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Abstract 

 

We derive general formulae for the asymptotic distribution of the 

LIML estimator for the coefficients of both endogenous and 

exogenous variables in a partially identified linear structural equation. 

We extend previous results of Phillips (1989) and Choi and Phillips 

(1992) where the focus was on IV estimators. We show that partial 

failure of identification affects the LIML in that its moments do not 

exist even asymptotically.   
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1. Introduction 

The problem of identification and possible failures of identification has been the focus 

of much econometric research in the last few years. The fact that some of the 

parameters of a model may be only weakly identified (e.g. Staiger and Stock (1997)) 

or partially unidentified (e.g. Phillips (1989) and Choi and Phillips (1992)) has been 

shown to be a common problem faced in applied econometrics, and has raised a lot of 

inferential issues for theorists.  

The two-stage-least-squares (TSLS) estimator of the coefficients of the 

endogenous and the exogenous variables has been fully investigated both in the 

asymptotic and in the finite sample literature. The exact distribution theory can be 

found in the work of Phillips (1983), Phillips (1984a), Phillips (1989), Hillier (1985), 

Choi and Phillips (1992) and Skeels (1995) for the general case of  endogenous 

variables. The TSLS estimator of identified structural parameters is consistent and 

asymptotically normal (Fujikoshi, Morimune, Kunitomo and Taniguchi (1982)), but 

consistency fails when the structural equation is totally unidentified (Phillips (1983) 

and Phillips (1989)), partially identified (Phillips (1989) and Choi and Phillips 

(1992)), and weakly identified (Staiger and Stock (1997)). The TSLS estimator is 

inconsistent when the number of instruments increases with the sample size (Bekker 

(1994)), even if the parameters are identified.  

1n+

Limited information maximum likelihood (LIML) has also been extensively 

studied. The exact distribution of the LIML estimator for the coefficients of the  

endogenous variables included as regressors in a linear structural equation is given by 

Phillips (1984b), Phillips (1985) and Hillier and Skeels (1993). This is expressed in 

terms of infinite series of invariant matrix polynomials, but simplifies to a 

multivariate Cauchy distribution if the coefficients of the endogenous variables are 

totally unidentified. Similar simplifications can potentially be obtained for partially 

identified models, but this task is extremely complicated. Higher order expansions for 

the identified case are given by Fujikoshi, Morimune, Kunitomo and Taniguchi 

(1982). 

n

One important characteristic of the exact distribution of the LIML estimator is 

that it has no integer moments in finite samples (e.g. Phillips (1984b), Phillips (1985), 

Hillier and Skeels (1993) and references therein). This property carries on 

asymptotically when the structural equation is totally unidentified because, in this 
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case, the exact distribution is invariant to the sample size. However, if the model is 

identified, then the LIML estimator has an asymptotic normal distribution that it 

approaches more quickly than the TSLS estimator (see Anderson, Kunitomo and 

Sawa (1982) and Fujikoshi, Morimune, Kunitomo and Taniguchi (1982) for further 

discussion on higher order expansions for the LIML estimator).  

The LIML estimator is asymptotically equivalent to the TSLS estimator if the 

structural equation is identified, but this is not the case if the instruments are weak 

(Staiger and Stock (1997)). Then, the LIML estimator is inconsistent and has a non-

standard asymptotic distribution. Chao and Swanson (2005) and Han and Phillips 

(2005) have shown that the LIML estimator is consistent when the number of, 

respectively, weak instruments and weak moment conditions increases with the 

sample size.  

The existing literature is uninformative about the properties of LIML in 

partially identified linear structural equations, even though it is very difficult to 

distinguish between weak and irrelevant instruments in practice. The aim of our paper 

is to fill this gap and derive the asymptotic distribution of the LIML estimator for the 

coefficients of both endogenous and exogenous variables in a partially identified 

linear structural equation. We study the similarities and the differences between the 

distributions of the LIML and the TSLS estimators when identification partially fails.  

For the sake of simplicity, and with no loss of generality, we consider a linear 

structural equation where the canonical transformations described in Phillips (1983) 

and the rotations of coordinates in the space of both the endogenous and the 

exogenous variables of Phillips (1989) and Choi and Phillips (1992) have been carried 

out. This allows us to partition the vector of coefficients (for both endogenous and 

exogenous variables) in two sub-vectors containing respectively the identified and the 

unidentified parameters. We obtain an approximation for the LIML estimator for both 

sub-vectors of parameters, and use it to study the asymptotic properties of LIML. We 

find that: (i) the LIML estimators for the identified coefficients of both endogenous 

and exogenous variables are consistent and have covariance matrix mixed normal 

limiting distributions; (ii) they have asymptotic normal distributions conditional on 

the LIML estimators of the coefficients of the unidentified endogenous variables; (iii) 

the estimators for the unidentified coefficients converge in law to non-degenerate 

distributions proportional to the multivariate Cauchy, and have no finite integer 

moments.  
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The last result implies that without, canonical transformations and rotations of 

coordinates, the LIML estimator does not have integer moments even asymptotically 

when the parameters are only partially identified. This unexpected result suggests that 

identification failures affect the LIML estimator more than the TSLS estimator. It also 

indicates that using asymptotic mean-square-error type measures to choose the 

instruments may be inadequate when one or more of the instruments could be 

irrelevant or could be close to being irrelevant. 

The structure of the paper is as follows. Section 2 specifies the model and 

some preliminary results. Section 3 gives the asymptotic distribution for the LIML 

estimator of the identified coefficients of both endogenous and exogenous variables. 

Section 4 discusses the “no moment” problem in weakly identified models and 

Section 5 concludes.  

 

2. The model and preliminary results 

We consider a structural equation  

(1) 
( ) ( ) ( ) ( ) ( ) ( )

( )

( )

11

1 1 2 2 2

12

1
1

1 1 2 2 1
1 1 1 1 2

1

k

T T n n T n n k
k

y Y Y Z u
γ

β β
γ

∗⎛ ⎞
⎜ ⎟
⎜ ⎟×∗ ∗ ⎜ ⎟
⎜ ⎟

∗⎜ ⎟× × × × × ×
⎜ ⎟⎜ ⎟×⎝ ⎠

= + + + ,

2 2

 

with corresponding reduced form  

(2) ,  ( )
( )

( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( )

( )11 11 1 11 2

21 2 2 1 2 2

12 12 1 12 2

1 11 22
1

1 2 1 2 1 2 1 21
2 21 22

1

k k n k n

kT k T k k n k n
k k n k n

y Y Y Z Z v V V
φ

π
φ

⎛ ⎞
⎜ ⎟ ⎛ ⎞⎜ ⎟× × × ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟×⎜ ⎟⎜ ⎟× × × ×⎝ ⎠⎜ ⎟× × ×⎝ ⎠

Φ Φ
, , = + , Π , Π + , ,

Φ Φ

where  and . The matrices 1 11 1k k k= + 1 2n n n k+ = ≤ 1Z  and 2Z  contain 

observations on the exogenous variables, and ,  and  denote matrices of 

endogenous variables. The dimensions of vectors and matrices are reported in square 

brackets the first time they are used, unless they are obvious from the context.  

y 1Y 2Y

We assume: 

 

Assumption 1. (Identification) The following restrictions are satisfied: 

(a) the model specified by equations (1) and (2) is in canonical form (e.g. Phillips 

(1983)) and partially identified (e.g. Phillips (1989) and Choi and Phillips (1992)) in 

the sense that  and ; 21 0Φ = 1 0Π =
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(b) the compatibility conditions 

(1) 2 2π β ∗= Π  and 1 1 2 2u v V Vβ β= − −  and  

(2) 1 1 11 1 12 2γ φ β∗ ∗= −Φ −Φ 2 2 22 2β ∗ , γ ∗ φ β ∗= −Φ  ; 

hold; 

 (c) the rank conditions  

(1) ( )2rank nΠ = 2  and  

(2) ( ) 11 12
22 12

220
rank k rank

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

Φ Φ
Φ = =

Φ
 

hold. 

 

Assumption 2 (Moment conditions)  

(a) ( ) ( )1
1 2 1 2 1' P

nT v V V v V V I−
+, , , , → Ω = ; 

(b) ( ) ( )
1 2

1
1 2 1 2' P

k kT Z Z Z Z Q I−
+, , → = ; 

(c) ( ) ( )1
1 2 1 2' 0PT Z Z v V V− , , , → ; 

(d) ( ) ( ) ( )1/ 2
1 2 1 2' 0DT Z Z v V V N Q− , , , → , ⊗Ω . 

 

 Assumption 1(a) implies that the rotations of coordinates in the space of 

endogenous and exogenous variables have already been carried out. We follow 

Phillips (1989) and Choi and Phillips (1992) and assume that the model is in 

canonical form. By so doing we simplify the analysis without compromising the 

generality of our results. The asymptotic distribution for the LIML estimator of the 

parameters of a structural equation that is not in canonical form can be easily obtained 

from our results by linear transformations (see Phillips (1983) for details).  

Assumptions 1(b) and 1(c) make the reduced form (2) compatible with the structural 

equation (1). These restrictions are known as  over-identifying restrictions (e.g. Byron 

(1974) and Hausman (1983)), or  identification conditions (e.g. Phillips (1983)). 

Assumptions 1(b) and 1(c) imply that the parameters 2β
∗  and 2γ

∗  are identified and 

can be written uniquely in terms of the reduced form parameters, whereas the 

parameters 1β
∗  and 1γ

∗  are unidentified.  

 Assumption 2 is a set of standard moment conditions expressed in the matrix 
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notation of Muirhead (1982), and holds in a large variety of situations. In 

Assumptions 2(a) and 2(b) we have set 1nI +Ω =  and 
1 2k kQ I +=  since, following 

Phillips (1989) and Choi and Phillips (1992), we have already assumed that the 

structural parameters are in canonical form. 

 Let  

(3) ( ) ( )
11

1 2

1 2 2 2 1 22 '' ZZ Z Z M y Y YZ Mπ
− /⎛ ⎞

⎜ ⎟
⎝ ⎠

,Π ,Π = , ,  

(4) ( ) ( ) ( )1
1 2 1 1 21 1

ˆ ˆ ˆ '' Z y Y YZ Zφ −,Φ ,Φ = , ,  

and  

(5) ( ) ( ) ( )
1 21 2 1 2' Z ZS y Y Y M y Y Y,= , , , , , 

where  and ( ) 1

ZP Z Z Z Z
−′= ′

Z T ZM I P= −  for any T p×  full column rank matrix Z . 

Then, the LIML estimator of ( ) , 1 2' ' ' ( )1 2
ˆ ˆ' ' 'β β, , minimizes the ratio  β β∗ ∗,

(6) ( ) ( )1 2 1 2
ˆ ˆ ˆ ˆν δβ β β β, / , , 

where  

 ( ) ( ) ( )1 2 1 21 2 1 1

2 2

1 1
ˆ ˆ ˆ ˆ' '

ˆ ˆ
ν π πβ β β β

β β

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

, = − ,Π ,Π ,Π ,Π −⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

 

and  

 ( )1 2 1 1

2 2

1 1
ˆ ˆ ˆ ˆ'

ˆ ˆ
Sδ β β β β

β β

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

, = − −⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

. 

 

We can show that:  

 

Theorem 1. If Assumptions 1 and 2 hold, the estimator of the unidentified 

parameters, 
1β̂ , is  where 1

1 21β̂
−= −Δ Δ ( )1 2 ' 'Δ = Δ ,Δ  minimizes 

(7) 
( ) ( )

21 1

1 1
11 2 22 21 22 22 21

' '

' '

M

S A S S S A S S

π π
Π

⎛ ⎛ ⎞ ⎛− −
⎜ ⎟⎜ ⎟ ⎜⎜ ⎟. ⎝ ⎠ ⎝⎝ ⎠

Δ ,Π ,Π Δ

Δ + − − ⎞⎞
⎟
⎠
Δ

,  

where  has been partitioned as S
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( )

( ) (

1 1

2 1 2 2

11 21
1 1

21 22
1

'
n n

n n n n

S S
S

S S

⎛ ⎞
⎜ ⎟
⎜ ⎟+ × +
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟× + ×⎝ ⎠

=

)

and . The estimator of the identified parameters, 1
11 2 11 21 22 21'S S S S S−
. = − 2β̂ , is 

(8) ( )2
1

1
ˆ 1ˆ PA oβ

β
⎛ ⎞

= + ,⎜ ⎟−⎝ ⎠
 

where 

(9) ( ) ( )1

2 2 2 1' 'A π
−

= Π Π Π ,Π . 

 

The intuition behind Theorem 1 is as follows. Since , we 

have 

1
1

P
nT S I−
+→ Ω =

 ( )1
1 2 1 1

2 2

1 1
ˆ ˆ ˆ ˆ'

ˆ ˆ

PT δ β β β β
β β

−

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

, → − Ω −⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

.

.

 

We can write the numerator of (6) as  

(10) 
( ) ( ) ( )

21 11 2
1 1

2 2 2 2
1 1

1 1
ˆ ˆ 'ˆ ˆ

1 1ˆ ˆ' 'ˆ ˆ

M

A A

ν π πβ β
β β

β β
β β

Π

⎛ ⎞ ⎛ ⎞
, = ,Π ,Π⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞

+ − Π Π −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

 

where A  has been defined in (9). The first term of (10) is  

 ( ) ( ) ( ) ( )
2 21 1 2 2 1 2 2 1' ' PM Mπ π π β π β∗ ∗

Π Π
(1)o,Π ,Π = −Π ,Π −Π ,Π = ,  

and can be neglected so that the LIML estimator of the identified parameter 2β
∗  is 

approximately given by equation (8). If we insert equation (8) into (6) and maximize 

the resulting quantity with respect to 
1β̂  we see that the LIML estimator of 1β

∗  solves 

the minimization problem in equation (7).  

Theorem 1 suggests an interpretation of the effect of partial lack of 

identification on the LIML estimator of 2β
∗ . We rewrite equation (8) as 

 ( ) ( ) ( )
1 1

2 2 2 2 2 2 1 12
ˆˆ ' ' ' ' Poπ ββ

− −
= Π Π Π − Π Π Π Π + 1

'

. 

The first component ( ) 1

2 2 2' π
−

Π Π Π  is the TSLS estimator of 2β
∗  in the model 

where all endogenous variables with unidentified coefficients have been dropped,  

 7



(11) *
2 2 1y Y Z uβ γ∗= + + , 

with corresponding reduced form  

(12) ( ) ( ) ( ) ( )2 1 1 2 2 2 2,y Y Z Z v Vφ π, = Φ + ,Π + , .

'

 

The term ( ) 1

2 2 2' π
−

Π Π Π  is consistent to 2β
∗  and has asymptotically a normal 

distribution. It is also an efficient estimator of 2β
∗  in the identified model above. The 

second component of 
2β̂ , ( ) 1

2 2 2 1
ˆ' ' 1β

−
Π Π Π Π , does not contain any useful 

information about 2β
∗  and captures the effect of the lack of identification of 1β

∗  on the 

LIML estimator of the identified parameters 2β
∗ . It is noise added to an 

asymptotically consistent and efficient estimator of 2β
∗ .  

The LIML estimator of  is 1 2' 'γ γ γ∗ ∗ ∗⎛ ⎞
⎜ ⎟
⎝ ⎠

= , '

 ( )1 2 1

2

1
ˆ ˆ ˆ ˆˆ

ˆ
γ φ β

β

⎛ ⎞
⎜ ⎟

= ,Φ ,Φ − .⎜ ⎟
⎜ ⎟−⎝ ⎠

 

 

3. Distributional results 

We shall study the asymptotic distribution of the LIML estimator for both the 

identified and the unidentified parameters under Assumptions 1 and 2.  

 

Theorem 2. (Coefficients of the endogenous variables) Suppose that Assumptions 1 

and 2 hold. Then,  

(1) the estimator of the unidentified parameter, 
1β̂ , has the following asymptotic 

distribution 

 ,  
1

1 2

2 2 1
ˆ1 ' D

nCβ β β
− /∗ ∗⎛ ⎞

⎜ ⎟
⎝ ⎠
+ →

 where  denotes a random vector having a multivariate Cauchy distribution in 

; 

1nC

1n

(2)  the estimator of the identified parameters satisfies:  

 *
2 2

ˆ Pβ β→ , 
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 ( )
1 2

2 2 1
2 2

2 2 1 1

ˆ
0 '

ˆ ˆ1 ' '
D

T
N Q

β β

β β β β

⎛ ⎞/ ∗
⎜ ⎟⎜ ⎟ −⎛ ⎞⎝ ⎠ ⎜ ⎟⎜ ⎟∗ ∗ ⎝ ⎠

−
→ , Π Π

+ +
, 

and 

 
( ) ( )

1

1 1

1
2 11 2

2 2 2 2 2 2
ˆ 0 1 ' 1 ' '

n
D

n n nT N C C Qβ β β β
π

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

+
−⎛ ⎞⎛ ⎞/ ⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠

Γ
− → , + + Π Π∫ 1

dC . 

 

Theorem 3.1 contains results analogous to those of Phillips (1989) and Choi 

and Phillips (1992) for the TSLS estimator: the LIML estimator for the identified 

parameters, 
2β̂ , is consistent to 2β

∗ , but the one for the unidentified parameters, 
1β̂ , 

converges in distribution to a non-degenerate random vector.  

The asymptotic distribution of 
1β̂  is proportional to a multivariate Cauchy 

distribution (with a coefficient of proportionality depending on 2β
∗ ), so that it has no 

finite integer moments. Thus, the LIML seems to capture the uncertainty about the 

unidentified parameters more than the TSLS estimator because the latter is 

proportional to a multivariate t-distribution with 2k n1−  degrees of freedom. If the 

model is totally unidentified (i.e. 2 0Π = ) then we obtain the asymptotic version of 

the standard result of Phillips (1984b) and Hillier and Skeels (1993): , 

where  denotes the multivariate Cauchy distribution in .  

ˆ D
nCβ →

nC n

The asymptotic distribution of 
2β̂  is covariance matrix mixture normal, and 

thus it is non-standard, indicating that lack of identification of 1β
∗  affects the LIML 

estimator of 2β
∗ . However, 

2β̂  has a normal asymptotic distribution if we condition 

on 
1β̂ . If the model is identified (i.e. 1 0n = ), we obtain the well-known result that 

( )( )( )11 2 * *ˆ 0 1 ' 'DT Nβ β β β Q −⎛ ⎞/
⎜ ⎟⎜ ⎟
⎝ ⎠

− → , + Π Π .  

 In general one needs to rotate coordinates in the space of the endogenous 

variables to obtain the specification of the structural and reduced forms in equations 

(1) and (2). This means that the effect of partial identification will manifest itself in 

the original coordinates in the fact that the LIML, β̂ , has a non-standard, non-

degenerate distribution with no finite integer moments.  

 We now turn to the coefficients of the exogenous variables.  
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Theorem 3. (Coefficients of the exogenous variables) Suppose that assumptions 1 and 

2 hold. Then,  

(1) the estimator  of the unidentified parameter, 1γ̂ , has the following asymptotic 

distribution 

 ,  
1

1 2

1 12 2 2 2 111ˆ 1 'D
nCφ β β βγ

/∗ ∗ ∗⎛ ⎞
⎜ ⎟
⎝ ⎠

→ −Φ − + Φ

where  denotes a random vector having a multivariate Cauchy distribution in 

; 

1nC

1n

(2) the estimator of the identified parameters, 2γ̂ , satisfies:  

 22ˆ P γγ → ,  

( ) ( )
12

1/ 2
12 2

22 222 2* *
1 1 2 2

ˆ
0 ''

ˆ ˆ1 ' '
D

k

T
N I

γ γ

β β β β

−⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

−
→ , +Φ ΦΠ Π

+ +
, 

 

and 

( ) ( )( )1 1 12

11/ 2
2 2 2 2 22 222 2ˆ 0 1 ' 1 ' ''D

n n k nT N C C Iγ γ β β ⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

⎛ ⎞−⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
− → , + + +Φ ΦΠ Π∫ 1

dC . 

  
  

 The LIML estimator 2γ̂  for 2γ
∗  is consistent but has a non-standard asymptotic 

distribution. The distribution of 2γ̂  is a covariance matrix mixture normal, and has 

essentially the same structure as the distribution of 2β̂ . The LIML estimator of the 

unidentified coefficients 1γ
∗  converges to a non-degenerate distribution centred on the 

point 1 12 2φ β ∗−Φ  and has no finite integer moments.  

 The effect of partial identification on the LIML estimator of the coefficients of 

the exogenous variables in the original coordinates before structural and reduced form 

are transformed into (1) and (2) results in γ̂  having a non-degenerate non-standard 

asymptotic distribution with no finite integer moments.  

 

4. Weak instruments and the “moment problem” 

We have shown that in partially identified models the LIML estimator of the 

unidentified parameters does not have moments even asymptotically. We now briefly 
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discuss the weak instruments case.  

 When instruments are weak and   (e.g. Staiger and Stock (1997)), 

the LIML estimator is  where 

1/ 2T C−Π =

1
1 2β̂ −= −Δ Δ ( )1 2 ' 'Δ = Δ ,Δ   is the eigenvector associated 

with the smallest eigenvalue of  

 ( ) ( ) ( )( ) ( ) ( )( )1/ 2 1/ 21 1 *
1 2 1, ' , , , , ' ,P

n n nT S T S W k n I I C C Iπ π β β
− −− −

+ +Π Π → − *
n . 

It follows from the continuous mapping theorem that the LIML estimator does not 

have finite moments even asymptotically since the leading term in the expansion of its 

asymptotic density is proportional to a multivariate Cauchy distribution in .  Thus, 

the presence of weak instruments changes the asymptotic distribution of the LIML 

estimator by making it more similar to the small sample distribution of the LIMLK 

estimator under normality as studied by Phillips (1984b) and Phillips (1985). A 

modification of the analysis of the previous sections shows that the asymptotic 

moments of the LIML estimator do not exist for weakly identified parameters even if 

strongly identified parameters are present. 

n

 The lack of asymptotic moments for the LIML estimator under partial and 

weak identification is a remarkable property which has not been emphasised before in 

the literature: the precision of the LIML estimator measured by its asymptotic Fisher 

information matrix is zero, and the sample is not informative about the interest 

parameters. This implies that the mean squared error may not be a suitable tool for 

choosing instruments and comparing estimators even when the sample size is 

infinitely large. 

 

5. Conclusions 

 This paper studies the asymptotic distribution theory for the LIML estimator 

in partially identified linear structural equations models. General formulae are given 

for the asymptotic distribution of the LIML estimator for the coefficient vectors of 

both the endogenous and exogenous variables. For the sake of simplicity, we assume 

that the structural parameters are in canonical form and that the rotations of 

coordinates in the space of endogenous and exogenous variables to separate identified 

and unidentified parameters have been carried out. Since these are affine 

transformations’ the results for the unstandardized case follow easily.  

 The LIML estimators for the identified parameters are consistent but have 
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non-standard asymptotic distributions expressed as covariance matrix mixed normals. 

These results are simpler than those for the TSLS estimator obtained by Phillips 

(1983) and Choi and Phillips (1992).  

 The LIML estimators for the unidentified parameters are obviously 

inconsistent, but have non-degenerate asymptotic distributions. We find that these are 

affine transformations of a random vector having a multivariate Cauchy distribution, 

and, consequently, they do not have any finite integer moments even asymptotically. 

This implies that the LIML estimator of the coefficients of both endogenous and 

exogenous variables does not have moments even asymptotically in partially 

identified linear structural equations which are not in canonical form or for which the 

identified and the unidentified parameters are not separated by rotations of 

coordinates.  

 

Appendix: Proofs 

 The asymptotic properties of the statistics identified in Section 2 are described 

in the following lemma.  

 

Lemma 1. If Assumptions 1 and 2 hold then  

(i) 
1 2

1
1

P
n nT S I−
+ +→ Ω = ; 

(ii) ; ( )1 2 2 2 20Pπ β ∗⎛ ⎞
⎜ ⎟
⎝ ⎠

,Π ,Π → Π , ,Π

(iii) ; ( )
2 1 2

1 2
1 2 2 2 2 10 0D

k n nT Nπ β⎡ ⎤ ⎛ ⎞/ ∗⎛ ⎞
⎢ ⎥ ⎜ ⎟⎜ ⎟ + +⎝ ⎠ ⎝ ⎠⎣ ⎦

,Π ,Π − Π , ,Π → , ⊗I I

(iv) ( ) ( ) ( )1

2 2 2 1 2' ' PA π β
− ∗= Π Π Π ,Π → ,0 ; 

(v)  where  ( )( ) ( )( )11 2
2 2 20 0 'DT A Nβ −/ ∗− , → , ⊗ΣΠ Π

(13) 
1

2 21 ' 0
0 nI
β β⎡ ⎤

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

∗ ∗+
Σ = ;  

(vi) ( ) ( ) ( )
121 1 1 2' D

nT M W k nπ π +Π
,Π ,Π → − ,Σ2  and it is asymptotically independent 

of ; ( )( )1 2
2 0T A β/ ∗− ,

(vii) ( ) 1 11 12
1 2

222

ˆˆ ˆ ˆ,
0

P φ
φ

φ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

Φ Φ
Φ = ,Φ Φ →

Φ
; 
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(viii) ( ) 1

1 11 121 2 1
1 2 1

222

ˆ ˆ ˆ,
0

D
k nT

φ
φ

φ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟ ⎛/ −
⎜ ⎟ ⎜0N I I ⎞

⎟+⎝⎜ ⎟⎜ ⎟
⎝ ⎠

Φ Φ
,Φ Φ − → , ⊗

Φ ⎠
, and it is independent of 

  ( )1 2
1 2 2 2 20T π β⎡ ⎤/ ∗⎛ ⎞

⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

,Π ,Π − Π , ,Π .

 

 

Proof. Parts (i)-(iv) and (vii)-(viii) are standard results. We now prove parts (v) and 

.  We have ( )vi

 

( )( ) ( ) ( )( ) ( )( )
( ) ( ) ( )( )
( ) ( )

11 2 1 2
2 2 2 2 1 1

1 1 2
2 2 2 1 2 2

1 1 2
2 2 2 2 2 1

0 ' '

' ' 0

' ' .

T A T

T

T

β π π

π β

π β

−/ ∗ / ∗

− / ∗

− / ∗

− , = Π Π Π ,Π ,Π − ,

⎡ ⎤= Π Π Π ,Π −Π ,⎢ ⎥⎣ ⎦
⎡ ⎤= Π Π Π −Π ,Π⎢ ⎥⎣ ⎦

2 0β

 

Moreover, let C  be a matrix such that 
2

'CC M
Π

=  and  and note that 

 is continuous. Also, by construction 

2
' k nC C I −=

2 CΠ → 2'C 0Π =  so that 

. Part (iii) entails that ( ) (1 2' 'C Cπ π β ∗,Π = −Π ,Π )2 1

0I 
1

2

2 2 2
1 2

2 2 1 2 2

2

1 ' 0 '
, 0 0

0

D
k n

n

T N I

I

β β β
π β

β

⎛ ⎞⎡ ⎤⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

∗ ∗ ∗

/ ∗⎛ ⎞
⎜ ⎟
⎝ ⎠

∗

+ −
−Π ,Π Π −Π → , ⊗

−

, 

so we obtain 

 ( ) ( )1 2
2 2 1 0D

kT Nπ β/ ∗ I−Π ,Π → , ⊗Σ .

I

 

The continuous mapping theorem implies that  

 
( ) ( ) ( ) ( )

( )
2

1 2
11 2 2 1

2 2 22 2 2

1
2 2

''
0

' '' '

0
0

0 '

D
k

k n

CC
T N

I
N

π β
⎛ ⎞
⎜ ⎟

/ ∗ ⎜ ⎟
−− ⎜ ⎟

⎜ ⎟⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟−
⎜ ⎟
⎜ ⎟−
⎜ ⎟⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟ −Π ,Π → , ⊗Σ

Π Π Π⎜ ⎟Π Π Π⎝ ⎠
⎛ ⎞
⎜ ⎟= , ⊗Σ ,
⎜ ⎟Π Π⎝ ⎠

 

so the random variates ( )( )1 2
2 0T A β/ ∗− ,  and ( )1 2

2 2 2'T C π β/ −Π ,Π  are 

asymptotically independent.  
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Proof of Theorem 1 

The first order condition for a minimum of  

(14) ( ) ( )1
1 2 1 2

ˆ ˆ ˆ ˆTν δβ β β β−⎡ ⎤, / ,⎣ ⎦  

is 

(15) 
( )
( ) ( ) ( ) ( )

( )
( ) ( )

2 2 2

1 2 1 2
ˆ ˆ ˆ1 2 1 2

1 2 1 2 1 2 1 2

ˆ ˆ ˆ ˆ1 1ˆ ˆ ˆ ˆ 0
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

D D D
β β β

ν νβ β β β
ν δβ β β β

δ δ δ δβ β β β β β β β

, ,
= , −

, , , ,
, = , 

 

where ( )1 2
ˆ ˆ 0δ β β, >  and 

 
( )

( )

2

2

ˆ 2 2 21 2
1

ˆ 22 2 22 211 2
1

1ˆˆ ˆ 2 ' ˆ

1ˆˆ ˆ 2 ˆ

D A

D S S S

β

β

ν ββ β
β

δ ββ β
β

⎛ ⎞⎛ ⎞
, = Π Π −⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞
, = −⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

.

 

Replacing these in (15) we obtain  

 ( )
( ) ( )

1 2

11 2
2 2 22 22 212 2

1 21 1

1 1
ˆ ˆmin 'ˆ ˆA S

β β

ν β β
β βδ β ββ β

−

,

⎛ ⎞⎧ ⎫⎛ ⎞ ⎛ ⎞,⎪ ⎪ S S= − Π Π −⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟⎜ ⎟− −,⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭ ⎝ ⎠
.  

Since 

(16) ( )
( )

( ) ( )
1 2

1 2 1 21 2

' 1
1 2

' '
min min

'Sβ β

π πν β β
δ β β, Δ Δ=

Δ ,Π ,Π ,Π ,Π Δ,
=

, Δ Δ
, 

the right hand side of (16) is the smallest solution to the determinental equation 

(17) ( ) ( )1 2 1 2' 0Sπ π λ,Π ,Π ,Π ,Π − = . 

The smallest solution of (17) is a continuous function of ( ) ( )1 2 1 2'π π,Π ,Π ,Π ,Π  and 

, and equals zero if (S ) ( )1 2 1 2'π π,Π ,Π ,Π ,Π  is a singular matrix. The first part of the 

theorem follows from the continuous mapping theorem and the fact that 

( ) ( )1 2 1 2'π π,Π ,Π ,Π ,Π  converges in probability to a singular matrix. The second part 

of the theorem follows by inserting 
2

1

1
ˆ

ˆAβ
β

⎛ ⎞
= ⎜−⎝ ⎠

⎟  in (14) and minimizing it with 

respect to 1β̂ .  
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Proof of Theorem 2 

(1) Theorem 1 shows that the LIML estimator for 1β  minimizes (7). Let  

 
1 2

1 1
11 2 22 21 22 22 21' DQ S A S S S A S S

/⎛ ⎞⎛ ⎞ ⎛ ⎞ 1 2− − /
⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟. ⎝ ⎠ ⎝ ⎠⎝ ⎠

= + − − → Σ  

where  is defined in Σ (13), and let  

 QΔ = Δ.  

The problem of minimizing (13) can be written in terms of Δ  as 

 
( ) ( ) ( )

2

1 1
1 1' ' '

'

MQ Qπ π− −

Π
Δ ,Π ,Π Δ

.
Δ Δ

 

The continuous mapping theorem and Lemma 1 imply that 

  ( ) ( ) ( ) ( ) ( )1 12 1

1 1 1 2 1 2
1 1 1 2 1 2 1' ' D

n n nM W k n W k n IQ Qπ π− − − / − /
+ + +Π

,Π ,Π → Σ − ,Σ Σ = .− ,

Let  be the eigenvector associated to the smallest eigenvalue of  mΔ

 ( ) ( ) ( )
2

1 1
1 1' 'MQ Qπ π− −

Π
,Π ,Π .  

It is well known that  tends in distribution to a random vector  uniformly 

distributed on the unit sphere in 

mΔ v

1 1n + . The continuous mapping theorem implies that 

. It follows that  where 1 2D v/Δ → Σ 1
1 21

ˆ
m mβ −= −Δ Δ ( )1 2 ' 'm m mΔ = Δ ,Δ  is the eigenvector 

associated with the smallest eigenvalue of (13) and tends in distribution to a 

 where  has a Cauchy distribution in 
1

1 2

2 21 nCβ β
/∗′ ∗⎛ ⎞

⎜ ⎟
⎝ ⎠
+

1nC 1nR .  

(2.i) Since ( )2 0PA β ∗→ ,  (Lemma 1 (iii)) and  (Theorem 2), it 

follows from the continuous mapping theorem that 

1

1 2

1 2 2
ˆ 1D

nCβ β β
/∗′ ∗⎛ ⎞

⎜ ⎟
⎝ ⎠

→ +

 ( )
1

1 22 22
1 2 2

11
ˆ 0ˆ 1 '

P

n

A
C

β ββ
β β β

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

∗ ∗
/∗ ∗⎛ ⎞

⎜ ⎟
⎝ ⎠

⎛ ⎞
= → , =⎜ ⎟− − +⎝ ⎠

.

2

 

 

(2.ii) and (2.iii) Note that 

 ( )( )1 2 1 2
2 2

1

1 ˆ0 ˆT A Tβ β β
β

⎛ ⎞/ ∗ /
⎜ ⎟⎜ ⎟
⎝ ⎠

⎛ ⎞
− , = −⎜ ⎟−⎝ ⎠

∗  

and 

 ( )( ) ( )( )11 2
2 2 20 0 'DT A N Qβ −/ ∗− , → , ⊗ΣΠ Π . 
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Moreover, ((1 2
2 0T A β/ ∗ ))− ,  is asymptotically independent of ( ) ( )

21 1'T Mπ π
Π

,Π ,Π  

(i.e. of 1β̂ ). Then 

 ( ) ( ) 11 2
2 2 2 22 1 1 1

ˆ ˆ ˆ ˆ0 1 ' ' 'DT Nβ β ββ β β β
−⎛ ⎞/ ∗ ∗ ∗⎛ ⎞ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

− | → , + + Π Π2Q .  

 

Proof of Theorem 3 

We known from Lemma 1(vii) that 

 1 11 12

222

ˆ
0

P φ
φ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

Φ Φ
Φ→

Φ
 

so 

 

1 11 12 1 12 2 11 1 12 2 111 1
*1 1

222 2 22 2 2
22

1 1
ˆ ˆˆ ˆ ˆˆ ,

0ˆ

P φ φ β φ ββ βγ β βφ φ β γ
ββ

⎛ ⎞
⎜ ⎟ ∗ ∗⎛ ⎞ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ∗⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ∗⎜ ⎟
⎝ ⎠

⎛ ⎞
Φ Φ ⎛ ⎞ ⎛ ⎞−Φ −Φ −Φ −Φ⎜ ⎟

= Φ − → − = =⎜ ⎟ ⎜ ⎟⎜ ⎟ Φ −Φ⎝ ⎠ ⎝ ⎠⎜ ⎟− −⎝ ⎠
 

So part (1) and consistency in part (2) are proved. To prove the rest of the theorem 

consider 

( ) ( )

( )( ) ( )( )

1 11 121/ 2 1/ 2 1/ 2
2 2 2 22 2 21

222

2

1/ 2 1 2
2 2 22 22 21

1
2

1
ˆˆ ˆˆ

0
ˆ

1
1ˆ ˆ0 0 ˆ

ˆ

T T E T

T T A

φ
γ γ β ββφ

β

φ ββ
β

β

⎛ ⎞
⎜ ⎟

⎛ ⎞ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ∗
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎜ ⎟

⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟ / ∗
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

⎛ Φ Φ ⎞
− = Φ − − − Φ −⎜ ⎟Φ⎝ ⎠

−

⎛ ⎞
= Φ − Φ − − Φ − , ⎜ ⎟−⎝ ⎠

−

 

 
where 

122 0 kE I⎛ ⎞
⎟
⎟
⎠
  be an (  matrix and ⎜

⎜
⎝

= , ) ˆ
12 1k k× 2 2

ˆ EΦ = Φ . It follows from Lemma 

1(viii)  that 

 ( )
12

1 2
2 2 22 1

ˆ 0 0D
k nT Nφ⎛ ⎞

⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

⎛ ⎞/
⎜ ⎟I I +⎝ ⎠

Φ − Φ → , ⊗ , 

and this is independent of  

( )( ) ( )( )11 2
2 2 20 0 'DT A Nβ −/ ∗− , → , ⊗ΣΠ Π . 

Therefore, the continuous mapping theorem implies that 
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 ( ) ( )( )12

11/ 2
2 2 1 22 2 21

1
2

1
1

ˆˆ 0 0 ' ˆ
D

k nT N I I Nγ γ β
β

β

⎛ ⎞
⎜ ⎟
⎜ ⎟ −⎛ ⎞ ⎜ ⎟⎜ ⎟+ ⎜ ⎟⎝ ⎠
⎜ ⎟∗⎜ ⎟
⎝ ⎠

⎛ ⎞
− → , ⊗ − −Φ , ⊗ΣΠ Π ⎜ ⎟−⎝ ⎠−

 

and the theorem follows easily.  
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