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ABSTRACT 

Exponential smoothing is often used to forecast lead-time demand for inventory control. In 

this paper, formulae are provided for calculating means and variances of lead-time demand 

for a wide variety of exponential smoothing methods. A feature of many of the formulae is 

that variances, as well as the means, depend on trends and seasonal effects. Thus, these 

formulae provide the opportunity to implement methods that ensure that safety stocks adjust 

to changes in trend or changes in season. 
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1. INTRODUCTION 

Inventory control software typically contains a forecasting module based on exponential 

smoothing. The purpose of such a module is to feed means and variances of lead-time demand 

to an inventory control module for the determination of ordering parameters such as reorder 

levels, order-up-to levels and reorder quantities. Typically, exponential smoothing is chosen 

because it has a proven record for generating sensible point forecasts (Gardner, 1985).  

To be more specific, consider the typical situation where a replenishment decision is to be 

made at the beginning of period n+1. Any order placed at this time is assumed to arrive a 

lead-time later at the start of period n λ+ . Inventory theory dictates that the primary focus 

should be on lead-time demand, an aggregate of unknown future values n jy +  defined by 

 ( )
1

n n j
j

Y y
λ

λ +
=

=
�

. (1)  

The problem is to make inferences about the distribution of lead-time demand. Typically an 

appropriate form of exponential smoothing is applied to past demand data 1, ny y� , the results 

being used to predict the mean of the lead-time demand distribution. 

Variances of lead-time demand are also needed for the implementation of inventory strategies 

that provide a protection against the worst effects of uncertain customer demand. Until 

Johnston and Harrison (1986) derived a variance formula for use with simple exponential 

smoothing, rather ad-hoc formulae were the vogue in inventory control software. Using a 

simple state space model, Johnston and Harrison utilized the fact that simple exponential 

smoothing emerges as the steady state form of the associated Kalman filter in large samples. 

Adopting a different model, Snyder, Koehler and Ord (1999) were able to obtain the same 

formula without recourse to the Kalman filter strategy. The advantage of their approach is that 

no restrictive large sample assumption is needed. Johnston and Harrison (1986) also obtained 

a variance formula for trend corrected exponential smoothing. Yar and Chatfield (1990), 

however, have suggested a slightly different formula. They also provide a formula that 

incorporates seasonal effects for use with the additive Winters (1960) method. 

The purpose of this paper is to take a fresh look at the problem of deriving formulae for 

forecast variances of lead-time demand. We use the linear version of the single source of error 



Exponential Smoothing for Inventory Control: Mean and Variances of Lead-time Demand 
 

 
  3  

model from Ord, Koehler and Snyder (1997) to unify the derivations. We also provide useful 

extensions to accommodate errors that depend on trend and seasonal effects. The model and 

its special cases are introduced in Section 2. Associated formulae for means and variances of 

lead-time demand are presented in Section 3. General principles used in their derivation are 

presented in the Appendix. Throughout the paper, we adopt a convention concerning the sum 

operator Σ . In those cases where the lower limit is less than the upper limit, the sum should 

be equated to zero. 

 

2. MODELS FOR EXPONENTIAL SMOOTHING 

Future values of a time series are unknown and must be treated as random variables. Their 

behavior must be linked to a statistical model in order to derive prediction distributions. A 

model should have the potential to include unobserved components such as levels, growth 

rates and seasonal effects, because various forms of exponential smoothing are based on these 

concepts. Common cases of exponential smoothing and their models are shown in Table 1. 

The column marked ‘Code’  uses nomenclature from Hyndman et al (2001). Here N 

designates ‘None’ , ‘A’  designates ‘Additive’  and D designates ‘Damped’ . All codes involve 

two letters. The first letter is used to describe the trend. The second letter describes the 

seasonal component. The various components are t

�
 for local level, tb  for local growth rate, 

ts  for local seasonal effect and te  for a random variable designating the irregular component. 

The ,α β γ, are so-called smoothing parameters. The φ , another parameter, is a damping 

factor. The purpose of the caret symbol is outlined later. 

 
Case Code Model Smoothing Method Description 

1 NN 
1

1

t t t

t t t

y e

eα
−

−

= +
= +

�

� �  
( )

1

1

ˆˆ

ˆ ˆ ˆ

t t

t t t t

y

y yα
−

−

=

= + −

�

� �  
Simple exponential 

smoothing (Brown, 

1959) 

2 AN 1 1

1 1

1

t t t t

t t t t

t t t

y b e

b e

b b e

α
αβ

− −

− −

−

= + +
= + +
= +

�

� �
 ( )

( )

1 1

1 1

1

ˆˆˆ

ˆˆ ˆ ˆ

ˆ ˆ ˆ

t t t

t t t t t

t t t t

y b

b y y

b b y y

α

αβ

− −

− −

−

= +

= + + −

= + −

�

� �
 

Trend-corrected 

exponential smoothing 

(Holt, 1957) 
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3 AD 1 1

1 1

1

t t t t

t t t t

t t t

y b e

b e

b b e

α
φ αβ

− −

− −

−

= + +
= + +
= +

�

� �
 ( )

( )

1 1

1 1

1

ˆˆˆ

ˆˆ ˆ ˆ

ˆ ˆ ˆ

t t t

t t t t t

t t t t

y b

b y y

b b y y

α

φ αβ

− −

− −

−

= +

= + + −

= + −

�

� �
 

Damped trend 

(Gardner and 

McKenzie, 1985) 

4  
t t m t

t t m t

y s e

s s eγ
−

−

= +
= +

 
( )

ˆ ˆ

ˆ ˆ ˆ
t t m

t t m t t

y s

s s y yγ
−

−

=
= + −

 
Elementary seasonal 

case 

5 AA 1 1

1 1

1

1

t t t t m t

t t t t

t t t

t t t

y b s e

b e

b b e

s s e

α
αβ
γ

− − −

− −

−

−

= + + +
= + +
= +
= +

�

� �

 ( )
( )

( )

1 1

1 1

1

ˆˆˆ ˆ

ˆˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

t t t t m

t t t t t

t t t t

t t m t t

y b s

b y y

b b y y

s s y y

α

αβ
γ

− − −

− −

−

−

= + +

= + + −

= + −

= + −

�

� �

 

Winters additive 

method (Winters, 

1960) 

6 DA 1 1

1 1

1

1

t t t t m t

t t t t

t t t

t t t

y b c e

b e

b b e

s s e

α
φ αβ

γ

− − −

− −

−

−

= + + +
= + +
= +
= +

�

� �

 ( )
( )

( )

1 1

1 1

1

ˆˆˆ ˆ

ˆˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

t t t t m

t t t t t

t t t t

t t m t t

y b s

b y y

b b y y

s s y y

α

φ αβ
γ

− − −

− −

−

−

= + +

= + + −

= + −

= + −

�

� �

 

Damped trend with 

seasonal effects 

Table 1. Models for Common Linear Forms of Exponential Smoothing. 
 
 
Each model in Table 1 contains a measurement equation that specifies how a series value is 

built from unobserved components. It contains transition equations that describe how the 

unobserved components change over time in response to the effects of structural change. It 

involves a random variable representing the irregular component. 

All the models in Table 1 are special cases of what is best called a single source of error state 

space model. The unobserved components are stacked to give a vector tx . It is assumed that 

all components combine linearly to give the series value, so the measurement equation is 

specified as 

 1t t ty h x e−′= +  (1) 

where h is a fixed vector of coefficients. The lag on tx  is used to reflect the assumption that 

the conditions at time t-1 determine what happens during the period t. The evolution of the 

unobserved components is governed by the first-order transition relationship 

 1t t tx Fx ge−= +  (2) 
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where F is a fixed matrix and g is a fixed vector that reflects the impact of structural change.  

It is possible to think of the first component of (1) as an underlying level and to designate it 

by 1t tm h x −′= . It is possible that the disturbance is independent of this level. It is also possible 

that its variance increases with this level. Both possibilities are captured by the assumption 

that the disturbance is governed by the relationship 

 r
t t te m ε=   for  0,1r =  (3) 

where tε  is a member of a ( )2NID 0,σ  series? The measurement equation may now be 

written as t t ty m ε= +  when 0r = or ( )1t t ty m ε= +  when 1r = . In the latter case, the tε  is a 

unit-less quantity, conveniently thought of as a relative error. It means that the irregular 

component potentially depends on the other components of a time series, something that can 

be very important in practice. The elements , ,h F g  potentially depend on a vector of 

parameters designated by ω . 

It is assumed that the same model governs both past and future values of a time series. Past 

values are known, in which case it is possible to make a pass through the data, applying a 

compatible form of exponential smoothing in each period. Suppose, at the beginning of 

typical period t, past applications of exponential smoothing have yielded the value 1ˆtx −  for the 

state vector 1tx − . After observing ty  at the end of period t, it is possible to calculate the error 

1ˆt t te y h x −′= −
�

. The error can be substituted into the transition equation to give 

( )1 1ˆ ˆ ˆt t t tx Fx g y h x− −′= + −  for the value of the state vector tx . Given the progressive nature of 

this algorithm, it is clear that 1 0ˆ | , , ,t t tx x y y x ω= � . Induction may be used to confirm that ˆtx  

is a fixed value. 

A special case of the above model, best termed a composite model, is now considered. The 

state vector tx  is partitioned into random sub-vectors designated by 1,tx  and 2,tx . The 

measurement equation has the form 

 1 1, 1 2 2, 1t t t ty h x h x e− −′ ′= + +  (4) 
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where 1h  and 2h  are sub-vectors of h . The sub-vectors of the state vector are governed by 

transition equations 

 ( ), , 1    1,2k t k k t k tx F x g e k−= + =  (5) 

where 1 2,F F  are transition matrices and 1 2,g g  are sub-vectors of g. The special feature of this 

composite model is that the transition equation for 1,tx  does not contain 2,tx  and vice versa. It 

is shown in the Appendix that the results for a composite model can be built directly from 

those of its constituent models. 

All the models in Table 1 are special cases of the single source of error model or the 

composite model. The links with these general models are provided in Table 2. Here 0k  refers 

to a k-vector of zeros and kI  refers to a k k×  identity matrix. Note that although the seasonal 

cases are governed by mth-order recurrence relationships, they are converted to equivalent 

first-order relationships. Also note that ω  is a vector formed from some or all of the 

parameters , , ,α β γ φ . 

 

Case 
tx  h F g 

1 
t tx =

�
 1h =  1F =  g α=  

2 [ ]t t tx b ′= �  [ ]1 1h′ =  1 1

0 1
F

� �
= � �� �  [ ]g α αβ ′=  

3 [ ]t t tx b ′= �  [ ]1 1h′ =  1 1

0
F

φ

� 	
= 
 ��   [ ]g α αβ ′=  

4 [ ]1t t t mx s s− +
′= �

 

[ ]10 1mh −′ ′=  1

1 1

0 1

0
m

m m

F
I

−

− −

′
� �

= � �� �  [ ]10mg γ −
′′=  

5 [ ]1,t t tx b ′= �  

[ ]2, 1t t t mx s s − += �
 

[ ]1 1 1h′ =  

[ ]2 10 1mh −′ ′=  

1

1 1

0 1
F

� �
= � �� �

1
2

1 1

0 1

0
m

m m

F
I

−

− −

′
� �

= �  ! "  

 

[ ]1g α αβ ′=  

[ ]2 10mg γ −
′′=  
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6 [ ]1,t t tx b ′= �  

[ ]2, 1t t t mx s s − += �
 

[ ]1 1 1h′ =  

[ ]2 10 1mh −′ ′=  

1

1 1

0
F

φ

� �
= � �� �

1
2

1 1

0 1

0
m

m m

F
I

−

− −

′
� �

= �  ! "  

[ ]1g α αβ ′=  

[ ]2 10mg γ −
′′=  

Table 2. Conformity of Special Cases to the General Model or Composite Model. 

An intriguing insight from Table 2 is that each smoothing method applies for both a 

homoscedastic and a heteroscedastic model. Now, each homoscedastic case is equivalent to 

an ARIMA process (Box, Jenkins and Reinsel, 1994). However, no heteroscedastic case is 

equivalent to an ARIMA process. Thus, exponential smoothing applies for a wider class of 

models than the ARIMA class (Ord, Koehler and Snyder, 1997).  

In the homoscedastic cases, only the mean potentially depends on trend and seasonal effects. 

However, in the heteroscedastic cases, both the mean and the variance of the irregular 

component depend on trend and seasonal effects. Thus, prediction variances reflect trend and 

seasonal effects in the heteroscedastic case, a feature that is potentially quite useful in 

practice. 

Many other cases are conceivable when addition operators are replaced in the measurement 

equation by multiplications. Examples of such cases are presented in Hyndman, Koehler, 

Snyder and Grose (2002). A variety of models underlying the multiplicative version of 

Winters multiplicative method have been introduced in Koehler, Snyder and Ord (2001). The 

complexity of these non-linear possibilities precludes the derivation of results using the 

methodology of this paper.  

3. MEANS AND VARIANCES OF LEAD TIME DEMAND 

It is assumed that methods similar to those described in Ord, Koehler and Snyder (1997) have 

been applied to past demand data to estimate the parameters of an appropriate model The 

problem is now to find the moments of the lead-time demand (1).  Our analysis is built, in 

part, on prediction variance results from Hyndman, Koehler, Ord and Snyder (2001) for 

conventional prediction distributions.  

It is shown in the Appendix that lead-time demand can be resolved into a linear function of 

the uncorrelated irregular components: 
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 ( )
1 1

n n j j n j
j j

Y C e
λ λ

λ µ + +
= =

= +
� �

. (6) 

where 

 1j
n j nh F xµ −

+ ′=  (7) 

is the mean of the j-step prediction distribution. It is further established that the coefficients of 

the errors in (6) are given by 

 
1

1
j

j i
i

C c
λ −

=
= + �   for 1, ,j λ= � . (8) 

where 

 1i
ic h F g−′= . (9) 

Particular cases of the formulae for the means n jµ +  and the coefficients jC  are shown in 

Table 3. Note that 
1

0

j
i

j
i

φ φ
−

=
= � ; ( )

1
2

1

j
i

j
i

iφ φ
−

=
= � ; 

1j m
p

m

+ −
� �

= � �� � ; , 1j md =  if j is a multiple of m 

and , 0j md = otherwise. The results for Case 5 and Case 6 are constructed by adding the 

corresponding results for constituent basic models, an approach that is also rationalized in the 

Appendix. 

Case 
n jµ +  jc  jC  

1 ˆ
n

�
 α  ( )1 jλ α+ −  

2 ˆˆ
n njb+

	
 ( )1 jα β+  ( ) ( )( )1

1
2

j j
j

λ λ
λ α αβ

− − +
+ − +  

3 ˆˆ
n j nbφ+



 ( )1 jα βφ+  ( ) ( ) ( )21 j jj j λ λλ α λ αβφ αβφ− −+ − + − −  

4 ˆn j pms + −  ,j md γ  
,

1

1
j

i m
i

d
λ

γ
−

=
+ �  

5 ˆˆ ˆn n n j pmjb s + −+ +
�

 ( ) ,1 j mj dα β γ+ +  ( ) ( )( )
,

1

1
1

2

j

i m
i

j j
j d

λλ λ
λ α αβ γ

−

=

− − +
+ − + +   

6 ˆˆ ˆn j n n j pmb sφ + −+ +
�

 ( ) ,1 j j mdα βφ γ+ +
 

( ) ( ) ( )2
,

1

1
j

j j i m
i

j j d
λ

λ λλ α λ αβφ αβφ γ
−

− −
=

+ − + − − + �  
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Table 3. Key Results for Basic models. 

From (6), the conditional variance is given by 

 ( )( ) 2 2

1

var | ,n n j
j

Y x C
λ

λ ω σ
=

= � . (10) 

in the homoscedastic case. All the information needed to evaluate the grand mean and the 

grand variance is available in Table 3. In the heteroscedastic case the grand variance is 

 ( )( ) 2 2

1

var | ,n n j n j
j

Y x C
λ

λ ω σ θ +
=

= �  (11) 

where ( )2 | ,n j n j nE m xθ ω+ += . It is established, in the Appendix, that the heteroscedastic 

formulae may be computed using the recurrence relationship  

 
1

2 2 2

1

j

n j n j j i n i
i

cθ µ θ σ
−

+ + − +
=

= + �  (12) 

where the jc  are also given in Table 3.   

4. CONCLUSIONS 

Formulae for calculating the mean and variance of lead-time demand have been derived for 

many common forms of exponential smoothing in this paper. For the homoscedastic cases, 

the prediction distributions are Gaussian, so the means and variances provide all the 

information required to make probabilistic statements about future lead-time demand. In 

theory, the prediction distributions for the heteroscedastic cases are not Gaussian. However, a 

numerical study in Hyndman, Koehler, Ord and Snyder (2001) indicates that there is little 

error involved in approximating them by a Gaussian distribution. The same conclusion must 

apply to lead-time distributions where aggregation must help to further reduce the 

approximation error. 

By using the single source of error state space model, we have unified the derivation of the 

formulae. In the homoscedastic cases, many of the formulae obtained in this paper agree with 

those found in earlier work (Johnston and Harrison, 1986; Yar and Chatfield, 1990; Snyder, 
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Koehler and Ord, 1999). A small advance was obtained in relation to Winters additive 

seasonal method in that the recursive variance formulae in Yar and Chatfield (1990) has been 

replaced by a closed counterpart. Furthermore, we have obtained, for the first time, formulae 

for the variance of lead-time demand for the damped trend cases. 

It has been argued in the paper that the irregular component of a demand series can depend on 

trend and seasonal effects. Thus, a major part of our contribution has been the provision of 

lead-time demand variance formulae for heteroscedastic extensions to exponential smoothing. 

Such formulae admit the possibility of smarter approaches to safety stock determination. It is 

now possible to implement schemes that tailor levels of safety stock to changes in trend or 

changes in season.  
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APPENDIX 

General results governing the formulae in Table 3 are derived in this Appendix. To get the 

formulae governing Cases 1-4,  back solve the transition equation (2) from period n j+  to 

period n, to give 

 
1

j
j j i

n j n n i
i

x F x F ge−
+ +

=

= + �  (A1) 

  

Lag (A1) by one period, pre-multiply the result by h′ , and use the definitions (7) and (9) to 

get 
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1

1

j

n j n j j i n i
i

m c eµ
−

+ + − +
=

= + � . (A2) 

Recall that te is given by (3) so that ).(|)( 222
inin mEeE ++ = σ  Then we may square (A2) and 

take expectations to give the recurrence relationship (12) for the heteroscedastic factors. 

Substitute (A2) into (1) to give 
1

1

j

n j n j j i n i n j
i

y c e eµ
−

+ + − + +
=

= + +
�

. Substitute this into (1) to give 

( )
1

1 1

j

n n j j i n i n j
j i

Y j c e e
λ

µ
−

+ − + +
= =

� �
= + +

� �� �� �
. Rearrange terms to yield the required result (6) where 

the jC  are defined by (8). Note that the derivation of the jC  is expedited using the following 

equations: 1Cλ =  and 1j j jC C cλ+ −= +  for 1, ,1j λ= − 	 . 

 
Cases 5 and 6 are composite models. Each transition equation (5), for a composite model, has 

the same structure as (2). Thus, 

 , ,
1

j
j j i

k n j k k n k k n i
i

x F x F g e−
+ +

=

= + 
 . (A3) 

Lag (11) by one period and pre-multiply the result by kh′  to give 

 
1

, , ,
1

i

k n j k n j k j i n i
i

m c eµ
−

+ + − +
=

= + 
  (A4) 

where 

 1
, ,

j
k n j k k k nh F xµ −

+ ′=  (A5)  

and  

 1
,

i
k i k k kc h F g−′= . (A6) 

Substitute (A4) into 1, 2,n j n j n jm m m+ + += +  to yield the earlier equation (A2) where 

 1, 2,n j n j n jµ µ µ+ + += +  (A7) 



Exponential Smoothing for Inventory Control: Mean and Variances of Lead-time Demand 
 

 
  13  

and 

 1, 2,i i ic c c= + . (A8) 

Thus, the formula 1, 2, 1i i iC C C= + −  may be used to derive the results for Case 5 and Case 6 

from their constituent basic cases. In the heteroscedastic cases, the appropriate factors are still 

derived with the relationship (12).  
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