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ABSTRACT

We derive a primal Divisia technical change index based on the output distance function
and further show the validity of this index from both economic and axiomatic points of view.
In particular, we derive the primal Divisia technical change index by total di¤erentiation of
the output distance function with respect to a time trend. We then show that this index
is dual to the Jorgenson and Griliches (1967) dual Divisia total factor productivity growth
(TFPG) index when both the output and input markets are competitive; dual to the Diewert
and Fox (2008) markup-adjusted revenue-share based dual Divisia technical change index
when market power is limited to output markets; dual to the Denny et al. (1981) and Fuss
(1994) cost-elasticity-share based dual Divisia TFPG index when market power is limited
to output markets and constant returns to scale is present; and also dual to a markup-and-
markdown adjusted Divisia technical change index when market power is present in both
output and input markets. Finally, we show that the primal Divisia technical change index
satis�es the properties of identity, commensurability, monotonicity, and time reversal. It
also satis�es the property of proportionality in the presence of path independence, which
in turn requires separability between inputs and outputs and homogeneity of subaggregator
functions.

JEL classi�cation: C43; D24; O47.
Keywords: Output distance function; Divisia technical change index; Imperfect compe-

tition; Axiomatic properties; Path independence.
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1 Introduction

Measures of productivity have long enjoyed a great deal of interest among economists. One
of the most popular and in�uential methods of productivity measurement is the Divisia-
type total factor productivity growth (TFPG) or technical change index.1 First derived
by Solow (1957) within a single-output framework and later generalized by Jorgenson and
Griliches (1967) to a multiple-output framework, the conventional dual Divisia TFPG index
is calculated as the observed revenue-share-weighted output growth minus the observed cost-
share-weighted input growth.2 While having enjoyed great popularity, the conventional
dual Divisia TFPG index is restricted in the sense that it is obtained under the assumptions
of price/marginal cost proportionality and constant returns to scale. Insightfully noting
this problem, Caves and Christensen (1980) replace the observed revenue shares with cost
elasticities; Denny et al. (1981) and Fuss (1994) with cost-elasticity shares; and Diewert
and Fox (2008) with markup-adjusted revenue shares (marginal revenue shares). The three
resulting indexes are thus appropriate in the presence of imperfect competition, thus also
being compatible with increasing returns to scale.
Despite the di¤erences in technology/�rm behavior assumptions and economic functions

used, a feature that the aforementioned indexes share in common is that they all require
complete information on both output and input prices. In many situations, however, such
information is unavailable, inaccurate or distorted. For example, for many goods, such as
free goods, intangible assets, and new commodities introduced in the target period, monetary
prices do not exist. In many other situations where market failures (such as, for example,
monopoly power and externalities) or governmental interference (such as, for example, tar-
i¤s, taxation, subsidizing, and regulation) are present, the observed prices di¤er from the
economic prices. In those situations, a primal Divisia TFPG/technical change index, which
relies only on quantity information, is desirable.
With the popularity of the output distance function, recent studies have replaced the

observed revenue and cost shares in the conventional Divisia TFPG index with the elasticities
of the output distance function with respect to outputs and inputs, respectively. See, for
example, Orea (2002) and Lovell (2003). However, none of these studies have theoretically
shown that this primal TFPG index is a valid productivity index under di¤erent market
structures, nor have they derived the properties of this index. For example, Orea (2002)

1In this paper we make a distinction between two concepts: technical change and total factor productivity
growth (TFPG). The former, which is used in deriving the primal Divisia technical change index in this paper,
refers to the rate of shift in a transformation function [Solow (1957, p. 312)], while the latter refers to the
rate of change of an index of outputs divided by an index of inputs [Jorgenson and Griliches (1967, p. 253)].
Technical change can reduce to TFPG under appropriate assumptions.

2A �rm theoretical foundation of the Solow (1957) and Jorgenson and Griliches (1967) dual Divisia TFPG
index is provided in the pioneering works of Solow (1957), Jorgenson and Griliches (1967), Richter (1966),
Hulten (1973), Star and Hall (1976), Diewert (1976), and Balk (2009).
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shows the validity of the distance-elasticity based Divisia TFPG index by simply making
a loose analogy between this index and the Denny et al. (1981) cost-elasticity-share based
Divisia TFPG index. This is apparently unsatisfactory from a theoretical perspective.
The purpose of this study is to �ll this gap. In particular, we have three objectives:

(a) to theoretically derive an output-distance-function based primal Divisia technical change
index; (b) to formally demonstrate the validity of this index from an economic point of
view; and (c) to formally discuss its validity from an axiomatic point of view. Generally
speaking, there are two major approaches to index numbers � the �economic�approach and
the �axiomatic�approach. The economic approach, widely used in many in�uential studies
such as, for example, Diewert (1976) and Barnett (1980), assumes that quantities (or prices)
arise from the optimizing behavior of economic agents and explores how closely an index
approximates some �true�index based on economic theory. See Diewert (1981a) and Neary
(2004). By contrast, the axiomatic approach, a tradition dating back to Fisher (1922) and
Frisch (1930), treats prices and quantities as independent variables and assesses the extent
to which an index satis�es certain desirable, though not mutually consistent, properties. See
Diewert (1992) and Balk (2008) for an excellent overview of this approach.
In deriving the primal Divisia technical change index, we follow Solow (1957) and dif-

ferentiate a transformation function (in particular, an output distance function in our case)
totally with respect to time. We show that technical change is equal to a distance-elasticity-
based technical change index, which we call �primal Divisia technical change index.�We also
derive the restrictions on the output and input weights implied by the regularity conditions
of the output distance function.
We then show that the primal Divisia technical change index is valid under di¤erent

market structures. To this end, we consider three cases: (i) both the output and input
markets are perfectly competitive, (ii) market power is limited to output markets, and (iii)
market power is present in both output and input markets. For the �rst case, we solve the
competitive pro�t maximization problem and show that the primal Divisia technical change
index is equal to the Jorgenson and Griliches (1967) dual Divisia TFPG index. For the
second case, we slightly modify the Diewert and Fox (2008) monopolistic pro�t maximization
framework by using the output distance function as the technology constraint. We show
that the primal Divisia TFPG index is equal to the Diewert and Fox (2008) markup-adjusted
revenue-share (marginal revenue shares) based dual Divisia technical change index, and that
it is also equal to the Denny et al. (1981) and Fuss (1994) cost-elasticity-share based dual
Divisia TFPG index under constant returns to scale. For the third case, we show, by using
a more generalized pro�t maximization framework, that the primal Divisia technical change
index is equal to a markup adjusted output growth index minus a markdown adjusted input
growth index multiplied by the degree of returns to scale.
Finally, we discuss the validity of the primal Divisia technical change index from an

axiomatic point of view. We show that it satis�es the properties of identity, commensu-
rability (dimensional invariance), monotonicity, and time reversal, and that it also satis�es
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the proportionality property if technology is constant returns to scale and its corresponding
cumulative index is path independent. We further show that the necessary and su¢ cient
conditions for path independence of the primal Divisia technical change index are that the
output distance function is separable between inputs and outputs and that the output sub-
aggregator function is linearly homogenous in outputs and the input subaggregator function
is homogeneous of degree of " (the degree of local constant returns to scale) in inputs.
We note that Balk (1998, Chapter 3) exploits the duality between the cost function and

the input distance function and derives a Malmquist productivity index based on the input
distance function. Our paper, however, is di¤erent from Balk�s (1998) in the following
three ways. First, our index is a Divisia technical change index whereas Balk�s (1998) is a
Malmquist productivity index. Second, our Divisia technical change index is based on the
output distance function whereas Balk�s (1998) Malmquist productivity index is based on the
input distance function. Third, and more importantly, our focus is on the examination of the
theoretical properties of the primal output-distance-function based Divisia technical change
index whereas Balk (1998) focuses on the decomposition of the input-distance-function based
Malmquist productivity index.
The rest of the paper is organized as follows. In Section 2, we discuss the output distance

function. In Section 3 we derive the output-distance-function based Divisia technical change
index. In Section 4, we show that this index is valid under di¤erent market structures. In
Section 5, we show that the primal Divisia TFPG index satis�es certain desirable axiomatic
properties, and in Section 6 we discuss the issue of path independence. The �nal section
concludes the paper.

2 The Output Distance Function

We �rst de�ne the production technology and the output distance function on which our
primal Divisia technical change index is based. Consider the case of a multi-input, multi-
output production technology where producers use the 1�N input vector x = (x1; � � �; xN) �
0N to produce the 1�M output vector y = (y1; � � �; yM) � 0M . Following Diewert and Fox
(2010), the production technology at time t can be described by the technology set

P t (x) = fy : y is producible from xg

which satis�es a set of axioms including closedness, nonemptiness, boundedness, positiveness,
and disposability of outputs. It should be noted here that in order to allow for increasing
returns to scale, the production technology is not assumed to be convex.
An output distance function can then be de�ned as in Shephard (1970),

Dt
o (y;x) = inf

�

n
� > 0 :

y

�
2 P t (x)

o
. (1)
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It seeks the largest proportional increase in the observed output vector possible given that
the expanded vector must still be an element of the original output set. Consistent with
the properties satis�ed by the production technology, the output distance function is non-
decreasing and linearly homogeneous in outputs, and non-increasing in inputs. Since the
production technology is not assumed to be convex, the usual assumptions that Dt

o (y;x) is
convex in outputs and quasi-convex in inputs are dropped. See Diewert and Fox (2010) for
a detailed proof that Dt

o (y;x) is well de�ned provided that P
t (x) satis�es the properties

mentioned in the previous paragraph.
To facilitate the calculation of technical change below, we follow the common practice in

this literature and make two assumptions. First, we assume that the in�uence of technology
is through the exogenous time variable t; second, we assume that the outputs and inputs are
functions of time and di¤erentiable. With these assumptions, the output distance function
in (2) can be rewritten as Do(y(t);x(t); t). Thus, as in Solow (1957), technical progress for
technology is due to the t variable in Do(y(t);x(t); t); i.e., with positive technical change, we
expect @Do(y(t);x(t); t)=@t to be negative. Furthermore, we assume throughout this paper
that production is e¢ cient at all points in time so that we have

Do(y(t);x(t); t) = 1. (2)

This assumption is consistent with the optimization problems set out in Section 4.

3 The Primal Divisia Technical Change Index

3.1 The Derivation of the Primal Divisia Technical Change Index

Having de�ned the output distance function, we now turn to the derivation of the primal
(or more accurately, output distance function) Divisia technical change index. In doing
so, we follow Solow (1957) and di¤erentiate a transformation function (the output distance
function in our case) totally with respect to time. In particular, we de�ne the instantaneous
rate of technical change at time t, TC, to be:

TC = �@Do(y(t);x(t); t)

@t
. (3)

Di¤erentiating (2) totally with respect to time we obtain

MX
m=1

@Do(y(t);x(t); t)

@ym

dym
dt

+

NX
n=1

@Do(y(t);x(t); t)

@xn

dxn
dt

+
@Do(y(t);x(t); t)

@t
= 0
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which, when combined with (3), yields

TC =
MX
m=1

@Do(y(t);x(t); t)

@ym

dym
dt

+
NX
n=1

@Do(y(t);x(t); t)

@xn

dxn
dt

=

MX
m=1

@ lnDo(y(t);x(t); t)

@ ln ym

d ln ym
dt

+

NX
n=1

@ lnDo(y(t);x(t); t)

@ lnxn

d lnxn
dt

=
MX
m=1

�m _ym �
NX
n=1

'n _xn. (4)

In (4), we assume that ym(t) > 0 for all m and xn(t) > 0 for all n. _ym and _xn are the growth
rates for output m and input n, respectively. That is, _ym = d ln ym=dt and _xn = d lnxn=dt.
Finally, the output growth weights, �m, and the input growth weights, 'n, are de�ned in
terms of logarithmic derivatives of the output distance function as follows:

�m =
@ lnDo(y(t);x(t); t)

@ ln ym
; (5)

'n = �
@ lnDo(y(t);x(t); t)

@ lnxn
. (6)

In what follows, we call the term on the right hand side of (4) �output distance function
Divisia technical change index�or simply �primal Divisia technical change index.�

3.2 The Restrictions on the Output and Input Growth Weights

A distinctive feature of the primal Divisia technical change index, as can be seen from (5) and
(6), is that its output and input growth weights are de�ned in terms of distance elasticities.
Thus, to complete the de�nition of the primal Divisia technical change index, we further
need to examine the restrictions on its output and input growth weights, implied by the
regularity conditions of the output distance function.
We �rst examine the restrictions on the output growth weights. From Section 2, we know

that Do(y(t);x(t); t) is linearly homogeneous and non-decreasing in y (with an appropriate
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free disposal assumption on y). Formally, these two properties can be written as

MX
m=1

@Do(y(t);x(t); t)

@ym
ym = 1; (7)

@Do(y(t);x(t); t)

@ym
� 0, m = 1; � � �;M . (8)

Noting that Do(y(t);x(t); t) = 1 [see (2)], (7) can be written as

MX
m=1

@ lnDo(y(t);x(t); t)

@ ln ym
= 1.

Furthermore, since Do(y(t);x(t); t) and ym (m = 1; � � �;M) are non-negative, (8) can be
rewritten as

@ lnDo(y(t);x(t); t)

@ ln ym
� 0, m = 1; � � �;M .

Thus, the output growth weights, �m, satisfy the following restrictions:

�m � 0, for m = 1; � � �;M , and
MX
m=1

�m = 1. (9)

We now turn to the restrictions on the input growth weights, 'n. We know that
Do(y(t);x(t); t) is non-increasing in x (with an appropriate free disposal assumption on
x). Formally, we have

�@Do(y(t);x(t); t)

@xn
� 0, n = 1; � � �; N

which can be further written as

�@ lnDo(y(t);x(t); t)

@ lnxn
� 0; n = 1; � � �; N

since Do(y(t);x(t); t) and xn (n = 1; � � �; N) are non-negative. Thus, the input growth
weights, 'n, satisfy the following restriction:

'n � 0, n = 1; � � �; N . (10)

If the overall technology is a cone, so that we have constant returns to scale in produc-
tion, then it can be shown that Do(y(t);x(t); t) is homogeneous of degree minus one in the
components of x so that we have for all x >> 0N , y >> 0M , and � > 0:

Do(y(t); �x(t); t) = �
�1Do(y(t);x(t); t).
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Di¤erentiating both sides of the above equation with respect to � and setting � = 1 leads to
the following identity:

NX
n=1

@Do (y(t);x(t); t)

@xn
xn = �Do (y(t);x(t); t) = �1.

Thus, in the case of a constant returns to scale technology at time t, the input growth weights
will also satisfy the following, additional to (10), restriction:

NX
n=1

'n = 1. (11)

In the case of an increasing returns to scale technology, the input growth weights, 'n, will
sum to a number greater than one and in the case of a decreasing returns to scale technology,
they will sum to a number less than one.

3.3 The Special Case of Hicks Neutral Technical Change

Compared with the Solow (1957) Divisia TFPG index, which is obtained under the assump-
tion of Hicks neutral technical change, the Divisia technical change index, de�ned by (4)�(6),
is quite general in the sense that it is obtained without making a priori assumption about
the nature of technical change. Thus, it is worth examining whether the Divisia technical
change index reduces to the right answer when technical change happens to be Hicks neutral.
In particular, for the case of Hicks neutral technical change, the output distance function

would have the following representation for times t � t0:

Do (y(t);x(t); t) = Do

�
y

�(t)
;x(t); t0

�
; (12)

�(t0) = 1 (13)

where �(t) is a shift factor for the output distance function. Noting that the observed period
t0 output and input vectors, y(t0) and x(t0), are e¢ cient, the output distance function at
time t0 can be written as

Do

�
y(t0)

�(t0)
;x(t0); t0

�
= Do (y(t0);x(t0); t0) = 1. (14)

Now suppose the input vector in period t were x(t0). Using the period t technology, it can
be seen that �(t)y(t0), x(t0) will be on the e¢ cient frontier for period t. Thus, we will have:

Do (�(t)y(t0);x(t0); t) = Do

�
�(t)y(t0)

�(t)
;x(t0); t0

�
= 1
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by (14). Thus, if �(t) is a monotonic increasing function of t, we will have positive Hicks
neutral technical change over time.
We now determine what the general formula for technical change, (3), looks like at time

t0 when we have Hicks neutral technical change:

TC(t0) = �
@Do(y(t0);x(t0); t0)

@t

= �@Do(y(t0)=� (t0) ;x(t0); t0)

@t

= �
MX
m=1

@Do(y(t0)=� (t0) ;x(t0); t0)

@ym
ym (t0)

�
�d� (t0) =dt
[� (t0)]

2

�

=
MX
m=1

ym(t0)
@Do(y(t0);x(t0); t0)

@ym

d� (t0)

dt

= Do(y(t0);x(t0); t0)
d� (t0)

dt

=
d� (t0)

dt
(15)

where the third last equality is obtained by using (13), the second last equality by (7), and
the last equality by (2). Thus, our general measure of technical change picks up the right
answer when technical change happens to be Hicks neutral.

4 The Primal Divisia Technical Change Index under
Di¤erent Market Structures

As is well known in the literature, for the index numbers to provide meaningful estimates
of productivity or productivity growth, certain assumptions about the underlying market
structure (or behavior of producers) and production technology must be maintained. As
noted above, the conventional Jorgenson and Griliches (1967) dual Divisia TFPG index is
obtained under the assumption of perfect competition and constant returns to scale. The
three more general indexes, namely, the Caves and Christensen (1980) cost-elasticity-based
dual TFPG index, the Denny et al. (1981) and Fuss (1994) cost-elasticity-share-based dual
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TFPG index, and the Diewert and Fox (2008) markup-adjusted-revenue-share-based tech-
nical change index, are obtained assuming the presence of imperfect competition in output
markets. We note that, within the cost function framework, Balk (2009) derives a similar
Divisia index as that in Denny et al. (1981) and Fuss (1994). That index, however, like the
Denny et al. (1981) and Fuss (1994) indexes, is a dual one.
Di¤erent from the aforementioned Divisia indexes, the primal Divisia technical change

index, de�ned by (4)�(6), is obtained through total di¤erentiation of the output distance
function and without making any assumptions about market structure. Thus, it is very
interesting to examine the relationship between the primal Divisia technical change index
and the aforementioned indexes under di¤erent market structures. Speci�cally, in what
follows we consider three special cases. In the �rst case, we assume that both output and
input markets are perfectly competitive. In the second case, we assume that market power
is limited to output markets and that input markets are perfectly competitive. In the
third case, the assumption of perfectly competitive input markets is further relaxed. As we
shall see below, the primal technical change index is closely linked to the aforementioned
well-known indexes.

4.1 Perfect Competition

We �rst consider the simple case where both output and input markets are perfectly com-
petitive. As is well known, the assumption of perfect competition is not compatible with
increasing returns to scale at the �rm level, as marginal cost pricing leads in this case to
negative pro�ts. See, for example, Small (1999) and Hall (1988). Thus, here we follow
Solow (1957, p. 313) and Jorgenson and Griliches (1967, p. 253) and assume that the trans-
formation function (i.e., the output distance function in our particular case) is characterized
by constant returns to scale.
In order to simplify the notation, the argument t in outputs and inputs is dropped in

this section. We assume that producers solve the following competitive pro�t maximization
problem:

� = max
fy;xg

(
MX
m=1

pmym �
NX
m=1

wnxn : Do (y;x; t) = 1

)
(16)

where the output distance function is used to represent the technology constraint. For details
regarding the duality between the pro�t function and the output distance function under
the assumption of prefect competition, see Färe and Primont (1995), Färe and Grosskopf
(2000), and Chambers and Färe (1993).
The �rst-order conditions corresponding to outputs, ym, m = 1; � � �;M , are

pm = �
@Do (y;x; t)

@ym
, m = 1; � � �;M (17)
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where � is the Lagrange multiplier. Multiplying both sides of equation (17) with ym=Do (y;x; t)
and rearranging yields

pmym
Do (y;x; t)

= �
@ lnDo (y;x; t)

@ ln ym
; m = 1; � � �;M . (18)

Summing up the M equations in (18) yields

MX
i=1

piyi
Do (y;x; t)

= �

MX
i=1

@ lnDo (y;x; t)

@ ln yi
. (19)

Noting that
MX
i=1

@ lnDo (y;x; t)

@ ln yi
= 1

by the linear homogeneity of the output distance function in outputs [see (7)], we divide (18)
by (19) to obtain

@ lnDo (y;x; t)

@ ln ym
=
pmym
MP
i=1

piyi

, m = 1; � � �;M . (20)

Applying a similar procedure to the N inputs, we obtain

@ lnDo (y;x; t) =@ lnxn
NX
j=1

@ lnDo (y;x; t) =@ lnxj

=
wnxn
NX
j=1

wjxj

, n = 1; � � �; N . (21)

In the context of the output distance function, local returns to scale at time t, "(t), can be
formally de�ned following Caves, Christensen, and Diewert (1982, p. 1402):

"(t) = �
NX
n=1

@Do (y;x; t)

@xn
xn. (22)

Noting that the production technology is characterized by constant returns to scale [i.e.,
"(t) = 1] in this case, (21) can be further written as

�@ lnDo (y;x; t)

@ lnxn
=

wnxn
NX
j=1

wjxj

. (23)
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Combining (20) and (23), (4) can be further written as

TC =
MX
m=1

�m _ym �
NX
n=1

'n _xn

=

MX
m=1

pmym
MP
i=1

piyi

_ym �
NX
n=1

wnxn
NX
j=1

wjxj

_xn. (24)

According to (24), under the assumptions of perfect competition and constant returns to
scale, the primal Divisia technical change index is equal to a Divisia real output growth index
minus a Divisia real input growth index. Noting that the right hand side of (24) is just
the Jorgenson and Griliches (1967) dual Divisia TFPG index, (24) implies that the primal
Divisia technical change index and the Jorgenson and Griliches (1967) dual Divisia TFPG
index are dual to each other under the assumptions of perfect competition and constant
returns to scale.
With regards to the calculation of technical change, when all the output and input prices

and quantities are observed, the use of the Jorgenson and Griliches (1967) dual Divisia TFPG
index is more convenient, since it does not involve any econometric estimation. However,
when price information is unavailable or inaccurate, the estimation of the output distance
function is required in order to obtain the elasticities of the output distance function with
respect to outputs and inputs, needed for the calculation of the primal Divisia technical
change index.

4.2 Market Power in Output Markets

In the second case, we assume that market power is limited to output markets. This
assumption is more appealing than the assumption of perfect competition for the following
two reasons. First, imperfect competition is widely regarded to be an important feature
of the economy. See, for example, Diewert and Fox (2008), Hall (1988), Basu and Fernald
(1997), and Hulten (2009). Second, it is compatible with internal or �rm level increasing
returns to scale, which has been shown by recent studies to play a very important role in
explaining productivity growth in many industries. See, for example, Diewert and Fox
(2008) and Hall (1988).
In particular, we assume that the producers solve the Diewert and Fox (2008) monopo-

listic pro�t maximization problem

max
y

� =

(
MX
m=1

pm (ym) ym � C (y;w; t)
)

(25)
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where pm (ym) is the inverse demand function, and C (y;w; t) is obtained from the following
�rst-stage competitive cost-minimization problem

C (y;w; t) = min
x
fw0x: Do (y;x; t) = 1g . (26)

Discussion of two-stage pro�t-maximization problem can also be found in Diewert (1981b,
p. 29) and Chambers (1988, p. 121). The duality between the output distance function and
the cost function in (26) is discussed in Färe and Primont (1990) and Primont and Sawyer
(1993).
The �rst-order conditions corresponding to problem (25) are

pm (1� �m) =
@C (y;w; t)

@ym
, m = 1; � � �;M (27)

where

�m = �
@pm(ym)

@ym

ym
pm

� 0. (28)

Rearranging (27), we obtain

(1� �m) =
@C (y;w; t) =@ym

pm
(29)

where the term on the right hand side is the reciprocal of the markup for output m. Here,
markup is de�ned as the price of output over marginal cost (that is, p=[@C (y;w; t) =@y] in
the case of a single output), as is common in this literature � see, for example, Hall (1988).
Thus, according to (29), (1� �m) is an indirect measure of the markup for output m.
Applying the envelope theorem to (26) with respect to the mth output, we obtain:

@C (y;w; t)

@ym
= ��@Do (y;x; t)

@ym
(30)

where � is the Lagrange multiplier for the cost-minimization problem in (26). Substituting
(30) into (27) we obtain:

pm (1� �m) = ��
@Do (y;x; t)

@ym
, m = 1; � � �;M . (31)

Multiplying both sides of (31) by ym=Do (y;x; t) we obtain:

pm (1� �m) ym
Do (y;x; t)

= ��@ lnDo (y;x; t)

@ ln ym
, m = 1; � � �;M . (32)

14



Summing up the M equations in (32) we obtain:

MX
i=1

pi (1� �i) yi
Do (y;x; t)

= ��
MX
i=1

@ lnDo (y;x; t)

@ ln yi
. (33)

Noting that
PM

i=1 @ lnDo (y;x; t) =@ ln yi = 1, by the linear homogeneity of the output dis-
tance function in outputs, and dividing (32) by (33) yields:

pm (1� �m) ym
MP
i=1

pi (1� �i) yi
=
@ lnDo (y;x; t)

@ ln ym
, m = 1; � � �;M . (34)

Since (1� �m) is an indirect measure of the markup for outputm [see (29)], (34) implies that
the elasticity of the output distance function with respect to the mth output is equivalent to
a markup-adjusted revenue share of the mth output, which, as shown by Diewert and Fox
(2008), can be used for aggregating real output growth in the presence of market power in
output markets.
Applying a procedure, similar to that used in (31)�(34), to the cost minimization problem

in (26), we obtain

@ lnDo (y;x; t) =@ lnxn
NX
j=1

@ lnDo (y;x; t) =@ lnxj

=
wnxn
NX
j=1

wjxj

, n = 1; � � �; N (35)

which can be further written as

�@ lnDo (y;x; t)

@ lnxn
=

"
�

NX
j=1

@ lnDo (y;x; t)

@ lnxj

#
wnxn
NX
j=1

wjxj

or
'n = "(t)

wnxn
NX
j=1

wjxj

(36)

where the input growth weights, 'n (n = 1; ���; N), are de�ned by (6) and the local returns to
scale, "(t), by (22). According to (36), the input growth weight, 'n, is equal to the product

of the degree of returns to scale, "(t), and the input cost share, wnxn=
NX
j=1

wjxj.
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Combining (34) and (36), (4) yields:

TC =
MX
m=1

�m _ym �
NX
n=1

'n _xn

=
MX
m=1

pm (1� �m) ymPM
i=1 pi (1� �i) yi

_ym � "(t)
NX
n=1

wnxnPN
j=1wjxj

_xn. (37)

According to (37), in the presence of imperfect competition in the output markets, the primal
Divisia technical change index is equal to a markup-adjusted Divisia real output growth index
minus a Divisia real input growth index multiplied by the degree of returns to scale. Put it
di¤erently, if there are increasing returns to scale (i.e., " > 1) and if there is input growth,
then the output growth rate will be greater than can be explained by simply adding up input
growth and technical progress, due to the multiplication e¤ect of increasing returns to scale
on input growth.
The right-hand side of (37) is the markup-adjusted revenue-share based dual Divisia tech-

nical change index proposed by Diewert and Fox (2008), expressed in a discrete time Törn-
qvist form. To see this, let �m = pm (1� �m) ym=

PM
i=1 pi (1� �i) yi and �n = wnxn=

PN
j=1wjxj.

Let

lnQT
�
pt�1;pt;yt�1;yt

�
=
1

2

MX
m=1

�
�t�1m + �tm

� �
ln ytm � ln yt�1m

�
denote the dual Törnqvist index of output growth and

lnQT �
�
wt�1;wt;xt�1;xt

�
=
1

2

NX
n=1

�
�t�1n + �tn

� �
lnxtn � lnxt�1n

�
the dual Törnqvist index of input growth. In Diewert and Fox (2008), lnQT (pt�1;pt;yt�1;yt)
and lnQT � (wt�1;wt;xt�1;xt) are related to each other through

lnQT � = �e� + e�� lnQT (38)

where e� is a measure of exogenous rate of cost reduction and e� is the reciprocal of returns
to scale, i.e., e� = 1=". Multiplying both sides of (38) by " and rearranging yields3

TC = lnQT � "� lnQT �
3Within the cost function framework, technical change is the product of the dual rate of cost diminution

and the dual rate of returns to scale; i.e., TC = e� � ". See Feng and Serletis (2008) and Ohta (1974).
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which is just (37). That is, the primal Divisia technical change index and the Diewert and
Fox (2008) Divisia technical change index are dual to each other in the presence of imperfect
competition in output markets.
In addition to being dual to the Diewert and Fox (2008) markup-adjusted revenue-share

based Divisia technical change index, the primal Divisia technical change index is also dual
to the Denny et al. (1980) and Fuss (1994) cost-elasticity-share based TFPG index under the
assumption of constant returns to scale. This can be shown by using the same monopolistic
pro�t-maximization framework as set out above. In particular, multiplying both sides of
(30) by ym=Do (y;x) yields the following:

@C (y;w; t)

@ym

ym
Do (y;x; t)

= ��@ lnDo (y;x; t)

@ ln ym
, m = 1; � � �;M . (39)

Summing up the M equations in (39) we obtain:
MX
i=1

@C (y;w; t)

@yi

yi
Do (y;x; t)

= ��
MX
i=1

@ lnDo (y;x; t)

@ ln yi
. (40)

Dividing (39) by (40) yields:

ym@C (y;w; t) =@ymPM
i=1 yi@C (y;w; t) =@yi

=
@ lnDo (y;x; t)

@ ln ym
, m = 1; � � �;M . (41)

Dividing the numerator and denominator of the left-hand side of (41) by C (y;w; t) yields:

@ lnC (y;w; t) =@ ln ym
MP
i=1

@ lnC (y;w; t) =@ ln yi

=
@ lnDo (y;x; t)

@ ln ym
, m = 1; � � �;M (42)

where the term on the left-hand side is the Denny et al. (1981) and Fuss (1994) cost-elasticity
share, used for aggregating output growth in the presence of market power in output markets.
Under the assumption of constant returns to scale [i.e., "(t) = 1], (36) reduces to

'n =
wnxn
NX
j=1

wjxj

. (43)

Combining (42) and (43), (4) yields:

TC =

MX
m=1

�m _ym �
NX
n=1

'n _xn

=

MX
m=1

@ lnDo (y;x)

@ ln ym
_ym �

NX
n=1

wnxnPN
j=1wjxj

_xn (44)
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where the right hand side is just the Denny et al. (1981) and Fuss (1994) cost-elasticity-
share based TFPG index. That is, under the assumptions of imperfect competition in
output markets and constant returns to scale, the primal Divisia technical change index is
dual to the Denny et al. (1981) and Fuss (1994) cost-elasticity-share based TFPG index.
The �nding that our primal Divisia TFPG index is dual both to the Diewert and Fox

(2008) markup-adjusted revenue-share based Divisia technical change index and to the Denny
et al. (1981) and Fuss (1994) cost-elasticity-share based Divisia TFPG index is not surprising
in that the latter two are actually equal to each other under constant returns to scale. This
can be shown again by using the same monopolistic pro�t-maximization framework as set
out above. In particular, multiplying both sides of (27) by ym=C (y;w; t) and rearranging
yields:

pm (1� �m) ym
C (y;w; t)

=
@ lnC (y;w; t)

@ ln ym
, m = 1; � � �;M . (45)

Summing up the M equations in (45) yields:

MX
i=1

pi (1� �i) yi
C (y;w; t)

=
MX
i=1

@ lnC (y;w; t)

@ ln yi
. (46)

Dividing (45) by (46) yields:

pm (1� �m) ym
MX
i=1

pi (1� �i) yi

=
@ lnC (y;w; t) =@ ln ym
MX
i=1

@ lnC (y;w; t) =@ ln yi

, m = 1; � � �;M (47)

where the term on the left-hand side is the Diewert and Fox (2008) markup-adjusted revenue
share for output m and the one on the right-hand side is the Denny et al. (1981) and Fuss
(1994) cost-elasticity share for output m. Noting that the product of the Divisia index of
input growth and the degree of returns to scale in (36) reduces to the cost share for input n in
(43), equation (47) implies that the Diewert and Fox (2008) markup-adjusted revenue-share
based technical change index and the Denny et al. (1981) and Fuss (1994) cost-elasticity-
share based Divisia TFPG index are equal to each other under constant returns to scale.
With regards to the calculation of technical change, when all the output and input

prices and quantities are observed, both the primal Divisia technical change index and the
Diewert and Fox (2008) dual technical change index can be used. In the special case of
constant returns to scale, the Denny et al. (1981) and Fuss (1994) cost-elasticity-share
based TFPG index can also be used. However, when price information is unavailable or
inaccurate, only the primal Divisia technical change index is appropriate. It should be
noted here that all three indexes are parametric. In particular, the use of the primal
Divisia technical change index proposed in this study involves estimating an output distance
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function in order to obtain the elasticities of the output distance function with respect to
outputs and inputs; the use of the Diewert and Fox (2008) markup-adjusted revenue-share
based technical change index entails regressing a Törnqvist output index on a Törnqvist
input index in order to calculate markups; and the use of the Denny et al. (1981) and Fuss
(1994) cost-elasticity-share based TFPG index requires estimating a cost function in order
to obtain cost elasticities. This is in contrast with the conventional Jorgenson and Griliches
(1967) Divisia TFPG index, the use of which does not involves estimating any technology
or economic function, essentially being nonparametric.

4.3 Market Power in Both Output and Input Markets

We now turn to the third case where market power is present in both output and input
markets. Like that of monopolistic power, the assumption of monopsonistic power is also
compatible with increasing returns to scale. See Small (1999) for a detailed discussion. In
particular, we assume that the producers solve the following pro�t-maximization problem:

max
fy;xg

� =

(
MX
m=1

pm (ym) ym �
NX
n=1

wn (xn)xn, Do (y;x; t) = 1

)

where pm (ym) is the inverse demand function for outputm, as mentioned earlier, and wn (xn)
is the inverse supply function for input n.
Using a similar mathematical derivation as above, the primal Divisia TFPG index in this

case can be shown to be:

TC =
MX
m=1

�m _ym �
NX
n=1

'n _xn

=
MX
m=1

pm (1� �m) ymPM
i=1 pi (1� �i) yi

_ym � "(t)
NX
n=1

wn (1� �n)xnPN
j=1wj (1� �j)xj

_xn (48)

where �m and "(t) are de�ned as above and

�n = �
@w(xn)

@xn

xn
wn

� 0

which is an indirect measure of monopsonistic markdown. According to (48), when market
power is present in both output and input markets, the primal Divisia technical change
index is equal to a markup adjusted output growth index minus a markdown adjusted input
growth index multiplied by the degree of returns to scale, "(t). The right-hand side of
(48) is a generalization of the Diewert and Fox (2008) markup-adjusted revenue-share based
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Divisia technical change index, in the sense that imperfect competition in input markets is
also allowed for by replacing input prices, wn (n = 1; � � �; N), by markdown-adjusted input
prices, wn (1� �n) (n = 1; � � �; N).
In summary, the duality or equality between the primal Divisia technical change index

and the aforementioned well known indexes [i.e., the Jorgenson and Griliches (1967) dual
Divisia TFPG index, the Diewert and Fox (2008) markup-adjusted revenue-share (marginal
revenue shares) based dual Divisia technical change index, and the Denny et al. (1981) and
Fuss (1994) cost-elasticity-share based dual Divisia TFPG index] establish the validity of
the former index under di¤erent market structures.

5 Axiomatic Properties of the Primal Divisia Technical
Change Index

In this section we examine whether the primal Divisia technical change index satis�es certain
desirable properties. In other words, in addition to justifying the use of the primal Divisia
technical change index under di¤erent market structures from an economic point of view,
we further examine its validity from an axiomatic point of view. Noting that under constant
returns to scale the primal Divisia technical change index reduces to a Divisia total factor
productivity growth (TFPG) index [see (11), (24), (37) and (48)], the desirable properties
that a TFPG index should satisfy can thus also be used to assess the primal Divisia technical
change index.
There is a general consensus among researchers that a TFPG index should satisfy �ve de-

sirable properties: identity, commensurability (dimensional invariance), monotonicity, time
reversal, and proportionality. See, for example, Diewert (1992), Diewert and Nakamura
(2003), and Orea (2002). The identity property states that if outputs and inputs do not
change, then the TFPG/technical change index should remain unchanged. It is apparent
from (4) that the primal Divisia technical change index satis�es this property, since both _ym
and _xn are zero when the outputs and inputs do not change.
The commensurability property requires that the TFPG/technical change index be in-

dependent of the units of measurement of quantities (prices). The primal Divisia technical
change index satis�es this property by construction. More speci�cally, the distance elas-
ticities and output/input growth rates in (4) are expressed in elasticity or semi-elasticity
forms, thus rendering the primal Divisia technical change index independent of the units of
measurement of the quantities.
The monotonicity property requires that the TFPG/technical change index be non-

decreasing in the output vector and non-increasing in the input vector. An examination of
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(4) reveals that the monotonicity property is satis�ed if:

@ lnDo(y(t);x(t); t)

@ ln ym(t)
� 0;

@ lnD(y(t);x(t); t)

@ lnxn(t)
� 0

which are the monotonicity conditions of the output distance function, since outputs, inputs,
and Do(y(t);x(t); t) are all non-negative.
The time reversal property states that, for two periods 0 and 1, T (1)=T (0) = T (0)=T (1),

where T is a cumulative index obtained by integrating the TFPG/technical change index.4

That is, if the data for periods 0 and 1 are interchanged, then the resulting cumulative index
should equal the reciprocal of the original cumulative index. For the case of the primal
Divisia technical change index, its corresponding cumulative index for time 1 relative to
time 0 can be obtained by integrating (4) as follows:

T (1)

T (0)
=
exp

nR 1
0

hPM
m=1 �m _ym

i
dt
o

exp
nR 1

0

hPN
n=1 'n _xn

i
dt
o . (49)

Similarly, its corresponding cumulative index for time 0 relative to time 1 can be written as:

T (0)

T (1)
=
exp

nR 0
1

hPM
m=1 �m _ym

i
dt
o

exp
nR 0

1

hPN
n=1 'n _xn

i
dt
o . (50)

The time reversal property then requires the following:

T (1)

T (0)
=
T (0)

T (1)
. (51)

It should be noted here that the interchange in data between periods 0 and 1 only reverses
the direction of the curve for the line integral without changing the curve itself. See Balk
(2005). From a fundamental property of line integrals, the opposite direction rule, we have:Z 1

0

"
MX
m=1

�m _ym

#
dt = �

Z 0

1

"
MX
m=1

�m _ym

#
dt (52)

4In the case of a TFPG index, the cumulative index is a cumulative index of total factor productivity.
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and Z 1

0

"
NX
n=1

'n _xn

#
dt = �

Z 0

1

"
NX
n=1

'n _xn

#
dt. (53)

Combining (49), (50), (52), and (53), it can be shown that (51) holds.
Finally, the proportionality property states that whenever (x(1);y(1)) = (#x(0); �y(0)),

where time 0 is treated as the base period, the cumulative index, T , for time 1 relative to
time 0 should be equal to �=#. For the case of the primal Divisia technical change index,
the proportionality property requires that its corresponding cumulative index satis�es the
following:

T (1)

T (0)
=
�

#
, if (x(1);y(1)) = (#x(0); �y(0)). (54)

As we shall see in the next section, the proportionality property holds if the technology is
constant returns to scale (i.e. when the primal Divisia technical change index reduces to a
TFPG index) and the primal Divisia technical change index is path independent [i.e, the
index depends only on the beginning points, (x(0) and y(0)), and the end points, (x(1)
and y(1)) of the line integrals in (49)]. However, the primal Divisia TFP index is path
independent only under certain restrictive conditions.

6 Path Independence of the Primal Divisia Technical
Change Index

Path independence has been a very important issue in the literature regarding the Divisia
index. Its necessary and su¢ cient conditions were systematically explored by Hulten (1973)
and further discussed in many later works. For example, Balk (2005) establishes the neces-
sary and su¢ cient conditions for path independence of the Divisia price index in the consumer
context. Since the primal Divisia technical change index is di¤erent from the conventional
Divisia quantity and price indexes examined in previous studies, here we formally derive the
necessary and su¢ cient conditions for path independence. It should be noted here that
path independence of the primal Divisia technical change index requires that both the line
integral for inputs Z 1

0

"
NX
n=1

'n _xn

#
dt (55)

and the line integral for outputs Z 1

0

"
MX
m=1

�m _ym

#
dt (56)
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be independent of their respective curves for integration. In this section use the output
distance function de�ned in (2) and drop the subscript t for the output distance function.
The necessary and su¢ cient conditions for path independence of the two line integrals in

(55) and (56) (or equivalently, the primal Divisia technical change index) can be obtained
by modifying Corollary 1 of Hulten (1973).5

Corollary.

(i) The output distance function, Do (y(t);x(t)), is weakly separable into a function of the
M outputs, y1(t); ���; yM(t), and a function of the N inputs, x1(t); ���; xN(t). Formally,
there exist continuously di¤erentiable functions g, f , and h such that

Do (y1(t); � � �; yM(t); x1(t); � � �; xN(t)) = g
�
f (y1(t); � � �; yM(t)) ; h (x1(t); � � �; xN(t))

�

= g
�
f (y(t)) ; h (x(t))

�
(57)

(ii) f is homogeneous of degree one in ym (m = 1; � � �;M) and h is homogeneous of degree
" (t) in xn (n = 1; � � �; N), where " (t) is the local returns to scale at time t de�ned by
(22).

Proof.
Su¢ ciency. We will concentrate our attention on the proof that conditions (i) and (ii)

imply path independence of the line integral for inputs de�ned in (55). The proof that
conditions (i) and (ii) imply path independence of the line integral for outputs de�ned in
(56) is analogous.
To prove that conditions (i) and (ii) imply path independence of the line integral for

inputs, we �rst show that 'n = @ lnh (x(t)) =@ lnxn(t). More speci�cally, condition (i)

5It should be noted that condition (iii) in Hulten (1973), the price normal uniqueness condition, is
redundant for the case of the primal Divisia technical change index and thus it is ignored here. This is
because market prices have been replaced with the elasticities of outputs and inputs and thus condition (iii)
in Hulten (1973) always holds for the case of the primal Divisia technical change index.
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implies that

'n = �
@ lnDo (y(t);x(t))

@ lnxn(t)

= �@Do (y(t);x(t))

@xn(t)

xn(t)

Do (y(t);x(t))

= �@Do (y(t);x(t))

@h(x(t))

@h(x(t))

@xn(t)

xn(t)

Do (y(t);x(t))

= �@Do (y(t);x(t))

@h(x(t))

@h(x(t))

@xn(t)

xn(t)

Do (y(t);x(t))

h(x(t))

h(x(t))

= �
�
@h(x(t))

@xn(t)

xn(t)

h(x(t))

� �
@Do (y(t);x(t))

@h(x(t))

h(x(t))

Do (y(t);x(t))

�
. (58)

On the other hand, the homogeneity of degree " (t) of h(x(t)) in inputs [that is, the
second part of condition (ii)] implies that the output distance function is homogenous of
degree minus one in h(x(t)). This can be shown as follows. Multiplying both sides of (22)
by Do (y(t);x(t)), we get

"(t)Do (y(t);x(t)) = �
NX
n=1

@Do (y(t);x(t))

@xn
xn (59)

which implies that Do (y(t);x(t)) is homogenous of degree �"(t) in inputs. This in turn
implies that

g (f (y(t)) ; h (�x(t))) = ��"g (f (y(t)) ; h (x(t))) (60)

where � is a scalar. The homogeneity of degree " (t) of h(x(t)) in inputs implies that

g (f (y(t)) ; h (�x(t))) = g (f (y(t)) ; �"h (x(t))) . (61)

Equations (60) and (61) imply thatDo (y1(t); � � �; yM(t); x1(t); � � �; xN(t)) = g (f (y(t)) ; h (x(t)))
is homogenous of degree minus one in h(x(t)). Thus, we have

@Do (y(t);x(t))

@h

h(x(t))

Do (y(t);x(t))
=
@Do (y(t);x(t))

@h
h(x(t)) = �1 (62)

where the �rst equality is obtained by noting that Do (y(t);x(t)) = 1. Substituting (62) into
(58) yields

'n =
@h(x(t))

@xn(t)

xn(t)

h(x(t))
=
@ lnh (x(t))

@ lnxn(t)
(63)
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according to which 'n can be expressed in terms of the elasticities of the function h with
respect to inputs.
With (63) in mind, the line integral for outputs in (55) can be written asZ 1

0

"
NX
n=1

'n _xn

#
dt =

Z 1

0

"
NX
n=1

@ lnh (x(t))

@ lnxn(t)

d lnxn(t)

dt

#
dt

=

Z 1

0

"
NX
n=1

d lnh (x(t))

dt

#
dt

= lnh (x(1))� lnh (x(0)) (64)

according to which the line integral in (55) is path independent in that it depends only on
the beginning point [i.e., x(0)] and the end point [i.e., x(1)] of the curve for integration. It
also implies that lnh (x(t)) is an eligible potential function for this line integral.
In a similar manner, we can show that the line integral in (56) is also path independent in

that it depends only on the beginning point, y(0), and the end point, y(1), of the curve for
integration, and that ln f (y(t)) is an eligible potential function for the latter line integral.
This pair of path independence thus implies that the primal Divisia technical change index
is path independent.
Necessity. We will show that path independence implies conditions (i) and (ii). We �rst

show that path independence implies condition (i). As already noted, path independence
of the primal Divisia technical change index implies that both the line integral for outputs
and that for inputs are path independent. With this in mind, condition (i) can then be
established by contradiction, as in Hulten (1973). To see this, suppose that the output
distance function is not weakly separable in the manner implied by (57). Then either the
output distance function is not separable for any partition of the M + N variables, or it is
weakly separable for a di¤erent partition of the variables, say, (K;M+N�K). In the former
case, there is clearly no potential function de�ned on RN for the line integral for inputs (or
no potential function de�ned on RM for the line integral for outputs); hence the line integral
for inputs (or that for outputs) is path dependent, by Hulten�s (1973) Potential Function
Theorem. In the latter case, there is still no potential function on RN for inputs (or RM for
outputs), although there are two potential functions, with one de�ned on RK and the other
de�ned on RM+N�K . Therefore, the line integral for inputs (or that for outputs) is again
path dependent. Thus, by contradiction, the output distance function is weakly separable
in the manner implied by (57).
We now turn to show that path independence of the primal Divisia technical change

index implies condition (ii). Again, we will concentrate our attention on the proof that
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path independence of the line integral in (55) implies that h (x(t)) is homogenous of degree
" (t) in inputs. In particular, the path independence of the line integral in (55) implies
that there exists a potential function, denoted by � (x(t)), for this line integral. De�ne
h (x(t)) = exp (� (x(t))). It can be shown that

�n (x(t)) =
@ lnh (x(t))

@xn(t)
=
hn (x(t))

h (x(t))
(65)

where the subscript n for � (x(t)) indicates the partial derivative with respect to xn, that
is, �n (x(t)) = @� (x(t)) =@xn(t). By Hulten�s (1973) Potential Function Theorem, we can
verify that

�n (x(t)) = �
@Do (y(t);x(t))

@xn(t)
. (66)

Combining (65) and (66) yields:

hn (x(t))

h (x(t))
= �@Do (y(t);x(t))

@xn(t)
. (67)

Multiplying both sides of (67) by xn, and summing over N gives

NX
n=1

hn (x(t))xn =

"
�

NX
n=1

@Do (y(t);x(t))

@xn(t)
xn(t)

#
h (x(t))

= "(t) � h (x(t)) (68)

where the last equality is obtained by using the de�nition of the local returns to scale in (22).
By Euler�s homogeneous function theorem, (68) implies that h (x(t)) is positive homogeneous
of degree " (t) in inputs. In a similar manner, we can show that path independence of the
primal Divisia technical change index implies that f (y(t)) is linearly homogenous in outputs,
that is

MX
m=1

fm (y(t)) ym = f (y(t)) (69)

where the subscriptm for f (y(t)) indicates the partial derivative with respect to ym. There-
fore, (68) and (69) together establish condition (ii).
Conditions (i) and (ii) can be understood at a more intuitive level. In particular, the

input and output separability condition in (i) guarantees the existence of the output-distance-
function based input and output indexes. The linear homogeneity of f (y(t)) in outputs
guarantees that if all the outputs change proportionally, the output index changes by the
same factor of proportionality, and the homogeneity of degree "(t) of h (x(t)) in inputs
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ensures that if all the inputs change proportionally by a factor # the input index changes by
a factor #". Intuitively, the homogeneity property of h means that if there are increasing
returns to scale (i.e. " > 1) and if there is input growth, then the output growth rate will
be greater than can be explained by simply adding up input growth and technical progress,
due to the multiplication e¤ect of increasing returns to scale on input growth.
Having proved that conditions (i) and (ii) are the necessary and su¢ cient conditions

for path independence, we now turn to show that the proportionality property discussed in
Section 5 holds if the primal Divisia technical change index is path dependent and " = 1.
Noting that lnh (x(t)) and ln f (y(t)) are the potential functions for

R 1
0

hPN
n=1 'n _xn

i
dt andR 1

0

hPM
m=1 �m _ym

i
dt, respectively (see above), the ratio of T (1) to T (0) can be written as

follows:

T (1)

T (0)
=
exp

nR 1
0

hPM
m=1 �m _ym

i
dt
o

exp
nR 1

0

hPN
n=1 'n _xn

i
dt
o

=
exp fln f (y(1))� ln f (y(0))g
exp flnh (x(1))� lnh (x(0))g =

f (y(1)) =f (y(0))

h (x(1)) =h (x(0))
. (70)

When (x(1);y(1)) = (#x(0); �y(0)), (70) can be further written as:

T (1)

T (0)
=
f (�y(0)) =f (y(0))

h (#x(0)) =h (x(0))
=
�f (y(0)) =f (y(0))

#"h (x(0)) =h (x(0))
=
�

#"
(71)

where the second last equality is obtained by using the homogeneity properties of f (y(t))
and h (x(t)), stated in condition (ii). According to the de�nition in (54), (71) shows that
the proportionality property holds when the primal Divisia technical change index is path
independent and " = 1 (i.e. constant returns to scale).
It should be noted here, however, that both conditions (i) and (ii) are very restrictive.

Speci�cally, the separability condition in (i) implies that the marginal rate of transformation
between any two outputs is independent of all inputs and that the marginal rate of technical
substitution between any two inputs is also independent of all outputs. See, for example,
Chambers (1988). The linear homogeneity of f (y(t)) in outputs and the homogeneity of
degree " of h in inputs in condition (ii) mean that additional structure must be imposed on
the output distance function in order to yield path independence for the case of the primal
Divisia technical change index.
In summary, the primal Divisia technical change index satis�es the properties of identity,

commensurability, monotonicity, and time reversal; and also satis�es the property of propor-
tionality if the primal Divisia TFP index is path independent and the degree of returns to
scale is one. Path independence of the primal Divisia TFP index in turn requires separability
between inputs and outputs and homogeneity of subaggregator functions.
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7 Conclusion

The previous Divisia-type TFPG or technical change indexes have an apparent practical
problem in that it requires information on both output and input prices, which is unavailable
or distorted in many situations. In those situations it is desirable to use a primal Divisia
TFPG or technical change index which requires only quantity information. To this end, in
this paper we formally derive the distance-elasticity-based primal Divisia technical change
index by di¤erentiating the output distance function totally with respect to a time trend,
and show the validity of this index from both economic and axiomatic points of view.
In particular, we show the validity of this primal Divisia technical change index under

three di¤erent market structures. In the �rst case, where both the output and input mar-
kets are assumed to be perfectly competitive, we exploit the duality between the output
distance function and the pro�t function and show that this index is dual to the Jorgenson
and Griliches (1967) dual Divisia TFPG index. In the second case where market power is
limited to output markets only, we show that the primal Divisia technical change index is
dual to the Diewert and Fox (2008) markup-adjusted revenue-share based technical change
index and also dual to the Denny et al. (1981) and Fuss (1994) cost-elasticity-share based
TFPG index under constant returns to scale. We do so, by solving the Diewert and Fox
(2008) monopolistic pro�t-maximization problem. In the third case where market power is
present in both output and input markets, we show that the primal Divisia technical change
index is dual to a markup-and-markdown adjusted Divisia technical change index, by solv-
ing the monopolistic-monopsonistic pro�t-maximization problem subject to the technology
constraint represented by the output distance function.
We �nally show that the primal Divisia technical change index satis�es the properties of

identity, commensurability, monotonicity, and time reversal. It also satis�es the property
of proportionality under the assumptions of constant returns to scale and path indepen-
dence, where the latter assumption requires separability between inputs and outputs and
homogeneity of subaggregator functions.
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