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Forecasting mortality from breast cancer

Abstract

Accurate estimates of future age-specific incidence and mortality are critical for allocation

of resources to breast cancer control programs and evaluation of screening programs. The

purpose of this study is to apply functional data analysis techniques to model age-specific

breast cancer mortality time trends, and forecast entire age-specific mortality function

using a state-space approach.

We use yearly unadjusted breast cancer mortality rates in Australia, from 1921 to 2001

in 5 year age groups (45 to 85+). We use functional data analysis techniques where mor-

tality and incidence are modeled as curves with age as a functional covariate varying

by time. Data is smoothed using nonparametric smoothing methods then decomposed

(using principal components analysis) to estimate basis functions that represent the func-

tional curve. Period effects from the fitted functions are forecast then multiplied by the

basis functions, resulting in a forecast mortality curve with prediction intervals. To fore-

cast, we adopt a state-space approach and an extension of the Pegels modeling frame-

work for selecting among exponential smoothing methods.

Overall, breast cancer mortality rates in Australia remained relatively stable from 1960

to the late 1990’s but declined over the last few years. A set of K=4 basis functions min-

imized the mean integrated squared forecasting error (MISFE) and accounts for 99.3% of

variation around the mean mortality curve. 20 year forecast suggest a continual decline

at a slower rate and stabilize beyond 2010 and by age, forecasts show a decline in all age

groups with the greatest decline in older women.

We illustrate the utility of a new modelling and forecasting approach to model breast

cancer mortality rates using a functional model of age. The methods have the potential

to incorporate important covariates such as Hormone Replacement Therapy (HRT) and

interventions to represent mammographic screening. This would be particularly useful

for evaluating the impact of screening on mortality and incidence from breast cancer.

Keywords: mortality, breast cancer, forecasting, functional data analysis, exponential

smoothing
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Introduction

Despite an increase in utilization of mammographic screening as a form of early detec-

tion, and continual improvements in treatment options, breast cancer remains one of the

main causes of mortality and morbidity in women. Regular and accurate estimates of fu-

ture age-specific incidence and mortality are necessary in making recommendations for

the allocation of resources to state, regional and private health care, community-based

prevention services and breast cancer control programs.

At present, most forecasting relies on age-period-cohort methods to estimate mortality

(and incidence) from breast cancer [1, 2, 3], prostate cancer [4, 1] and cervical cancer

[5, 6]. These models are based on regressions with the outcome defined as mortality or

incident cases, and modelled using a Poisson error distribution and a log link function

for the mean. The mean is modelled using the sum of parameters for age, period ef-

fects (variations in time which may apply to the whole population) and cohort effects

(variations due to specific birth cohorts). The fitted models are then used to make linear

projections of mortality and incidence. Common problems associated with age-period-

cohort models for estimating future cancer rates include issues with non-identifiability of

the parameters, strong parametric assumptions, and sensitivity of the projections to most

recent changes in cohort effects.

Little other progress has been made in developing statistical methodology for cancer pro-

jections, with studies concentrating on variations of age-period-cohort statistical meth-

ods. Dyba et al. [7] and Dyba and Hakulinen [8] proposed linear extrapolation and

non-linear Poisson distributed models. Each proposal considered a number of different

scenarios with known and linearly extrapolated values for period effects and age-specific

rates. Bashir and Esteve [3] used a Bayesian age-period-cohort model with autoregress-

ive smoothing of each of the age, period and cohort components so that the resulting

projections are estimated from current and past smoothed trends of the data.

We present an alternative approach to forecasting cancer mortality and incidence. This
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method was recently developed for demographic forecasting [9] and has not previously

been applied to cancer projections. The approach uses functional data analysis tech-

niques, and treats the age-specific mortality curves as the units of analysis rather than

the discrete observations. In recent years, functional data analysis has received much at-

tention, particularly in medicine. Ramsay and Silverman [10] provide a comprehensive

introduction and have stimulated much additional development of these methods.

The Hyndman-Ullah [9] approach is a generalization of the method of Lee and Carter

[11], and has the following advantages: a) mortality (or incidence) rates are modelled as

continuous functions of age so that subtle patterns of variation between years are cap-

tured; b) data are smoothed prior to estimating the basis functions, thus reducing obser-

vational error; c) the approach forecasts the entire function for future time periods with

prediction intervals; d) the method is robust to outlying years; and e) the flexibility of the

approach allows the incorporation of important covariates such as screening and treat-

ment effects into the modelling. The purpose of this study is to demonstrate the utility

of this new modelling and forecasting method for estimating future age-specific trends

in breast cancer mortality, using unadjusted age-specific data for Australia from 1921 to

2001.

Methods

Data

In this study we obtained data on mortality from breast cancer in Australian women from

the Australian Institute of Health and Welfare (AIHW), an organization that provides de-

identified health and welfare data to national and regional government and community

organizations. National mortality data are compiled from medical certificates outlining

cause of death from the Registrar of Births, Deaths and Marriages located in each state

and territory. Additional diagnostic information is also available from the state- and

territory-based cancer registries.
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At present, breast cancer mortality represents 16% of all cancer deaths in Australian wo-

men [12]; 12% of deaths from breast cancer occur in women aged 40 to 49 years, 38.3%

in women aged 50 to 69 years (the target age group for screening) and 46.2% in women

over 70 years of age.

We use crude (unadjusted) age-specific mortality rates, defined as the number of deaths

in a particular age group during the year divided by the corresponding population in that

age group at 30 June of the same year. The rate is expressed per 100,000 people. Yearly

age-specific breast cancer mortality rates were available for the period 1921 to 2001 and

in 5 year age groups (45–49, 50–54, 55–59, 60–64, 65–69, 70–74, 75–79, 80–84, 85+).

Functional data analysis

With functional data methods, data can be smooth curves or functions. In the case of

age-specific mortality, mortality rates are treated as smooth functions of age.

Let yt(x) denote the log mortality rate for age x and year t, t = 1, . . . , n. We assume there

is an underlying smooth function ft(x) that we are observing with error. Thus,

yt(xi) = ft(xi) + σt(xi)εt,i , (1)

where xi is the centre of age-group i (i = 1, . . . , p), εt,i is an independent and identically

distributed standard normal random variable and σt(xi) allows the amount of noise to

vary with age x.

Various smoothing techniques are available to estimate the function from the discrete

observations. We smooth the data using local quadratic smoothing with the smoothing

parameter (the “bandwidth”) selected using cross-validation [13]

The smooth curves are our functional observations, {ft(x)}, x1 < x < xp, t = 1, . . . , n.
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After constructing the functional observations, we fit the model

ft(x) = µ(x) +
K

∑

k=1

βt,kφk(x) + et(x) (2)

where µ(x) is the mean log mortality rate across years, φk(x) is a set of orthogonal basis

functions, and et(x) is the model error.

We wish to estimate the optimal set of K orthogonal basis functions. Specifically, for a

given K, we want to find the basis functions {φk(x)} which minimize the mean integrated

squared error:

MISE =
1

n

n
∑

t=1

∫

e2
t (x)dx . (3)

This is achieved using functional principal components decomposition [14] which gives

the least number of basis functions, enables more informative interpretations and gives

coefficients which are uncorrelated with each other.

Hyndman and Ullah [9] proposed a robust method to estimate µ(x) and a robust ap-

proach to obtaining principal components when computing the basis functions. How-

ever, our data do not exhibit any outliers or other unusual behaviour, and so we use the

mean and standard (functional) principal component decomposition.

To assess the overall goodness of fit, the residuals of the fitted mortality model are dis-

played using image plots.

Forecasting framework

We estimate future values of mortality yt(xi) by forecasting the entire function ft(x) for

t = n + 1, . . . , n + h and x1 < x < xp. The coefficients of the fitted function, βt,1, . . . , βt,K ,

are forecast using time series models. The forecast coefficients are then multiplied by the

basis functions, resulting in forecasts of mortality curves. Hyndman and Ullah [9] show

how to obtain prediction intervals for the forecast curves.

Let β̂n,k,h denote the h-step ahead forecast of βn+h,k and let f̂n,h(x) denote the h-step
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ahead forecast of fn+h(x). Then

f̂n,h(x) = µ̂(x) +
K

∑

k=1

β̂n,k,hφ̂k(x) . (4)

To forecast the coefficients in equation (4), a variety of time series forecasting methods

are available. In this study we use state space models for exponential smoothing [15].

Forecasts from exponential smoothing methods are estimated recursively where recent

observations are given more weight than historical data. The methods accommodate ad-

ditive and multiplicative trend and seasonal components of the time series. Makridakis,

Wheelwright and Hyndman [16] present a modelling framework based on the taxonomy

proposed by Pegels [17]. The framework is expanded in Hyndman et al. [15], who also

provide state space models for each method, and show how models can be automatically

selected for a given time series.

We evaluate the accuracy of the mortality forecasts by computing the Mean Integrated

Squared Forecasting Error (MISFE) defined as

MISFE(h) =
1

n − m + 1

n
∑

t=m

∫

[

yt+h(x) − f̂t,h(x)
]2

dx . (5)

where m is the minimum number of observations used in fitting a model. In our imple-

mentation, we set m = 10.

All analyses were performed using the R implementation of the S language [18].

Results

Descriptives

INSERT FIGURE 1 ABOUT HERE

Erbas, Hyndman & Gertig. 7 February 2005 Page 7



Forecasting mortality from breast cancer

Figure 1 displays mortality from breast cancer in Australian women by age group for

period 1921 to 2001. Breast cancer mortality rates remained relatively stable for women

45–49 years of age. For older women, there was an increase in mortality between 1921

and 1940, followed by a decline until 1960 for women aged 55 and 80. All age groups

had relatively stable mortality rates from 1960 to the late 1990s, and all show a decline in

mortality over the last few years. The greatest rate of decline has been in women 65 years

and over. In general, mortality increases with age, and in each year, maximum mortality

occurred in women over 85 years.

INSERT FIGURE 2 ABOUT HERE

Crude log mortality rates by age for 1941, 1961, 1981 and 2001 are displayed in Figure 2.

We smooth the log mortality series by age using loess (locally quadratic) regression with

the bandwidth chosen via cross-validation. The fitted smooth curves are overlaid on the

observed discrete log mortality rates. Similar trends in the age-mortality relation were

observed in each year. Although mortality rates increase with age, the rate of increase

varies across age groups. In most years, there is a slight deceleration in the rate of increase

for women 60 to 70 years of age, and a rapid acceleration thereafter.

Functional data analysis

INSERT FIGURE 3 ABOUT HERE

Using functional data analysis techniques and principal component decomposition to es-

timate the basis functions, a model with K = 4 basis functions was selected. A set of

K = 4 basis function minimized the MISFE, while estimating an additional basis func-

tion did not contribute to a further reduction in the MISFE. The estimated basis functions

and corresponding coefficients β1, . . . , β4 are shown in Figure 3. Fitting a functional re-
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gression model with K = 4 basis functions accounts for 99.3% of the variation around

the mean mortality curve. The proportion of variation explained by each basis function

is 69.3%, 15.8%, 9.1% and 5.0% for k = 1, . . . , 4 respectively.

The first basis function corresponds to the overall trend in the mortality curve. The

second describes variation in mortality in lower age groups, capturing the rate of in-

crease in women approximately 50 to 60 years of age relative to older women. The third

contrasts mortality rates in women around 70 with those much younger and those much

older. The fourth component is complex and contrasts those under 55 or between 65 and

80, with the other ages.

Forecasting horizon 20 years

INSERT FIGURE 4 ABOUT HERE

We computed 20 year estimates of future age-specific breast cancer mortality using state-

space exponential smoothing models as described by Hyndman et al. (2002). The auto-

matic model-selection algorithm chose models with additive errors and a damped trend.

The model parameters were selected by minimization of the one-step MSE.

Forecasts of βt,1 are shown in Figure 4 for 2002 to 2021, along with 80% prediction inter-

vals. This parameter controls the overall change in trend in breast cancer mortality. In

Australian women, mortality from breast cancer is expected to continue to decline at a

slower rate than that suggested by observed mortality trends during the late 1990s, and

expected to level off and stabilize beyond 2010. Note that the wide prediction intervals

provide a measure of the uncertainty in the future movements in this coefficient, and

even allow for it to increase.

INSERT FIGURE 5 ABOUT HERE
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One-year and ten-year Age-specific breast cancer log mortality forecasts are shown in

Figure 5, along with 80% prediction intervals. Very little difference in the overall shape

of the age-mortality trends is likely to occur over the forecast horizon. In all age groups,

the forecasts show a decline in breast cancer mortality, with the greatest declines in the

oldest age groups.

Discussion

At present, statistical methods for mortality projections assume current age-adjusted

breast cancer mortality trends will continue into the future, thereby projecting a con-

tinual rate of decline in breast cancer mortality in countries such as the United States, the

United Kingdom, Canada, New Zealand and Australia.

In this study of breast cancer mortality in Australian women, we illustrate the utility of

a new forecasting method that models mortality using a functional model of age. The

model uses basis expansions which highlight important trends in the mortality-age rela-

tionship for the period of the study. Future mortality rates are then estimated using all

available historical data rather than only the most recent observations.

Using our approach, the forecast horizon suggests a slower rate of decline in breast cancer

mortality in Australian women within the next decade, stabilizing beyond 2010. Our

data suggest relatively small changes in mortality for women 50 to 60 years of age who

are at the lower end of the target age group for screening, assuming current screening

and treatments are unchanged.

In Australia, crude mortality rates have increased during 1920–1940, decreased post war,

remained relatively stable during 1960–1980, followed by a steady decline since the mid-

1990s. However, when crude mortality rates are age-standardized to the world popula-

tion, Australian mortality trends follow a similar pattern to other Western countries such

as the United States, the United Kingdom, Canada and New Zealand [19, 20]. In these
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countries, mortality rates have shown very little variation beyond 1950 except for the

more recent steady decline which began in the 1990s.

The reduction in mortality over the last decade is most likely a result of improvements in

treatment regimes such as increased utilization of adjuvant therapy and increased mam-

mographic screening. In the United States substantial improvements in survival among

postmenopausal women were observed following new treatment regimes in addition to

tamoxifen [21]. The United Kingdom has adopted tamoxifen treatments in nearly all wo-

men over 50 years of age in the early 1990s [22]. Australia has seen similar improvements

in adjuvant chemotherapy and hormonal therapy treatment regimes [23] and in 1995 new

management guidelines for breast cancer treatment were widely adopted [24].

The more recent reduction in breast cancer mortality rates may in part be explained by

the delayed mortality benefit of mammographic screening.

Although the interpretation of randomized control trials of mammographic screening

is still subject to some controversy [25], the evidence suggests an approximately 30%

reduction in mortality in screened populations due to early detection of tumours. In

many countries, participation in mammographic screening has gradually increased since

its introduction in the late 1980s and early 1990s. In Australia, 57% of women in the target

age group for screening (50 to 69 years) were screened within a national BreastScreen

program in 2001–2002 [12]. Participation rates are much higher in the United States with

78.6% of women between 50–64 years of age reported as having a mammogram in the

previous two years [26].

Blanks et al. [2] predicted mortality from breast cancer for England and Wales using the

widely used age-period-cohort approach. They provide mortality predictions separately

for different age groups in the presence and absence of screening for the period 1990–

1999. Although they do not extrapolate beyond 1999, their findings suggest a constant

decline in overall mortality, with a slight decline and then levelling off in women 50 to 65

years of age and an increase in women over 70 years of age.
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Verdecchia et al. [27] adopt an alternative survival regression type approach to project

breast cancer mortality, incidence and prevalence for the period 1993–2030 by 5-year age

groups for women in Connecticut. They report a decrease in projected age-adjusted mor-

tality prior to 2003 and then a levelling off with very little variation beyond 2003. Mortal-

ity projections by age suggest a decrease in women 50 to 69 years of age and a continual

increase in women over 70 years of age from 1990, 2000, to 2030. Our forecasts of over-

all mortality are similar to the findings of Verdecchia et al. [27], although we forecast a

delay in the leveling off of mortality beyond 2010 and not earlier as they suggest. Our

data comprise much longer periods of mortality (1921–2001) and show mortality rates

decreasing most rapidly between 1990 and 2001. Our forecasts incorporate these trends.

In this study we adopt a methodological approach which models age as a functional

covariate rather than a fixed variable, so that the age-shape of mortality varies over time,

thereby enabling the models and forecasts to pick up subtle variations. Other studies

in demography have also realized the implications of this phenomenon when modeling

all-cause mortality, particularly the acceleration in the rate of mortality decline in older

persons [28, 29].

Functional data analysis is an effective exploratory and modelling technique for high-

lighting trends and variations in the shape of the age-mortality relationship over time.

This analytical approach has a number of strengths. First, in contrast to the common age-

period-cohort models used to model trends in mortality, functional data analysis tech-

niques make no parametric assumptions about age or period effects. The shape of the

mortality-age curve varies with time, so that at different ages, mortality declines at differ-

ent rates. This phenomenon is particularly apparent in breast cancer mortality, possibly

due to hormonal effects or screening of women in target age groups. To our knowledge,

no other study has modelled or forecast from a model with age as a functional covariate

of breast cancer mortality over time.

Second, using a functional approach to forecast age-specific mortality models the entire

age function and allows the possibility of a damped trend component, thereby provid-
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ing greater accuracy when forecasting age-specific mortality for future time periods. The

damped trend is particularly useful for forecasting breast cancer mortality because in re-

cent years mortality from breast cancer has continued to decrease. Rather than assuming

a continual decline into the future, the damping factor decelerates the trend component

for the forecast horizon. In other forecasting applications [30], a damped trend model has

proved particularly accurate for forecasting.

Functional data analysis methods can be further developed to incorporate interventions

such as screening effects and covariates for hormone replacement therapy use. In addi-

tion, the shape of the age-mortality relation can be allowed to vary for different types of

cancers and would be particularly useful for forecasting incidence of breast cancer.

A potential limitation of this approach is the assumption that there are only period effects

and no cohort effects. Examination of the residuals from the functional fit revealed very

little birth cohort effects in breast cancer mortality in Australia. Furthermore, studies

of breast cancer mortality in different countries using age-cohort mortality models also

support our finding of constant cohort mortality ratios from breast cancer in Australian

women [19]. However, birth cohort effects are an important component of modelling

mortality trends and studies have shown strong birth cohort effects in mortality trends

for the United Kingdom, Canada, the United States and Scotland [19, 31, 32].

Often birth cohort effects influence mortality trends in younger and older age groups

[33]. Our modelling approach smooths the data prior to fitting the functional regression

model, resulting in a smoothed functional age-mortality relation. The smoothing process

may reduce much of the variation attributable to outlying observations at younger and

older age groups where we expect birth-cohort trends to have the greatest effect. Any

remaining birth-cohort trend is saturated in patterns of variation over time. This is not

necessarily a problem as it does not hinder the functional age-mortality association over

time, which is the focus of these studies. In future work, we intend to extend our model

to allow for cohort effects.

In summary, we have demonstrated the utility and flexibility of this newly developed
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approach to forecast age-specific mortality from breast cancer. Our estimates suggest

mortality from breast cancer will continue to decline and then stabilize beyond 2010 with

the greatest decline in oldest age groups. These models also have broader application to

other cancers and chronic diseases.
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Australia: Breast cancer death rates (1921−2001)
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Figure 1: Age-specific mortality from breast cancer, Australia, 1921–2001
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Figure 2: Four years of log mortality from breast cancer by age group in Australia. Loess (locally
quadratic) smooth curves are also shown.
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Figure 3: The components from the functional model for breast cancer mortality in Australia.
Top line: the mean function and first four basis functions. Bottom line: the coefficients associated
with each of the basis functions.
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Forecasting mortality from breast cancer

Forecasts from Damped Holt’s method
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Figure 4: Twenty year forecasts of the first coefficient using a Holt’s damped trend model. The
shaded region gives 80% prediction intervals.
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Figure 5: Forecast age-specific breast cancer mortality in Australia for 2002 and 2011, with 80%
prediction intervals. Actual values for 2001 are shown as circles. The forecasts show decreasing
mortality for all ages, with the greatest decreases for the oldest women.
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