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Modelling and forecasting

Australian domestic tourism

Abstract: In this paper, we model and forecast Australian domestic tourism demand. We

use a regression framework to estimate important economic relationships for domestic tourism

demand. We also identify the impact of world events such as the 2000 Sydney Olympics and

the 2002 Bali bombings on Australian domestic tourism. To explore the time series nature

of the data, we use innovation state space models to forecast the domestic tourism demand.

Combining these two frameworks, we build innovation state space models with exogenous

variables. These models are able to capture the time series dynamics in the data, as well

as economic and other relationships. We show that these models outperform alternative

approaches for short-term forecasting and also produce sensible long-term forecasts. The

forecasts are compared with the official Australian government forecasts, which are found to

be more optimistic than our forecasts.

Keywords: Australia, domestic tourism, exponential smoothing, forecasting, innovation state

space models.

1 Introduction

The Australian tourism industry can be divided into three major segments: (i) in-

ternational inbound tourism; (ii) domestic tourism; and (iii) outbound tourism. Of

these, domestic tourism is the largest financial contributor to the Australian econ-

omy. In 2005, domestic tourism contributed an estimated $55.5 billion to the Aus-

tralian economy, more than three times the contribution of international arrivals

(Tourism Forecasting Committee, 2005). Despite this, the main focus of Australian

academic tourism research has been on international tourism (see, for example,

Morris et al., 1995; Kulendran and King, 1997; Morley, 1998; Lim and McAleer, 2001,

2002; Kulendran and Witt, 2003); worldwide tourism research has had a similar focus

(see Li et al. 2005 for a comprehensive survey).

Domestic tourism also plays a significant role in maintaining and improving tourism
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infrastructure, especially in regional Australia. An Australian tourist is much more likely

than an international tourist to visit regional and remote areas of Australia that are not

internationally promoted. Thus, Australian domestic tourism is an important topic that

is in need of careful study and analysis.

To the best of our knowledge, the only forecasts available for the Australian domestic

tourism market are those produced by the Tourism Forecasting Committee (TFC) and

published by Tourism Research Australia (TRA). TRA is a business unit under the um-

brella of Tourism Australia, which is an Australian federal government statutory author-

ity. Tourism Australia was established after the initiatives of the Tourism White Paper

(2003) which intended to strengthen the tourism industry.

Following the white paper, the TFC was also established as an independent body.

The committee comprises experts from both the private and government sectors in the

tourism and finance industry. Current members are: Tourism Australia, Australian

Standing Committee on Tourism, Australian Tourism Export Council, Department of In-

dustry Tourism and Resources, Australian Bankers Association, Tourism and Transport

Forum Australia, Property Council of Australia (representing major property investors),

Qantas and Queensland Tourism Industry Council. The TFC produces consensus fore-

casts for international, domestic and outbound tourism activity which are published by

TRA. The forecasts produced by the TFC in October 2005 for the third quarter of 2005 and

beyond show steady growth in the domestic market. In contrast, our forecasts show that

the Australian domestic market is in decline, and it seems that it will remain this way at

least in the short-term.

We develop three different statistical models for forecasting Australian domestic tourism.

First, to help in understanding and capturing some of the economic relationships impor-

tant to the domestic tourism market, we construct a regression model of tourism demand.

This modelling framework identifies some useful economic relationships and significant

events influencing the Australian domestic tourism market. However, as these models

are static, they are unable to capture the dynamic properties of the data.

The second approach adopted is to use pure time series models to capture these dynam-

ics. The models employed are single source of error (or innovation) state space models

(see Aoki, 1987; Hannan and Deistler, 1988; Snyder, 1985; Ord et al., 1997; de Silva et al.,
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2006). These have been extremely successful when applied to data from forecasting

competitions (e.g., Hyndman et al., 2002; Makridakis et al., 1982; Makridakis and Hibon,

2000), and have numerous advantages over the more common form multiple source of

error structural time series (STSM) models (as outlined in Ord et al. 2005). However, they

have never previously been applied to tourism data.

The third modelling approach we take is to include exogenous variables in the innovation

state space models. These models combine the advantages of each of the above modelling

frameworks. Hence, they capture the significant economic relationships and events iden-

tified in the regression models, and combine these with the time series properties of the

innovation state space models. Although other formulations of state space models with

exogenous variables exist (see Harvey, 1990), this is the first time that the innovation state

space formulation with exogenous variables has been published. A two-step estimation

procedure is proposed. The estimated models produce accurate short term forecasts and

sensible long term forecasts.

The data are introduced in Section 2. Section 3 describes the three models and com-

pares them based on within-sample fits and out-of-sample forecast performance. The

out-of-sample forecast evaluation also includes forecasts produced by the TFC. Section 4

presents and analyses the long-run forecasts from the three models and those from the

TFC. We summarize our conclusions in Section 5.

2 Data

The Australian domestic tourism data were obtained from the National Visitor Sur-

vey, managed by TRA. Data is collected by computer-assisted telephone interviews

from approximately 120,000 Australians aged 15 years and over on an annual basis

(Tourism Reseach Australia 2005). We use the number of visitor nights (VN) as the indi-

cator of tourism activity. We disaggregate the data based on the main purpose of travel:

Holiday (Hol), Visiting Friends and Relatives (VFR), Business (Bus) and Other (Oth). The

available sample spans from the 1st quarter of 1998 to the 2nd quarter of 2005. Hence,

there are a total of n = 30 quarterly observations (see Figure 1).

Figure 2 shows the total number of visitor nights (the aggregate of the series in
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Figure 1). Also shown are the forecasts produced for this series by the TFC in

Tourism Forecasting Committee (2005). The annual TFC forecasts show a steady aver-

age growth of 0.9% per annum from 2006–2014. In contrast, there is no noticeable trend

in the historical data from 1998–2005.

3 Statistical models

3.1 Regression models

The proposed tourism demand function is:

VNi
t = f (t, DEBTt, DPIt, GDPt, BALIt, OLYMPt, MARt, JUNt, SEPt, εt) (1)

where i = {Hol, VFR, Bus, Oth}, VNi
t is the number of visitor nights per capita travelling

for purpose i, DEBTt is real personal debt (by all lenders) per capita, DPIt is the price

index for domestic holiday travel and accommodation, GDPt is the real gross domestic
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Figure 1: Quarterly observations for Australian domestic tourism: visitor nights (VN).
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Figure 2: Linear trend lines fitted to the sample of total visitor nights and the TFC forecasts.

product per capita, BALIt is a dummy variable capturing the effect of the bombings in

Bali (BALIt = 1 during the 4th quarter of 2002 and beyond), OLYMPt is a dummy variable

capturing the effect of the Sydney 2000 Olympic games (OLYMPt = 1 in the 4th quarter

of 2000, which is the quarter following the games, and 0 otherwise), MARt, JUNt and

SEPt are seasonal dummy variables, and εt is a random error term. The function f is

assumed to be linear. Full descriptions of the data, the data sources and projections of the

regressors used for forecasting are provided in Appendix A.

We considered many other economic variables of interest including petrol prices, prices

of competing goods (e.g., car sales), audio equipment and others. However, due to the

small sample size and the lack of variation in many of these variables, they were found

to be statistically insignificant. The small sample size also prevented us testing for non-

linear relationships such as threshold effects for the variables of interest.

Visual inspection of the dependent variables (see Appendix B for plots of the per capita

data) suggests that stationarity tests are required. Table 1 presents the results from three

unit root tests: the Augmented Dickey Fuller (ADF) test (Dickey and Fuller, 1979, 1981),
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the KPSS test (Kwiatkowski et al., 1992) and the Modified Phillips-Perron (MZa) test due

to Ng and Perron (2001). Ng and Perron (2001) consider modified versions of four exist-

ing unit root tests. Their Monte-Carlo simulation results indicate that these tests have

superior size and power to any existing test. The results presented here are robust to

the choice of the test. In general, the hypothesis testing framework for unit roots can be

simply presented by considering an autoregressive process such as:

yt = ρyt−1 + z′tδ + εt (2)

where zt is a set of exogenous regressors which may contain a constant and a time trend.

In the ADF and MZa tests, the null hypothesis is that the series contains a unit root (i.e.,

H0 : |ρ| = 1 versus H1 : |ρ| < 1). The KPSS tests the null hypothesis that the series

does not contain a unit root (i.e., H0 : |ρ| < 1 versus H1 : ρ = 1). Before applying these

tests, each series was seasonally adjusted (see Figure 3) using an additive moving average

method (e.g., Makridakis et al., 1998). The test results presented in Table 1 indicate that

none of the four series contains a unit root.

Table 1: Unit root tests. The data generating processes assumed for ln VNHol
t and ln VNBus

t
contain both an intercept and a deterministic trend. The data generating processes as-
sumed for ln VNVFR

t and ln VNOth
t contain only an intercept.

Seasonally adjusted series ADF KPSS MZa

ln VNHol
t −5.44∗ 0.13∗ −14.88]

ln VNVFR
t −2.47 0.22∗ −10.98∗

ln VNBus
t −4.97∗ 0.10∗ −16.47]

ln VNOth
t −6.43∗ 0.14∗ − 8.14∗

∗ The test finds no unit root at the 5% level of significance.
] The test finds no unit root at the 10% level of significance.

However, at least two of the response variables are clearly trending (this is especially

apparent in Figure 3 where the seasonal variation has been removed). Consequently, a

deterministic trend and the growth rates of the explanatory variables are employed in

the regression model; the growth rates are calculated as (100× ∆ ln (Z)) for variable Z.

We also include up to one lag of each regressor. After eliminating variables found to
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adjusted ln VNi
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be statistically insignificant at a 10% level of significance across all four equations, the

general demand model employed is

1000 ln VNi
t = c + δt + β1Dt−1 + β2Pt−1 + β3Yt + β4BALIt + β5OLYMPt

+ s1MARt + s2JUNt + s3SEPt + εt , (3)

where Dt−1 is the lag of the growth rate of DEBTt; Pt−1 is the lag of the growth rate

of DPIt; Yt is the growth rate of GDPt; and the remaining variables are as described in

equation (1). The response variable was scaled up by 1000 to avoid very small estimated

coefficients.

Table 2 shows the demand equations estimated one at a time using ordinary least squares

(OLS). In this setting, the OLS estimator is equivalent to the generalised least squares

(GLS) estimator employed in a seemingly unrelated regression (SUR) framework, as the

equations contain identical regressors (refer to Green 2000, p.616, for proof). The equa-

tions show a satisfactory fit with R2 values ranging from 0.82 for the “Other” variable to

0.98 for the “Holiday” variable. The diagnostic tests at the bottom of the table show that

the residuals of each equation satisfy the basic OLS assumptions of no serial correlation,

homoscedasticity and normality. Also the RESET test results indicate that the model is

appropriately specified.

We simplified the models by eliminating insignificant variables one at a time, selecting

the coefficient with the highest p-value among all insignificant coefficients at the 5% level

of significance. Then, because we expect that the errors across equations will be contem-

poraneously correlated and because not all equations include the same regressors, the

system was estimated efficiently using the SUR estimation method (Zellner, 1963). The

estimation results are presented in Table 3.

The estimated coefficient for the exponential trend is negative and statistically signifi-

cant in the “Holiday” and “Business” equations. Hence, these results show a significant

long term decline in visitor nights per capita where travel is for holiday and business

purposes.

The estimated coefficient of the lag of the growth of DEBT is positive and statistically

significant in the “Holiday” and “Business” equations. This variable can be considered a
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Table 2: Estimated coefficients of the unrestricted demand model of equation (3). Standard errors
are shown in parentheses beneath each coefficient.

Regressor Holiday VFR Business Other
Intercept 7493.33

(16.71)

∗ 7041.23
(34.61)

∗ 6472.51
(30.39)

∗ 5823.92
(80.78)

∗

t −5.14
(0.91)

∗ −2.21
(1.88)

−8.04
(1.65)

∗ 6.04
(4.38)

Dt−1 4.34
(1.30)

∗ 4.84
(2.70)

] 7.88
(2.37)

∗ −3.88
(6.29)

Pt−1 −5.45
(1.88)

∗ 1.81
(3.89)

8.04
(3.42)

∗ −5.89
(9.08)

Yt −39.09
(9.61)

∗ −14.80
(19.91)

−21.10
(17.48)

−67.23
(46.48)

BALIt −14.20
(16.31)

108.02
(33.80)

∗ 35.70
(29.67)

−168.23
(78.88)

∗

OLYMPt 31.60
(38.99)

26.78
(80.77)

118.17
(70.92)

] −292.65
(188.52)

MARt 342.68
(13.40)

∗ 156.95
(27.76)

∗ −180.97
(24.37)

∗ −563.63
(64.79)

∗

JUNt −39.62
(13.52)

∗ −56.84
(28.01)

∗ −40.34
(24.59)

−510.12
(65.37)

∗

SEPt 31.13
(14.35)

∗ −48.22
(29.74)

46.07
(26.11)

] −141.28
(69.41)

∗

R2 0.98 0.82 0.88 0.82
R̄2 0.97 0.75 0.82 0.73
QNa 0.23 0.40 0.57 1.07
QSCb

lags 1.122 2.092 4.972 9.61[
3

QHTc 11.27 15.65 15.34 7.71
QRRd 0.51 1.19 1.76 1.76

a Jarque and Bera (1980) χ2 test for normality.
b Breusch (1978) and Godfrey (1978) Lagrange multiplier χ2 test for serial
correlation.
c White (1980) χ2 test for heteroscedasticity.
d Ramsey (1969) RESET χ2 test for misspecification.
∗ Significant at the 5% level.
] Significant at the 10% level.
[ These residuals showed some weak third order serial correlation which was ignored.

proxy for consumer confidence. An increase in the growth rate of borrowing in the last

quarter (i.e., a rapid growth in consumer confidence in the previous quarter), results in

an increase in domestic travel for both “Holiday” and “Business” purposes.

The lag of the growth in the domestic travel price index, DPI, has mixed results across

equations. In the “Holiday” equation, the coefficient of DPI is negative and statistically

significant. This suggests that as prices for domestic travel grew faster (or declined more
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Table 3: Estimated coefficients of the demand model of equation (3) after eliminating insignificant
parameters. Standard errors are shown in parentheses beneath each coefficient.

Regressor Holiday VFR Business Other
Intercept 7505.57

(13.33)
∗ 7020.25

(21.03)
∗ 6441.09

(22.84)

∗ 5771.92
(47.28)

∗

t −5.91∗
(0.50)

−6.17
(0.88)

∗

Dt−1 4.41
(1.23)

∗ 5.91
(2.00)

∗

Pt−1 −4.11∗
(1.64)

7.58
(2.89)

∗

Yt −43.71∗
(8.14)

BALIt 56.61
(17.75)

∗

OLYMPt 148.00∗
(51.26)

MARt 338.09∗
(13.06)

170.33
(26.87)

∗ −170.83
(24.28)

∗ −540.23
(64.74)

∗

JUNt −43.19∗
(12.40)

−71.36
(26.87)

∗ −42.57]

(24.51)
−460.75

(64.74)

∗

SEPt 27.78
(14.01)

] −33.73
(27.84)

55.03∗
(25.57)

−109.13
(66.86)

R2 0.98 0.79 0.86 0.77
R̄2 0.98 0.75 0.82 0.74
∗ Significant at the 5% level of significance.
] Significant at the 10% level of significance.

slowly) in the previous quarter, domestic holiday travel decreased. However, the coeffi-

cient in the “Business” equation is positive and statistically significant. This may suggest

that domestic travel prices have been driven up by an increase in economic activity. An

increase in economic activity should also result in an increase in domestic travel for busi-

ness purposes, leading to the positive relationship between the lag of the growth rate of

DPI and business travel.

The coefficient of GDP growth was found to be negative across all equations, but was

only statistically significant in the “Holiday” equation. The negative coefficient sug-

gests that an increase in the growth of GDP results in a significant decline in vis-

itor nights for holiday purposes, and vice versa. Perhaps the explanation for this

is that during periods of increasing economic activity, domestic holiday travel de-

creases significantly as Australians choose to travel to overseas destinations instead.

Tourism Forecasting Committee (2005) shows that for Australian residents, short-term

Athanasopoulos and Hyndman: October 2006 10
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departures to overseas destinations have grown at approximately 4% per annum on av-

erage between 1995 and 2004.

The dummy variable for the Sydney Olympics captures a positive and statistically sig-

nificant increase of business travel in the December quarter of 2000. This is the quarter

following the Sydney Olympic games, which suggests that business travel was put on

hold for the Olympic games and took place immediately afterwards.

The dummy variable for the Bali 2002 bombings captures a positive and statistically sig-

nificant mean shift in the VFR series. After the Bali bombings, Australians reverted to

visiting friends and relatives more than before.

The coefficient estimates for the seasonal dummy variables are consistent with what

would be expected for Australian domestic travel. The March quarter has the highest

holiday and VFR travel, but the lowest business travel. This is the summer quarter for

Australia and includes the longest period of school holidays. The lowest level of holiday

and VFR travel is found in the June quarter which includes the first semester of all levels

of schooling.

3.2 Exponential smoothing via innovation state space models

Exponential smoothing was proposed in the late 1950s (see the pioneering works of

Brown 1959, Holt 1957 and Winters 1960) and has motivated some of the most success-

ful forecasting methods. Forecasts produced using exponential smoothing methods are

weighted averages of past observations, with the weights decaying exponentially as the

observations get older. In other words, the more recent the observation the higher the

associated weight.

Recently, a statistical framework for these forecasting methods has been developed

(Ord et al., 1997; Hyndman et al., 2002). Innovation state space models encapsulate the

notion of exponential smoothing in a state space framework, and allow maximum likeli-

hood estimation, model selection and prediction intervals to be derived.

Exponential smoothing methods have been applied to tourism demand (see

González and Moral, 1995; Turner and Witt, 2001; Cho, 2003; du Preez and Witt, 2003)
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through the framework of structural time series models (Harvey, 1990) which give ap-

proximately the same forecasts. Innovation state space models involve only a single

source of error. The optimal forecasts from an innovation state space model are iden-

tical to those obtained using exponential smoothing methods (Hyndman et al., 2005).

The modelling strategy followed in this paper is a restricted version of the

Hyndman et al. (2002) methodology for innovation state space models, which is based

on the taxonomy proposed by Pegels (1969), extended by Gardner (1985) and advocated

by Makridakis et al. (1998). In this study, only additive models are considered. Given

that all series have a pronounced seasonal component, the models considered are listed

in Table 4. All three models have additive errors and an additive seasonal component

and may contain no trend, an additive trend or a damped trend. We refer to this class

of models as “ETS” (for Error-Trend-Seasonal) models. The damped trend model was

proposed by Gardner and McKenzie (1985) as a modification to Holt’s linear model. This

modification comes through the parameter φ which dampens the trend. When 0 < φ < 1,

the forecasts produced by the model converge to ln + bn/(1− φ) as h → ∞. Thus, the

short-run forecasts are trended but the long-run forecasts are constant.

Table 4: Innovation state space additive models with seasonal component

No trend Additive trend Damped trend
yt = lt−1 + st−m + εt yt = lt−1 + bt−1 + st−m + εt yt = lt−1 + bt−1 + st−m + εt
lt = lt−1 + αεt lt = lt−1 + bt−1 + αεt lt = lt−1 + bt−1 + αεt
st = st−m + γεt bt = bt−1 + βεt bt = φbt−1 + βεt

st = st−m + γεt st = st−m + γεt

ŷn+h = ln + sn+h−m ŷn+h = ln + hbn + sn+h−m ŷn+h = ln + (1 + φ + · · ·+ φh−1)bn
+ sn+h−m

lt denotes the level of the series at time t; bt denotes the slope at time t; st denotes
the seasonal component at time t; m is the number of seasons in a year; ŷn+h is the h
step ahead out of sample forecast value.

Treating this as a time series modelling exercise, the dependent variable considered is

visitor nights instead of visitor nights per capita. The parameters are restricted to 0 <

α < 1, 0 < β < α, 0 < γ < 1 and 0 < φ < 0.98. The damping parameter φ is restricted to

a maximum of 0.98 to ensure that the damped model gives noticeably different forecasts

from the additive trend model. Section 3.3 includes further discussion on the damped

trend model.
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The models are estimated by maximising the likelihood function using the R package

“forecast” (Hyndman, 2006), and the Akaike Information Criterion (AIC) is employed as

the model selection criterion. The Bayesian Information Criterion (BIC) was also consid-

ered but was found to be too restrictive. The selected models and estimated coefficients

are presented in Table 5. The model selected for the “Holiday”, “Business” and “Other”

series is the damped trend model, while a no-trend model is selected for VFR. The sea-

sonal smoothing parameter, γ, is zero for all models, indicating a fixed and unchanging

seasonal pattern.

Table 5: Models and estimated parameters

Holiday VFR Business Other
Model Damped trend No trend Damped trend Damped trend

Parameter
α 0.10 0.52 0.00 0.00
β 0.08 0.00 0.00
γ 0.00 0.00 0.00 0.00
φ 0.85 0.98 0.34

3.3 Innovation state space models with exogenous variables

The two modelling approaches described so far have contrasting advantages and dis-

advantages. The regression models identified some very useful economic relationships,

such as the positive relationship between consumer confidence and domestic holiday

travel. The effects of significant world events such as the Sydney Olympic games and the

Bali bombings were also highlighted. These relationships are important to policy makers

(such as Tourism Australia). However, the regression model does have some disadvan-

tages. For example, if the model is used for forecasting, forecasts of the regressors are

required. Furthermore, the regression model is static—it does not explore the dynamic

properties of the data. In contrast, time series models such as the ETS capture the dy-

namic characteristics of the data and use these to forecast the future.

In this section, a combination of these two modelling strategies is proposed, giving ETS

models with exogenous variables or “ETSX” models. These models are estimated via

a two-step procedure. First, we identify the exogenous variables to be included in the

model. These are the variables found to be statistically significant for each equation in
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the SUR estimation results, as presented in Table 3. In the second step, the fully specified

model is estimated by maximising the likelihood function.

The dependent variable employed is visitor nights per capita, i.e., yt is VNi
t as defined

in equation (1). Because the seasonal component in each of the time series models was

deterministic, we model seasonality using seasonal dummies in the set of exogenous

variables.

A damped trend model is used for all series. Including the exogenous variables in the

observation equation, the ETSX model is

yt = lt−1 + bt−1 + z′tδ + εt (4)

lt = lt−1 + bt−1 + αεt

bt = φbt−1 + βεt

ŷn+h = ln + (1 + φ + · · ·+ φh−1)bn + ẑ′n+hδ̂ (5)

where zt is a vector of the exogenous variables not including the constant and the

time trend. When 0 < φ < 1, the forecasts produced by model (5) converge to

ln + bn/(1 − φ) + ẑ′n+hδ̂ as h → ∞. Thus, the short-term forecasts produced by this

model are largely affected by the final trend estimate bn. However, as we forecast further

into the future, this effect diminishes (i.e., the trend is damped). This allows long-term

forecasts to be largely driven by the forecasts of the exogenous variables. This type of

model has important policy implications as long-term forecasts (in this case tourism de-

mand) can reflect the beliefs/views of policy makers about the future of the exogenous

variables.

The estimated models are presented in Table 6. The smoothing parameters are restricted

as in Section 3.2. The estimates of the coefficients of the exogenous variables seem to be

consistent with the corresponding estimates in the regression framework of Section 3.1.

3.4 In-sample evaluation of the three models

We evaluate how well the three models fit the data by computing some in-sample ac-

curacy measures. The accuracy measures employed are the root mean squared error
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Table 6: Estimates of the ETSX models

Parameter Holiday VFR Business Other
α 0.13 0.00 0.47 0.01
β 0.01 0.00 0.00 0.00
φ 0.98 0.97 0.98 0.76

Variable
Yt −67.67
Dt−1 6.79 3.78
Pt−1 −7.25 4.21
BALIt 132.09
OLYMPt 104.05
MARt 661.69 213.54 −95.78 −129.18
JUNt −65.52 −72.54 −21.25 −116.15
SEPt 48.64 −31.95 32.91 −27.51

Table 7: In-sample accuracy measures for the three models.

Regr ETS ETSX Regr ETS ETSX
RMSE ME

Holiday 814.0 1173.1 974.5 8.5 −244.4 −182.0
VFR 1216.7 1266.6 1196.1 36.6 56.7 −55.4
Business 510.4 688.8 541.6 12.5 0.0 −28.6
Other 583.4 548.3 581.2 34.7 0.0 −24.3
Total 1649.2 2264.9 1714.8 92.3 −187.7 −290.2

MAE MAPE
Holiday 665.7 994.2 757.8 1.9 2.9 2.2
VFR 930.8 949.7 899.9 4.0 4.2 3.9
Business 395.5 548.8 450.6 3.5 4.9 4.1
Other 481.6 454.4 473.2 10.4 9.5 10.4
Total 1352.0 1649.0 1421.4 1.9 2.3 2.0

(RMSE), the mean error (ME), the mean absolute error (MAE) and the mean absolute

percentage error (MAPE) (see Makridakis et al. 1998 for definitions). The results are pre-

sented in Table 7.

For each error measure, the first four rows summarize the error produced by each of

the three models when fitted to the individual series. The final row labelled “Total”

summarizes the aggregated errors produced by each model for the total of visitor nights.

The mean error provides a measure of the bias in the fitted models, and the other three

measures describe the accuracy of the models in fitting the data.

Let us concentrate on the MAPE results presented on the lower right corner of the table.
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The regression model provides the best fit for the “Holiday” and “Business” series. For

these cases the regression model included a deterministic trend. The fit of the ETSX mod-

els approached the fit of the regression models as the damping parameter φ approached

one. For the “VFR” case, where no deterministic trend was included in the regression

model, the fit of the ETSX model was best. In the case of the “Other” series the ETS model

performed best. This is not surprising because this series is the most difficult to model

via economic relationships as it contains travel for very diverse purposes.

3.5 Forecast evaluation of the three models and TFC

The in-sample evaluation of the models has shown that the models fit the data quite

well. Although this is useful when modelling domestic tourism, it does not mean that the

models can forecast well. In order to get some indication of the forecasting performance

of the models, we also conduct an out-of-sample forecast performance evaluation.

Due to the short sample size available, the period September 2004 to June 2005 is selected

as the “holdout” sample. Thus, the models are estimated using the first 26 observations

(March 1998 to June 2004) and 1–4 step-ahead forecasts are produced.

The forecast error measures are presented in Table 8. For each measure, the first four rows

show the error produced by each model for each individual series. The “Total” row gives

the forecast error produced by each model for the total aggregate of visitor nights. The

final “Average” row gives the error of each model, averaged across the four individual

series.

Again, we will focus on the most popular forecast error measure, the MAPE, presented

in the lower right corner of Table 8. The three models developed in this study seem to be

competitive in forecasting the individual series. Forecasting the total visitor nights, the

ETSX models perform best producing the lowest MAPE of 4.20%.

There is only one instance where the TFC forecasts outperform any of the models. This is

for the “Business” series where the TFC forecasts outperform the ETS model. The aver-

age improvement that can be achieved by tourism analysts in implementing our ideas is

highlighted in the “Average” row. Here the TFC average MAPE is between 60 and 70%

larger than that for any of our models.
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Table 8: Forecast error measures calculated for the holdout sample: September 2004 to June 2005

Regr ETS ETSX TFC Regr ETS ETSX TFC
RMSE ME

Holiday 680.8 1633.1 1761.0 2255.6 185.8 −383.7 −71.7 −286.1
VFR 1925.9 1625.4 1892.0 2449.9 −919.5 −422.4 −1067.2 −1718.9
Business 1787.0 1081.5 857.7 748.2 −363.4 −919.3 −612.6 −397.0
Other 535.4 468.5 536.0 1056.3 −122.3 −173.6 −171.7 73.1
Total 3746.6 3696.0 3826.7 4233.5 −1219.5 −1898.9 −1923.1 −2328.9
Average 1232.3 1202.1 1261.7 1627.5 −304.9 −474.7 −480.8 −582.2

MAE MAPE
Holiday 1856.7 1426.8 1528.3 2186.1 5.8 4.8 5.0 7.0
VFR 954.2 1131.9 1118.8 1882.2 4.8 5.2 5.5 8.5
Business 507.5 919.3 612.6 731.9 5.2 9.5 6.4 7.4
Other 380.5 316.1 371.0 906.2 7.7 6.5 7.6 17.6
Total 2960.5 2757.6 2657.6 3126.9 4.5 4.3 4.2 4.9
Average 924.7 948.5 907.7 1426.6 5.9 6.5 6.1 10.1

4 Comparing long run forecasts from the three models and TFC

Figure 4 plots the long term visitor nights forecasts (aggregated to annual), pro-

duced by each of the models. Also plotted are the forecasts produced by the TFC

(Tourism Forecasting Committee, 2005). The annual percentage growth values in these

forecasts are shown in Table 9. All three models predict an overall decrease in visitor

nights for the year 2005. This is also predicted by the TFC. The largest decline is pre-

dicted by the ETS models (a drop of 3.74% in comparison to 2004) followed by the TFC

forecast (a drop of 3.27%). However, from 2006, the forecasts produced by the models tell

a very different story about the future of Australian domestic tourism compared to the

TFC forecasts.

The regression model driven by deterministic trends (in the “Holiday” and “Business”

series) predicts a continuous decline in visitor nights. The average predicted decline over

the 2005–2014 period is 0.48% per annum. The rate of decline diminishes the further the

forecasts are into the future, due to the nature of the exponential trend. If the forecast

horizon was extended enough, one would see the forecasts approach an asymptote par-

allel to the horizontal axis. This is an important implication of the exponential (instead of

linear) trend on the forecasts produced by these models. It shows that this type of model

does not forecast negative visitor nights at some point in the future, as would be the case

if a linear trend was employed.
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Figure 4: Long run annual forecasts for total visitor nights from the three models and the TFC.

The ETS models predict the lowest number of domestic visitor nights with not one in-

crease for the period 2005–2014. Given that three of the series are modelled by a damped

trend model the rate of decline is damped. The average percentage decrease in visitor

nights over the period 2005–2014 is 0.55%. However, the average decrease for the period

2005–2008 is 1.17% compared to 0.13% for the period 2009–2014.

The most optimistic of our forecasts come from the ETSX models. Recall that these mod-

els are a combination of the ETS damped trend model and the exogenous variables. The

characteristics of the forecast function of this model (discussed in Section 3.3) can be now

seen in operation. From 2006 to 2011, the models predict a decline in the visitor nights,

but this decline is rapidly damped. Beyond 2011, the trend is damped enough for the

growth in the exogenous variables (such as the growth in the Australian population, the

growth in GDP, etc.) to dominate and produce an overall growth in visitor nights. For

the whole period 2005–2014 these models predict an average decline of 0.22%.

In contrast to the forecasts from any of the three models, the TFC predict a steady growth

in visitor nights for the period 2005–2014. The average predicted growth over 2005–2014
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Table 9: Percentage growth/decline in visitor nights from 1998 to 2014

Period Actual Regr ETS ETSX TFC
98–99 0.28
99–00 −0.30
00–01 −1.27
01–02 3.11
02–03 −1.52
03–04 0.94
04–05 −2.68 −3.74 −2.77 −3.27
05–06 0.99 −0.19 1.13 0.66
06–07 −0.43 −0.45 −0.36 0.95
07–08 −0.42 −0.30 −0.26 1.05
08–09 −0.41 −0.22 −0.17 1.01
09–10 −0.40 −0.17 −0.09 0.96
10–11 −0.38 −0.14 −0.01 0.93
11–12 −0.37 −0.12 0.06 0.88
12–13 −0.36 −0.11 0.13 0.85
13–14 −0.34 −0.10 0.19 0.83

Average growth
99–04 0.21
05–10 −0.56 −0.84 −0.42 0.23
05–14 −0.48 −0.55 −0.22 0.48

Total growth
98–04 1.16
04–10a −3.34 −5.01 −2.54 1.29
04–14a −4.73 −5.45 −2.17 4.86
05–14b −2.11 −1.78 0.61 8.41
a Total growth from the last actual observation to the forecast period stated.
b Total growth over the forecasted periods.

is 0.48%. This means that domestic visitor nights are predicted to increase by 8.41% over

the next ten years. This is a much greater total increase than predicted by any of the three

statistical models. The regression and ETS models predict a total decline of 2.11% and

1.78% respectively. The ETSX models predict a small total growth of 0.61%.

Figure 5 presents the annual forecasts (from the three models and the TFC) for the disag-

gregated series by purpose of travel. This figure highlights where the TFC seem to have

been over-optimistic. For two of the four series, namely “VFR” and “Other”, the forecasts

produced by the models and the TFC are fairly similar (the exception being ETS for both

cases which has a flat forecast function). However, there is a noticeable discrepancy be-

tween the models and the TFC forecasts for the other two series. The largest component

of the total visitor nights is “Holiday” travel. Panel A highlights the significant diver-

gence between the models and the TFC in the long term forecasts for this series. There is

Athanasopoulos and Hyndman: October 2006 19



Modelling and forecasting Australian domestic tourism

also a divergence between the models and the TFC forecasts for the “Business” compo-

nent as shown in Panel C. The forecasts of these two components are the primary source

of the overly optimistic TFC forecasts for total visitor nights.
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Figure 5: Long run annual forecasts for each of the four travel purpose components of visitor
nights, from the three models and the TFC.

5 Conclusion

We have modelled Australian domestic tourism demand using three statistical models.

The first approach used regression models. The estimated regression models have identi-

fied significant economic relationships for domestic tourism. This analysis has also high-

lighted the impact of world events on Australian domestic tourism such as the increase

in business travel immediately after the 2000 Sydney Olympic games, and the significant

increase in visiting friends and relatives after the 2002 Bali bombings. In order to take ad-

vantage of the time series properties of the data, we also consider time series modelling
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and implement innovation state space models (for the first time in the tourism litera-

ture). We combine the properties of the regression and the innovation state space models

by proposing an innovation state space models with exogenous variables.

All three statistical models are shown to outperform the TFC published forecasts for short

term demand of Australian domestic tourism. The long-term forecasts produced by the

models indicate that the TFC long-term forecasts may be optimistic. In particular, the

models suggest that TFC forecasts of the “Holiday” and “Business” travel components

of Australian domestic tourism have been optimistic. The statistical models show that

Australian domestic tourism is on the decline.

The proposed statistical models are clearly of substantial benefit to policy makers. In

particular, we recommend the use of innovation state space models with exogenous vari-

ables (the ETSX models), which can capture time series dynamics as well as economic

and other relationships, and which out-performed the other models based on both the

MAE and MAPE error measures.
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González, P. and P. Moral (1995) An analysis of the international tourism demand of

Spain, International Journal of Forecasting, 11, 233–251.

Green, W. H. (2000) Econometric Analysis, Prentice-Hall International, New Jersey, 4th ed.

Hannan, E. J. and M. Deistler (1988) The statistical theory of linear systems, John Wiley &

Sons, New York.

Harvey, A. C. (1990) Forecasting, Structural Times Series Models and the Kalman Filter, Cam-

bridge University Press, Cambridge.

Holt, C. E. (1957) Forecasting seasonals and trends by exponentially weighted aver-

ages, O.N.R. Memorandum 52, Carnegie Institute of Technology, O.N.R. Memoran-

dum Pittsburgh USA. Published in 2004 in the International Journal of Forecasting, 20,

1–13, with additional commentaries.

Athanasopoulos and Hyndman: October 2006 22



Modelling and forecasting Australian domestic tourism

Hyndman, R. J. (2006) forecast: Forecasting time series, R package version 1.0. URL:

http://www.robhyndman.info/Rlibrary/forecast

Hyndman, R. J., A. B. Koehler, J. K. Ord and R. D. Snyder (2005) Prediction intervals for

exponential smoothing using two new classes of state space models, Journal of Forecast-

ing, 24, 17–37.

Hyndman, R. J., A. B. Koehler, R. D. Snyder and S. Grose (2002) A state space framework

for automatic forecasting using exponential smoothing methods, International Journal

of Forecasting, 18, 439–454.

Jarque, C. and A. Bera (1980) Efficient tests for normality, homoskedasticity and serial

independence of regression residuals., Economic Letters, 6, 255–259.

Kulendran, K. and M. L. King (1997) Forecasting international quarterly tourist flows

using error-correction and time-series models, International Journal of Forecasting, 13,

319–327.

Kulendran, N. and S. F. Witt (2003) Forecasting the demand for international business

tourism, Journal of Travel Research, 41, 265–271.

Kwiatkowski, D., P. C. B. Phillips, P. Schmidt and Y. Shin (1992) Testing the null hy-

pothesis of stationarity against the alternative of a unit root: how sure are we that the

economic time series have a unit root?, Journal of Econometrics, 54, 159–178.

Li, G., H. Song and S. F. Witt (2005) Recent developments in econometric modelling and

forecasting, Journal of Travel Research, 44, 82–99.

Lim, C. and M. McAleer (2001) Cointegration analysis of quarterly tourism demand by

Hong Kong and Singapore for Australia, Applied Economics, 33, 1599–1619.

Lim, C. and M. McAleer (2002) Time series forecasts of international travel demand for

Australia, Tourism Management, 23, 389–396.

Makridakis, S., A. Anderson, R. Carbone, R. Fildes, M. Hibon, R. Lewandowski, J. New-

ton, E. Parzen and R. Winkler (1982) The accuracy of extrapolation (time series) meth-

ods: Results of a forecasting competition, Journal of Forecasting, 1, 111–153.

Athanasopoulos and Hyndman: October 2006 23



Modelling and forecasting Australian domestic tourism

Makridakis, S. and M. Hibon (2000) The M3-competition: Results, conclusions and im-

plications, International Journal of Forecasting, 16, 451–476.

Makridakis, S., S. C. Wheelwright and R. J. Hyndman (1998) Forecasting: methods and

applications, John Wiley & Sons, New York, 3rd ed.

Morley, C. L. (1998) A dynamic international demand model, Annals of Tourism Research,

25, 70–84.

Morris, A., K. Wilson and A. Bakalis (1995) Modelling tourism flows from Europe to

Australia, Tourism Economics, 1, 147–167.

Ng, S. and P. Perron (2001) Lag length selection and the construction of unit root tests

with good size and power, Econometrica, 69, 1519–1554.

Ord, J. K., A. B. Koehler and R. D. Snyder (1997) Estimation and prediction for a class of

dynamic nonlinear statistical models, Journal of the American Statistical Association, 92,

1621–1629.

Ord, J. K., R. D. Snyder, A. B. Koehler, R. J. Hyndman and M. Leeds (2005) Time series

forecasting: The case for the single source of error state space, Working Paper 7/05.

Pegels, C. C. (1969) Exponential smoothing: some new variations, Management Science,

12, 311–315.

Ramsey, J. (1969) Test for specification errors in classical linear least squares regression

analysis, Journal of the Royal Statistical Society B, 31, 350–371.

Snyder, R. D. (1985) Recursive estimation of dynamic linear models, Journal of the Royal

Statistical Society B, 47, 272–276.

Tourism Forecasting Committee (2005) Tourism Forecasting Committee October 2005 Fore-

casts, Tourism Research Australia, Canberra.

Tourism Reseach Australia (2005) Travel by Australians, September Quarter 2005, Tourism

Australia, Canberra.

Tourism White Paper (2003) A medium to long term strategy for tourism, Commonwealth

of Australia. Available on www.industry.gov.au.

Athanasopoulos and Hyndman: October 2006 24



Modelling and forecasting Australian domestic tourism

Turner, L. W. and S. F. Witt (2001) Forecasting tourism using univariate and multivariate

structural time series models, Tourism Economics, 7, 135–147.

White, H. (1980) A heteroskedasticity-consistent covariance matrix estimator and a direct

test of heteroskedasticity, Econometrica, 48, 817–838.

Winters, P. R. (1960) Forecasting sales by exponentially weighted moving averages, Man-

agement Science, 6, 324–342.

Zellner, A. (1963) Estimators for seemingly unrelated regression equations: Some exact

finite sample results, Journal of the American Statistical Association, 58, 977–992.

Athanasopoulos and Hyndman: October 2006 25



Modelling and forecasting Australian domestic tourism

A Descriptions and projections of regressors
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Figure 6: Levels of the regressors and their projections.

DEBT: Total real personal finance commitments per capita from all lenders in Australia

in $A thousands (seasonally adjusted, aggregated monthly series by averaging across the

months of each quarter, series 5671-P1A from the DX database, Australia).

DPI: Domestic holiday travel and accommodation price index (seasonally adjusted by

additive method, Australian Bureau of Statistics, series ID A2329356K).

GDP: Real Gross Domestic Product per capita in constant 03-04 $A billions (seasonally

adjusted, series AUS.EXPGDP.LNBQRSA from the DX database, Australia).

POP: Australian population and population projections as provided by the Australian

Bureau of Statistics: Series B Population Projections, Australia 2004 to 2101, ABS

cat. no. 3222.0

The forecasts for GDP, DPI and DEBT were produced using the R package “forecast”

(Hyndman, 2006). The models selected by minimising the AIC are: additive trend, addi-

tive trend and no-trend, respectively. The forecasts for POP are the population projections
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supplied by the Australian Bureau of Statistics.

B Visitor nights per capita series
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Figure 7: These are the visitor nights per capita series as defined in equation (3): PANEL
A: ln VNHol

t × 1000; PANEL B: ln VNVFR
t × 1000; PANEL C: ln VNBus

t × 1000;
PANEL D: ln VNOth

t × 1000.
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