by calculating the ordinate of the approximating normal density;

7. Estimate the Bayes factor for Mj, j = 1, . . . , 4, versus the unrestricted model, M0, as

dBF (i)

j0 =
bp(i) ¡δ = δ(j) | r

¢
p
¡
δ = δ(j)

¢ ; (23)

8. Set i = i+ 1;

9. Continue Steps 3. to 8. until convergence.
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3.3.1 Priors

The choice of priors is guided by a desire to ensure that posterior computations are relatively

straightforward and that, as far as possible, the observed data is allowed to ‘speak’ for itself

without strong prior information being imposed. When performing Bayes factor analysis

however, there is a requirement that the parameter(s) used to index the various nested

models, in this case the level effect parameter δ, be assigned a proper prior.2 Although

not strictly necessary we have also opted to use proper priors for the vector of nuisance

parameters, ω0, specifically a conjugate normal-inverted gamma prior. A robustness analysis

is carried out to identify the effect that changes to the nuisance parameter prior has on the

Bayes factor results. The normal-inverted gamma prior (NIG) distribution for ω0 is initially

specified as

ω0 ∼ NIG
³
ν̄, ν̄s̄2,

£
θ̄, k̄
¤0
, σ2A−1

´
= NIG

¡
1, 0.01, [1.0,−0.5]0 , σ2 × [0.0001× I2]

−1¢ . (24)

The NIG prior distribution can be factored into its two components, the conditional distri-

bution for the drift parameters [θ, k]0 given σ, which is normal, with mean

E
¡
[θ, k]0 | σ¢ = £θ̄, k̄¤0

and (2× 2) covariance matrix

Cov
£
[θ, k]0 | σ¤ = σ2A−1,

and the marginal inverted gamma distribution for σ, with mean

E (σ) =
Γ [(ν̄ − 1) /2]

Γ (ν̄/2)
s̄

r³ ν̄
2

´
ν̄ > 1 (25)

and variance,

V ar (σ) =
ν̄s̄2

ν̄ − 2 − [E (σ)]
2 ν̄ > 2, (26)

with prior parameter s̄. The component densities of the NIG prior are in turn expressed as
2See Kass and Raftery (1995) for an exposition of the impact of prior specification on Bayes factors.
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p
¡
[θ, k]0 | σ¢ = (2π)−1 σ−2 |A|1/2 (27)

× exp
·
− 1

2σ2

³
[θ, k]0 − £θ̄, k̄¤0´0A³[θ, k]0 − £θ̄, k̄¤0´¸

and

p (σ) =
2

Γ (v̄/2)

µ
v̄s̄2

2

¶v̄/2
1

σv̄+1
exp

µ
− v̄s̄2

2σ2

¶
. (28)

respectively. The marginal mode of σ is given by

σmode = s̄
p
(ν̄/ (ν̄ + 1)). (29)

With reference to the conditional normal prior for [θ, k]0 , as the diagonal values of the

matrix A−1 are decreased, for a given σ, the distribution of [θ, k]0 becomes more concentrated

around the prior mean of
£
θ̄, k̄
¤0
and the prior information about [θ, k]0 is sharper as a

consequence. With reference to the marginal inverted gamma prior for σ, as is demonstrated

in Figures 1 and 2, as we decrease the value for v̄ (from 1.0 through to 0.05), keeping v̄s̄2

constant, the prior density for σ becomes more diffuse but the location remains constant.

As we keep v̄ constant and increase v̄s̄2 both the location and dispersion of (28) change.

The alternative prior specifications for [θ, k]0 and σ used in the robustness analysis in Sec-

tion 4 are detailed in Table 2. As can be seen, movement from Prior 1 to Prior 2 constitutes a

change in the prior location of the drift parameters [θ, k], whilst moving from Prior 1 to Prior

3 assumes that the prior beliefs regarding the dispersion of [θ, k] become less diffuse. With

Priors 1 to 3, σ is located at a comparatively low value, with the prior mode in (29) equal to

0.07, a figure much lower than the value of σ estimated by Treepongkaruna and Gray (2003a)

for Australian short rate data. By choosing a prior that specifies low values for σ, we are

allowing δ to assume an increased role in capturing the volatility of the short rate, thereby

giving more weight, a priori, to models that impose high values for δ. Alternatively, Prior 4,

with a mode or 0.2 for σ, is imposing prior information on σ that reflects more closely the

empirical estimates reported by Treepongkaruna and Gray. This, in turn, puts less empha-

sis on the role of δ, thereby giving more prior weight to models that impose lower values of δ.
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<< Insert Figure 1 here >>

<< Insert Figure 2 here >>

<< Insert Table 2 here>>

For the level effect parameter δ, we select a uniform prior,

δ ∼ U (−0.5, 2.0) , (30)

where we have assumed an admissible domain of (−0.5, 2.0). Motivated by the approach to
Bayes factor construction adopted by Schotman and van Dijk (1991) for the parameter in

a first order autoregressive model, we choose the boundaries of this domain in such a way

that they encompass virtually all of the marginal posterior mass for δ.

3.3.2 Sampling the Latent Augmented Interest Rates

With MCMC algorithms, the blocking scheme used to sample the parameters and latent

augmented data needs to be identified, as the unknowns can be simulated as individual

scalars or grouped as vectors. We note that blocking highly correlated latent factors into

higher dimensional components can be more efficient, as demonstrated by Carter and Kohn

(1994) and Shephard and Pitt (1997), and as recommended by Elerian, Chib, and Shephard

(2001). We choose, however, to keep the computational aspects of our algorithm as simple as

possible, by following the approach of Jones (1998, 2003) and Eraker (2001), and sampling

the latent augmented data one element at a time. Using the expression for the conditional

posterior in (20) for raτ , τ = 1+∆t, . . . , 1+ h∆t, . . . , T̃ − 1 +∆t, . . . , T̃ − 1+ h∆t, it follows

that the conditional density is given by
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p (raτ | rτ+∆t, rτ−∆t, ω0, δ) ∝
³
σ (raτ )

δ
√
∆t
´−1

exp

µ
−1
2
Q2

τ+∆t

¶
×
³
σrδτ−∆t

√
∆t
´−1

exp

µ
−1
2
Q2

τ

¶
, (31)

where

Qτ+∆t =

Ã
rτ+∆t − (raτ + (θ + kraτ )∆t)

σ (raτ )
δ
√
∆t

!
(32)

and

Qτ =

Ã
raτ − (rτ−∆t + (θ + krτ−∆t)∆t)

σrδτ−∆t

√
∆t

!
. (33)

Note that we do not need to distinguish between observed and augmented conditioning

values of in (31), (32) and (33), as the precise nature of these values has no relevance to the

sampling of raτ . The time between each element of r, whether observed or augmented, is ∆t.

As (31) is nonstandard, we sample from it via an MH algorithm; see Chib and Greenberg

(1995, 1996) for more details. The candidate density adopted is proportional to the second

component of the conditional density in (31); see also Jones (1998, 2003). By using this

candidate, the probability with which the candidate draw, ra,candτ , is accepted as a draw from

the conditional posterior in (31) at iteration i in the MCMC algortihm is given by

α
¡
ra,(i−1)τ , ra,candτ

¢
= min

1, p
¡
rτ+∆t | ra,candτ , ω0, δ

¢
p
³
rτ+∆t | ra,(i−1)τ , ω0, δ

´
 . (34)

3.3.3 Sampling the Short Rate Process Parameters

The full conditional (21) for the parameter set ω0 = [θ, k, σ]0 has a standard NIG form,

given the use of the natural conjugate NIG prior in (24). To simplify the exposition, we

define the drift parameter β = [θ, k]0 and express the density associated with (24) as

p (β, σ) ∝ σ−2−v̄−1 exp
½
− 1

2σ2
[v̄s̄2 +

¡
β − β̄

¢0
A
¡
β − β̄

¢¾
, (35)

where β̄ =
£
θ̄, k̄
¤0
. Defining the (T × 1) vector y as
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y =


(r2 − r1) /r

δ
1

√
∆t

...
(rt+1 − rt) /r

δ
t

√
∆t

...
(rT − rT−1) /rδT−1

√
∆t

 , (36)

and the (T × 2) matrix X as

X =



√
∆t/rδ1 r1

√
∆t/rδ1

...
...√

∆t/rδt rt
√
∆t/rδt

...
...√

∆t/rδT−1 rT−1
√
∆t/rδT−1

 , (37)

standard algebra leads to a joint conditional posterior for β and σ with component densities

p (β | σ, y,X) = (2π)−1 σ−2 |A+X 0X|1/2

× exp
½
− 1

2σ2

h³
β − β̃

´
(A+X 0X)

³
β − β̃

´i¾
(38)

and

p (σ | y,X) = 2

Γ (ṽ/2)

µ
ṽs̃2

2

¶ṽ/2

σ−(ṽ+1) exp
µ
− ṽs̃2

2σ2

¶
. (39)

The posterior quantities in (38) and (39), β̃, ṽs̃2 and ṽ, are given respectively by

β̃ = (A+X 0X)−1
¡
Aβ̄ +X 0y

¢
, (40)

ṽs̃2 = v̄s̄2 + y0y − β̃
0
(A+X 0X) β̃ + β̄

0
Aβ̄ (41)

and

ṽ = T + v̄. (42)

The product of the densities in (38) and (39) defines the conditional posterior for ω0 in (21),

with ra, δ and ro entering as conditioning values via y and X as defined in (36) and (37)

respectively.
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3.3.4 Sampling the Level Effect Parameter

The conditional in (22) for the level effect parameter δ, is of a nonstandard form. We

adopt a random walk MH algorithm, based on a truncated normal candidate distribution,

N
³
δ(i−1), σ2tune,δ

´
I−0.5<δ<2.0, located at the (i−1)th value of δ, δ(i−1), and tuned with σ2tune,δ.

The indicator function I−0.5<δ<2.0 has the value 1 when δ is in the open interval (−0.5, 2.0)
and zero elsewhere. The candidate draw, δcand, is accepted with probability

α
³
δ(i−1), δcand

´
= min

1, p
³
δcand | ra,(i), ω(i)0 , ro

´
p
³
δ(i−1) | ra,(i), ω(i)0 , ro

´
 , (43)

with

p (δ | ra, ω0, ro) ∝
"
σ−(T+1)

T−1Y
t=1

1

rδt
× (44)

exp

Ã
−1
2

µ
rt+1 − (rt + (θ + krt)∆t)

σrδt

¶2!#
× I−0.5<δ<2.0.

3.3.5 Initialization, Convergence and Inefficiency Diagnostics

The latent augmented short rate data is initialized by linear interpolation between the ob-

served rates. Parameters are initialized using perturbed values of previously published em-

pirical results. Convergence of the MCMC chain is monitored graphically via a time series

of cumulative means. Simulation inefficiency is determined by calculating the simulation

inefficiency factors as described in Kim, Shephard and Chib (1998). The inefficiency factor

represents the variance of the mean of the iterates from the MCMC sampling scheme, divided

by the variance of the mean when it is assumed that draws are independent. This ratio, RB,

can be evaluated using the following expression,

R̂B = 1 +
2B

B − 1
BX
n=1

K
³ n
B

´
ρ̂ (n) , (45)

where ρ̂ (n) is the sample estimate of the autocorrelation at lag n, calculated as

ρ̂ (n) =
Γ̂ (n)

Γ̂ (0)
, (46)
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where

Γ̂ (n) =
1

M

MX
i=n+1

¡
z(i) − z̄

¢ ¡
z(i−n) − z̄

¢
, z̄ =

1

M

MX
i=1

z(i), (47)

and z(i) represents the ith iterate of the relevant parameter. The parameter B in (45) is

known as the bandwidth, and K(.) is the parzen kernel defined as

K (x) = 1− 6x2 + 6x3, x ∈
·
0,
1

2

¸
(48)

= 2 (1− x)3 , x ∈
·
1

2
, 1

¸
= 0, otherwise.

For this exercise we set the bandwidth at B = 2000. The maximum length of the lag n is

also set at 2000. The numerical Monte Carlo error of the mean for each of the parameters is

calculated as

MC Error = S.E.×
q
R̂B (49)

where S.E.denotes the standard error, calculated as the standard deviation of the iterates

divided by the square root of the number of iterates.

4 Empirical Application: Australian Interest Rate Data.

4.1 Data Description.

The empirical investigation is based on 552 weekly observations on the Australian 90 day

interest rate, sampled every Wednesday from 1 January 1990 to 26 July 2000. This period

comprises a shift from historically high interest rates in the early 1990’s to low interest rate

levels in the latter part of the sample period, such as had not been experienced in Australia

since the 1960’s. As in the similar study by Treepongkaruna and Gray (2003a), we use the

90 day rate interest rather that the shorter 30 day rate as a proxy for the instantaneous

short rate. Treepongkaruna and Gray comment that the use of 90 day rate is motivated by

its high liquidity. The interest rate data is displayed in Figure 3 and the first differenced

series in Figure 4. Summary statistics for both sets of data are provided in Table 3. The
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skewness and kurtosis statistics reported therein are sample estimates of the third and fourth

moments respectively of the standardized random variable.

<<Insert Figure 3 here>>

<<Insert Figure 4 here>>

<<Insert Table 3 here>>

From Figures 3 and 4 it is clear that there is indeed a tendency for the volatility in the

interest rate series to be positively correlated with the current level of the rate. This feature

is particularly marked for the January 1990 to November 1991 period in which both the level

and volatility of the rate are high. It is also relevant for the August 1997 to July 2000 period,

in which, apart from a sharp jump in the level of interest rates on 10 June 1998, the level and

volatility are both lower. The level effect is less marked over the 1991 to 1997 period, with

the increased volatility observed in the late 1994 period appearing to be more closely aligned

with the shift from a lower to a higher interest rate regime, rather than being associated

with the latter specifically. These empirical features tend to tally with those reported in

Brenner, Harjes and Kroner (1996) and Eraker (2001), with the former authors concluding

that unexpected ‘news’ is important in understanding the volatility of interest rates.

The time-varying nature of the volatility that is evident in Figures 3 and 4 is associated,

in turn, with an empirical distribution for the first differenced data that exhibits excess

kurtosis, with the relevant kurtosis statistic reported in Table 3 being significantly greater

than the value of 3 associated with the normal distribution. The negative skewness coefficient

reported therein is also significantly less than the value of zero associated with the symmetric

normal distribution, and is reflective of a ‘leverage’ effect of sorts, whereby interest rate falls

are associated with higher volatility than increases of the same magnitude.

4.2 Empirical Results.

The estimation results for each of the four priors as described in Table 2 are reported in

Tables 4, 5, 6 and 7 respectively. All results are based on a burn-in period of 100,000
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iterations, followed by a further 500,000 iterations. Of the samples following burn-in, every

tenth iterate is stored, resulting in a total of 50,000 iterates available for parameter estimation

and convergence analysis. Augmentation is implemented by assigning values for h in (16)

of 3, 1 and 0 respectively, corresponding, in turn, to values for ∆t of 0.25, 0.5 and 1.

This level of augmentation is considered adequate given that the observations are weekly.

Jones (2003) comments that augmentation is most important when using monthly data for

estimation, finding that daily data produces little discretization bias. This suggests that

high levels of augmentation are unnecessary for our weekly observed data, thereby reducing

the computational burden.

We first consider the results in Table 4, as associated with Prior 1. The first thing to

note is the relative stability of both the location estimates (marginal posterior mean and

50th percentile (median)) and the posterior standard deviations, over different values for

h. Only the inefficiency factors alter noticeably as the degree of augmentation increases,

indicating that there is more correlation in the iterates of each of the four parameters as

more augmented data points are inserted between the observed data; see also Sanford and

Martin (2004) on this point. Inefficiency is also markedly higher for the diffusion parameters,

σ and δ, than for the drift parameters, θ and k. For example, the value of 512.6 for δ (h = 3)

indicates that approximately 51000 iterations of the chain are required in order to limit the

variance of the mean of the iterates to be 1% of the variation due to the data (as measured

by the posterior variance). The value of 1.4 for k (h = 3), on the other hand, indicates

that only 1400 iterations are required in order to achieve the same degree of accuracy for

k. Percentiles for the drift parameters, θ and k, show that the iterates are evenly dispersed

above and below the mean, with the medium coinciding closely with the estimated mean.

This symmetry can also be seen in the graphical outputs for the drift parameters in Figures

5 and 6 (as based on Prior 1). The estimate of the mean reversion parameter k implies a

high persistence parameter of 0.99 for the weekly short rate data, which tallies with the near

unit root behaviour evident in Figure 3. The long run mean of the short rate as implied by

the estimates of k and θ is 5.51%.

The point estimates of δ reported in Table 4 differ little from the estimates reported by

Andersen and Lund (1997), Eraker (2001) and Hurn, Lindsay and Martin (2003) of 0.676,

0.757 and 0.676 respectively, all as based on 90 day U.S. Treasury Bill data. Also, results

reported by Dahlquist (1996), although varying across the different European economies
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investigated, favour δ values that are consistent with those reported here. In contrast,

however, Chan et al. (1992) and Brenner, Harjes and Kroner (1996), estimate respective

values for δ of 1.500 and 1.559, using US data. Similarly, Treepongkaruna and Gray (2003a)

report high estimated values for δ for Australian data, ranging from 0.929 to 1.552 depending

on both the data set and estimation procedure used. It is noteworthy that the data used

by the latter authors covers a longer period of time than does our sample of Australian

data, including a more extended period of high rates, with the mean value of our data being

7.13% compared with 10.62% for the Treepongkaruna and Gray data set. Treepongkaruna

and Gray in fact conclude from their cross country evaluations that data sets with a high

average value tend to produce higher level effect parameter estimates than those for which

the average value is lower.

The results reported in Table 5 indicate that there is little impact on any of the esti-

mates of adopting Prior 2 rather than Prior 1, apart from a slight increase (decrease) in the

estimated values of δ (σ). The qualitative behaviour of the inefficiency factors across the

different parameters is also the same in Table 4 as in Table 5. On the other hand, the results

in Tables 6 and 7, as based on Priors 3 and 4 respectively, show that these particular prior

specifications have had some impact on the posterior results. The impact is more pronouced

for Prior 4 than for Prior 3. In particular, the results for σ and δ in Table 7, in which the

prior information on k and θ is quite tight and the prior location for σ relatively high, differ

from the results in Tables 4 and 5, in that the estimate for σ is substantially higher and the

estimates of δ lower. Considering the results in all four tables, a negative correlation between

the estimates of the volatility parameter σ and the level effect parameter δ is evident. This

is understandable given that the overall model volatility is determined by the interaction of

these two parameters. The tighter prior information on k and θ associated with the results

in Tables 6 and 7 has produced smaller posterior standard deviations for these parameters.

However, at the same time, the degree of correlation in the sampled iterates, as measured

by the inefficency factors, has increased, as has the overall Monte Carlo error associated the

mean estimates of each parameter.

<< Insert Table 4 here>>
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<<Insert Table 5 here>>

<<Insert Table 6 here>>

<<Insert Table 7 here>>

<<Insert Figure 5 here>>

<<Insert Figure 6 here>>

<<Insert Figure 7 here>>

<<Insert Figure 8 here>>

The Bayes factors for each of the models are shown in Table 8, with the Bayes factor for

modelMj (j = 1, . . . , 4), relative to the unrestricted modelM0, denoted by BFj0, calculated

as the mean of the iterates of dBF j0 produced as described in Section 3.3. The MC Errors

associated with the BFj0 values are calculated in a similar manner to those for the individual

parameters. The Bayes factors support the unrestricted model, M0, against each of the
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restricted models in virtually all cases. The exception to this is the support for the square

root model, M2, under Prior 1 for all levels of augmentation and under Prior 2 with no

augmentation (h = 0). Based on the criteria in Table 1 however, it is only when using Prior

1, with h = 0, that M2 has any substantial dominance over M0.

Comparisons of the Bayes factors for the restricted models can be carried out in a straight-

forward way by noting that the following identity applies,

BFjk =
BFj0

BFk0
, j 6= k = 1, 2, . . . , 4. (50)

The results in Table 9 are based on results produced for all four priors, with augmentation set

at h = 2. These results show that M2 has the highest Bayes factor of all the nested models,

for all priors. Even when the support forM3 becomes more substantial on using Prior 2, the

Bayes factor for M2 versus M3 is still approximately equal to six. Model M1 obtains more

support when Prior 4 is applied, but the Bayes factor in favour of M2 is still approximately

sixty. Model M4 performs very poorly, with the Bayes factors indicating negligible support

for this model over all other alternatives considered. Similar conclusions can be drawn from

the results (not reported) based on h = 3 and h = 0.

An alternative representation of the information contained in Tables 8 and 9 is in terms

of the posterior probability for each of the models. The posterior model probabilities are

calculated from the Bayes factors as

p (Mj | r) = p (r |Mj)Pk=4
k=0 p (r |Mk)

, (51)

given the assumption of equal prior probabilities for all models j = 0, . . . , 4. The results

in Table 10 clearly highlight the lack of posterior support for models M1 and M4 and the

small amount of support forM3, and that only under Prior 2. M2 is the dominant restricted

model, with non-negligible posterior probability under all priors other than Prior 4. Under

Prior 1 it clearly dominates even the unrestricted model, for all levels of augmentation. The

results thus provide some support for the Cox et al. (1985) square root diffusion model (M2),

whilst providing no support for the model that corresponds to the pronounced level effect

reported in Chan et al. (1992), namely M4.
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<< Insert Table (8) here >>

<< Insert Table (9) here >>

<< Insert Table (10) here >>

Finally, it is interesting to note the effect that an increase in augmentation has on the

relative posterior probabilities of the two dominant models, namely M0 and M2. For Priors

3 and 4, the relativities remain fairly constant across different values of h. However, for

Priors 1 and 2, as the degree of augmentation increases, the posterior probability of M0

increases whilst that of M2 decreases. Considering the case of Prior 2 in particular, when

no augmentation is applied it is difficult to distinguish between M0 and M2. However, as

augmentation is increased and the bias associated with approximating the continuous time

model with a discrete time process is reduced, the support for the unrestricted model M0

increases to the point where the relative support for it over M2 is much clearer.

5 Conclusions

In this paper, we have compared a number of alternative models for the Australian short-term

interest rate, all of which are restricted examples of a general continuous time model. The

models are estimated using a Bayesian approach, with an MCMC algorithm used to draw

iterates from the posterior densities of the parameters. Discretization bias associated with

the Euler scheme used to approximate the continuous time model is reduced by incorporating

latent augmented data. The iterates produced by the simulation algorithm are then used to

estimate Bayes factors for each of the nested models using the Savage-Dickey density ratio.

From the Bayes factors, we find that the Cox et al. (1985) square root diffusion model has

the greatest support out of all of the nested models, whilst the Chan et al. (1992) model
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performs worst of all. Even when allowing for changes in the prior specifications for the

parameters, the square root model still continues to perform substantially better than all

other restricted model considered. For one particular prior specification the square root

model has more posterior support than the model that allows the level parameter to be

unrestricted. The results presented suggest therefore that the application of the analytical

pricing equations made available under the Cox et al. model are not unreasonable in the

Australian context. The differences in economic performance however, associated with using

the analytical pricing versus the numerical pricing approach associated with an unrestricted

level effect model for the short rate would still need to be assessed.
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Table 1: Interpretation of Bayes factors

BFj0 Evidence against M0 and supporting Mj

1 to 3.2 Not worth more than a bare mention
3.2 to 10 Substantial
10 to 100 Strong
> 100 Decisive

Table 2: Alternative priors for robustness analysis

ν̄ ν̄s̄2
£
θ, k
¤

A

Prior 1 1 0.01 [1.0,−0.5] 0.0001× I2

Prior 2 1 0.01 [5,−2.5] 0.0001× I2

Prior 3 1 0.01 [1.0,−0.5] 0.1× I2

Prior 4 1 0.1 [1.0,−0.5] 0.1× I2

Table 3: Summary of short rate data

Variable Mean Median Standard Skewness Kurtosis Max. Min.
Deviation Value Value

rt 7.132 5.970 2.885 1.682 5.106 17.400 4.680
∆rt −0.020 0.000 0.140 −0.413 11.826 0.860 −0.730
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Figure 1: Inverted gamma prior distributions for σ for v̄ = (1, 0.1, 0.05) and v̄s̄2 = 0.01
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Figure 2: Inverted gamma prior densities for σ with v̄ = 1 and v̄s̄2 = (0.01, 0.1, 0.5) .
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Figure 3: Australian interest rate data : Wednesday observations of 90 day rates from
January 1990 to July 2000 (552 observations)
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Table 4: Estimation results using Prior 1

h = Posterior Posterior Inefficiency MC 25th 50th 75th
Mean Standard Factor Error Perc. Perc. Perc.

Deviation

k 3 −0.0124 0.0012 1.4 0.000006 −0.0132 −0.0124 −0.0116
1 −0.0124 0.0012 0.7 0.000004 −0.0131 −0.0124 −0.0117
0 −0.0123 0.0011 0.8 0.000004 −0.0130 −0.0123 −0.0116

θ 3 0.0685 0.0084 1.3 0.000044 0.0630 0.0685 0.0740
1 0.0682 0.0078 0.7 0.000029 0.0631 0.0682 0.0733
0 0.0677 0.0074 0.8 0.000029 0.0629 0.0677 0.0724

σ 3 0.0362 0.0055 480.5 0.000536 0.0322 0.0358 0.0398
1 0.0381 0.0057 189.5 0.000352 0.0341 0.0378 0.0417
0 0.0400 0.0061 83.2 0.000249 0.0357 0.0395 0.0437

δ 3 0.669220 0.077553 512.6 0.007852 0.614460 0.668460 0.723660
1 0.642160 0.077064 209.6 0.004990 0.589930 0.640480 0.694350
0 0.617080 0.077549 84.6 0.003190 0.566130 0.617570 0.670130
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Table 5: Estimation results using Prior 2

h = Posterior Posterior Inefficincy MC 25th 50th 75th
Mean Standard Factor Error Perc. Perc. Perc.

Deviation

k 3 −0.0124 0.0015 0.9 0.000006 −0.0134 −0.0124 −0.0115
1 −0.0124 0.0015 1.2 0.000007 −0.0133 −0.0124 −0.0115
0 −0.0123 0.0013 1.2 0.000006 −0.0132 −0.0123 −0.0115

θ 3 0.0685 0.0099 0.9 0.000042 0.0621 0.0685 0.0749
1 0.0684 0.0099 1.2 0.000049 0.0621 0.0683 0.0746
0 0.0679 0.0088 1.2 0.000043 0.0623 0.0678 0.0735

σ 3 0.0316 0.0048 464.8 0.000463 0.0283 0.0312 0.0346
1 0.0321 0.0056 315.0 0.000442 0.0281 0.0318 0.0357
0 0.0346 0.0057 77.5 0.000224 0.0306 0.0341 0.0381

δ 3 0.739660 0.078800 502.3 0.007902 0.685650 0.739590 0.790900
1 0.732560 0.090700 310.5 0.007149 0.668250 0.728940 0.792140
0 0.692630 0.085400 82.4 0.003467 0.635120 0.692590 0.749130
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Table 6: Estimation results using Prior 3

h = Posterior Posterior Inefficiency MC 25th 50th 75th
Mean Standard Factor Error Perc. Perc. Perc.

Deviation

k 3 −0.0133 0.0006 34.2 0.000015 −0.0136 −0.0132 −0.0129
1 −0.0132 0.0006 14.3 0.000010 −0.0135 −0.0131 −0.0128
0 −0.0130 0.0006 4.9 0.000006 −0.0134 −0.0130 −0.0126

θ 3 0.0746 0.0043 30.3 0.000107 0.0716 0.0744 0.0774
1 0.0739 0.0043 12.7 0.000068 0.0710 0.0737 0.0766
0 0.0729 0.0041 4.5 0.000039 0.0702 0.0727 0.0755

σ 3 0.0672 0.0067 256.9 0.000478 0.0625 0.0666 0.0715
1 0.0683 0.0076 102.9 0.000344 0.0632 0.0677 0.0727
0 0.0693 0.0075 30.1 0.000184 0.0640 0.0688 0.0740

δ 3 0.359660 0.049700 285.2 0.003756 0.324800 0.361530 0.3929
1 0.350300 0.055000 108.3 0.002562 0.315840 0.351370 0.3864
0 0.341920 0.054100 32.7 0.001385 0.305720 0.342020 0.3791
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Table 7: Estimation results using Prior 4

h = Posterior Posterior Inefficiency MC 25th 50th 75th
Mean Standard Factor Error Perc. Perc. Perc.

Deviation

k 3 −0.0130 0.0005 24.6 0.000010 −0.0133 −0.0130 −0.0127
1 −0.0129 0.0005 9.7 0.000007 −0.0132 −0.0129 −0.0126
0 −0.0128 0.0004 4.1 0.000004 −0.0131 −0.0128 −0.0125

θ 3 0.0726 0.0035 21.6 0.000073 0.0702 0.0725 0.0749
1 0.0721 0.0035 8.6 0.000046 0.0698 0.0720 0.0744
0 0.0713 0.0034 3.7 0.000029 0.0690 0.0712 0.0735

σ 3 0.0808 0.0081 254.1 0.000576 0.0752 0.0802 0.0860
1 0.0812 0.0081 102.5 0.000368 0.0757 0.0806 0.0860
0 0.0816 0.0083 38.1 0.000230 0.0758 0.0810 0.0868

δ 3 0.270200 0.049700 270.8 0.003656 0.236150 0.271070 0.304010
1 0.267060 0.049900 107.5 0.002314 0.236040 0.267310 0.299320
0 0.263420 0.050900 41.9 0.001474 0.229440 0.263880 0.297790
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Figure 5: Graphical outputs for k estimated using Prior 1 settings: time series (top left);
cumulative mean (top right); histogram (bottom left); and autocorrelation function (bottom
right).
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Figure 6: Graphical outputs for θ estimated using Prior 1 settings: time series (top left);
cumulative mean (top right); histogram (bottom left); and autocorrelation function (bottom
right).
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Figure 7: Graphical outputs for σ estimated using Prior 1 settings: time series (top left);
cumulative mean (top right); histogram (bottom left); and autocorrelation function (bottom
right).
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Figure 8: Graphical outputs for δ estimated using Prior 1 settings: time series (top left);
cumulative mean (top right); histogram (bottom left); and autocorrelation function (bottom
right).
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Table 8: Bayes factors for all nested models against the unrestricted model

Prior 1 Prior 2
Model BF j0 MC Error BF j0 MC Error

h =
M1 3 4.84× 10−14 1.05× 10−14 2.19× 10−11 1.70× 10−11

1 7.73× 10−13 2.80× 10−13 2.02× 10−13 3.73× 10−14
0 4.19× 10−13 4.70× 10−14 2.83× 10−13 2.90× 10−14

M2 3 2.022900 0.080555 0.501870 0.054235
1 2.747100 0.035273 0.483950 0.013306
0 4.109200 0.026292 1.063300 0.013438

M3 3 0.001062 0.000166 0.075787 0.003760
1 0.000573 0.000060 0.125780 0.004820
0 0.000084 0.000005 0.019627 0.000659

M4 3 5.98× 10−23 2.27× 10−23 1.50× 10−14 1.16× 10−14
1 5.79× 10−23 2.99× 10−23 3.68× 10−15 5.42× 10−16
0 7.86× 10−27 3.21× 10−27 2.23× 10−18 3.78× 10−19

Prior 3 Prior 4
BF j0 MC Error BF j0 MC Error

h =
M1 3 7.08× 10−11 1.79× 10−11 0.000006 4.19× 10−7

1 6.65× 10−8 1.56× 10−8 0.000059 0.000008
0 3.07× 10−8 1.86× 10−9 0.000031 6.86× 10−7

M2 3 0.365730 0.009569 0.000354 0.000025
1 0.457250 0.013030 0.000645 0.000021
0 0.337430 0.009092 0.000381 0.000012

M3 3 3.93× 10−35 1.44× 10−35 5.49× 10−46 2.82× 10−46
1 1.53× 10−27 8.21× 10−28 5.41× 10−41 4.12× 10−41
0 1.22× 10−30 2.48× 10−31 1.57× 10−44 6.41× 10−45

M4 3 9.35× 10−110 8.88× 10−110 9.59× 10−130 7.03× 10−130
1 1.32× 10−84 1.08× 10−84 2.07× 10−112 2.01× 10−112
0 1.08× 10−95 6.09× 10−96 1.54× 10−124 1.39× 10−124
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Table 9: Bayes factors for all nested nodels

Entry (k, j) in each panel indicates the Bayes factor
in Favour of Mj Versus Mk, BFjk

Prior 1
M1 M2 M3 M4

Mk

M1 1.0 4.18× 1013 2.19× 1010 1.26× 10−9
M2 2.39× 10−14 1.0 5.25× 10−4 2.96× 10−23
M3 4.57× 10−11 1.91× 103 1.0 5.63× 10−20
M4 7.94× 108 3.38× 1022 1.78× 1019 1.0

Prior 2
M1 M2 M3 M4

Mk

M1 1.0 2.29× 1010 3.46× 109 6.39× 10−4
M2 4.36× 10−11 1.0 0.1510 2.99× 10−14
M3 2.89× 10−10 6.6221 1.0 1.98× 10−13
M4 1.56× 103 3.35× 1013 5.05× 1012 1.0

Prior 3
M1 M2 M3 M4

Mk

M1 1.0 5.17× 109 5.55× 10−25 1.32× 10−99
M2 1.94× 10−10 1.0 1.08× 10−34 2.56× 10−109
M3 1.80× 1024 9.31× 1033 1.0 2.38× 10−75
M4 7.57× 1098 3.91× 10108 4.20× 1074 1.0

Prior 4
M1 M2 M3 M4

Mk

M1 1.0 59.0 9.15× 10−41 1.60× 10−124
M2 0.0169 1.0 1.55× 10−42 2.71× 10−126
M3 1.09× 1040 6.45× 1041 1.0 1.75× 10−84
M4 6.26× 10123 3.69× 10125 5.72× 1083 1.0

39



Table 10: Posterior probabilities for all models.

M0 M1 M2 M3 M4

h =
Prior1 3 0.331 0.0 0.669 0.0 0.0

1 0.277 0.0 0.733 0.0 0.0
0 0.196 0.0 0.804 0.0 0.0

Prior 2 3 0.634 0.0 0.318 0.048 0.0
1 0.621 0.0 0.300 0.078 0.0
0 0.480 0.0 0.511 0.009 0.0

Prior 3 3 0.732 0.0 0.268 0.0 0.0
1 0.686 0.0 0.314 0.0 0.0
0 0.748 0.0 0.252 0.0 0.0

Prior 4 3 0.999 0.0 0.001 0.0 0.0
1 0.999 0.0 0.001 0.0 0.0
0 0.999 0.0 0.001 0.0 0.0
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