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SUMMARY 
 

New results for ratios of extremes from distributions with a regularly varying tail at 
infinity are presented. If the appropriately normalized order statistic X(n-j+1) from 
distribution with tail exponent  δ, (δ > 0) converges weakly to X*

(j) then: 
 
(i)  For ρ = 1/δ, the ratio X*

(j)/X*
(j+k) is distributed like {U(j,k)}-ρ  where  U(j,k) has 

density                                       
                                   B(u:j,k) = B-1(j,k)uj-1(1-u)k-1,  0 ≤u ≤1  
 
where  B(a,b) = Γ(a)Γ(b)/Γ(a+b), a > 0, b > 0, Γ(ּ) denoting the gamma function, 
 
(ii)  Consecutive ratios of extremes X*

(1)/X*
(2), X*

(2)/X*
(3)     ּ ּ  X*

(m/X*
(m+1)   ּ ּ ּ  are 

independently distributed. 
 
(iii)  The maximum likelihood estimator (mle) based on the first  k ratios is 
 

                                     ρ̂  = k-1 ∑
=

k

m
m
1

log {X*
(m)/X*

(m+1)} 

 
(iv) The mle ρ̂  is unbiased, has variance  ρ2/k (the Cramer-Rao minimum variance 
bound) and is asymptotically normally distributed.  
 
(v)  It has moments of all orders and moment generating function  
 
                                   Mρ(θ) = (1-ρθ/k)-k, θ>0. 
 
 
KEYWORDS: Tail-index, Minimum variance unbiased, Maximum likelihood, 
Asymptotically normal 
 
JEL CLASSIFICATION:  C13 
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1.  INTRODUCTION AND MOTIVATION 
 
Considerable research effort has been devoted over the last thirty years to estimation of 
the exponent of regular variation, alternatively described depending on context, as the 
tail-index or the extreme value index. 
Popular estimators based on independent random samples such as those due to Hill 
(1975), Pickands (1975) and maximum likelihood estimators of Smith (1987) and Drees 
et al (2004) are consistent, asymptotically normal (i.e. biased) estimators. They are beset 
by an inherent dilemma; large variability when the number of extremes is too low, large 
bias when it is too high. A survey of bias problems is contained in Beirlant et al. (1999). 
Bias reduction of tail-index estimators, including maximum likelihood estimators has 
generally been approached by applying second order properties of regularly varying 
functions to the tail-quantile function of the distribution. Invariably the bias depends on 
the unknown exponent, and is distribution-specific (e.g. Drees et al. (2004), Teugels and 
Vanroelen (2004)). Another approach focuses on optimal threshold selection, trading off 
bias reduction against variability (e.g. Matthys, (2001)). 
 
‘Nowadays, . . . applications of extreme value theory can be seen in a large variety of 
fields such as hydrology, engineering, economics, astronomy and finance. The estimation 
of the extreme value index is the first and main statistical challenge’ (Teugels and 
Vanroelen, (2004). 
 

2.  MAIN RESULTS 
 
The class F of distributions F(ּ) have a regularly varying tail with index  δ (equivalently 
belong to the maximum domain of attraction of the Frechet distribution, (e.g. Embrechts 
et al. (1997), p.131)) if  1-F(x) = L(x)x-δ, x > 0, δ > 0. 
The function  L(x) is slowly varying at infinity (see for instance Feller, (1971), p.276). 
 
Theorem 1  (distribution of a ratio of extremes) 
 
Denote by X(1), X(2), ⋅  ⋅  ⋅ X(n) ascending order statistics of common parent F ε F. 
The variables X*

(1), X*
(2),  ⋅ ⋅ ⋅ are descending Frechet extremes, i.e  X*

(j) is the weak limit 
of  normalized order statistic  X(n-j+1)/vn  from the parent F ε F, the normalizing sequence 
{vn}obtained from the  parent tail-quantile function, satisfying n[1-F(vn)]=1, 
(see for instance, David and Nagaraja, (1993), Chapter 10). 
 
Then for any F ε F,  
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*
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X

X
 = {U*(j,k)}-ρ  

 
where  U*(j,k) has  beta density B(u:j,k) = B-1(j,k)uj-1(1-u)k-1, (0 ≤ u ≤1) and 
where B(a,b) = Γ(a)Γ(b)/Γ(a+b), (a >0, b>0), Γ(·) representing the gamma function. 
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Proof  (see Appendix, Note 1) 
 
Theorem 2  (independence of ‘consecutive’ ratios of extremes) 
 
Using the same notation as in Theorem 1 
 
 
For any F ε F,  
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where the right side is a product of independent {U(m,1)}-ρ  variables, the U(m,1) having 
beta density B(u:m,1) = mum-1,(0 ≤ u ≤1). 
 
Proof  (see Appendix, Note 1) 
 
 
Theorem 3 (minimum variance maximum likelihood estimation based on ratios of 
extremes) 
 
(i)  The maximum likelihood estimator ρ̂  based on the k observed ratios  
Ym = X*

(m)/X*
(m+1)  m = 1,2,  ּ ּ ּ  k  is given by 

 

                                            ρ̂  = k-1 ∑
=

k

m
m
1

log {X*
(m)/X*

(m+1)} 

 
(ii)  It is unbiased and with variance ρ2/k  and is asymptotically normally distributed. 
The variance ρ2/k is the Cramer-Rao minimum variance bound for ρ. 
 
(iii)  It has moment generating function  Mρ(θ) = (1-ρθ/k)-k, θ > 0. 
 
Proof 
 

(i)   Note that L =   while ℓ = lnL )(
1

m
k

m
m yf∏

=
 

                                                                = const. +klnδ –  lny∑
=

+
m

m
m

1
)1( δ m 

since X*
(m)/X*

(m) has distribution of  {U(m,1)}-ρ where U(m,1) has density 
B(ym:m,1); i.e. fm(ym) = mδ(ym)-mδ-1 

 
Thus 
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δ∂
∂l  = kρ - lny∑

=

m

m
m
1

m  

 

i.e.                                                    ρ̂  = k-1 ∑
=

k

m
m
1

ln {X*
(m)/X*

(m+1)} 

Note that E[- 2

2

δ∂
∂ l ] = kρ2 

 
 
(ii)  Since  Ym =  X*

(m)/X*
(m+1) is distributed like {U(m,1)}-ρ  where U(m,1) has density 

 
B(u:m,1) = mum-1, (integer m ≥ 1),  
 
                                   E[{mln(X*

(m)/X*
(m+1))}j] = Γ(j+1)ρj, (integer j ≥ 1) 

 
 

Note that   Ij = E[{mln(X*
(m)/X*

(m+1))}j] 
 
                     = (-ρ)jE[{mlnU(m,1)}j]  since X*

(m)/X*
(m+1)  is distributed like {U(m,1)}-ρ 

 
                     = (-ρ)j(-j)E[{mlnU(m,1)}j-1] 
 
                     = jρ(-ρ)j-1 E[{mlnU(m,1)}j-1] 
 
                     = jρIj-1  while I0 = 1 
 
leading to E[{mln(X*

(m)/X*
(m+1))}j] = Γ(j+1)ρj, (integer j ≥ 1) 

 
 
In particular, E[{mln(X*

(m)/X*
(m+1))}] = ρ 

 
                     E[{mln(X*

(m)/X*
(m+1))}2] = 2ρ2  (so that Var[mln(X*

(m)/X*
(m+1))] = ρ2 

 
                     E[{mln(X*

(m)/X*
(m+1))}3] = 6ρ3 

 
From these results, 
 

                     E[ ρ̂ ] = k-1E[ {X∑
=

k

m
m
1

ln *
(m)/X*

(m+1)}] = ρ 

 

                  Var[ ρ̂ ] = k-2 Var[ {X∑
=

k

m
m
1

ln *
(m)/X*

(m+1)}] = ρ2/k 
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Since E[{mln(X*
(m)/X*

(m+1))}3] = 6ρ3 < ∞,  asymptotic normality follows for example 
from Liapunov’s Central Limit Theorem, (Rao, (1973), p.127). 
 

Since E[- 2

2

δ∂
∂ l ] =kρ2, the Cramer-Rao minimum variance bound for g(δ) = δ-1 is given by 

 

Var[ ρ̂ ] ≥ {g´(δ)}/ E[- 2

2

δ∂
∂ l ] = ρ4/kρ2 = ρ2/k, 

 
(iii)  Recalling the independence of the ratios {X*

(m)/X*
(m+1)},  m = 1,2,    ּ ּ ּ k,  the 

moment generating function of ρ̂  is  
 

                              E[exp(θ ρ̂ )] = E[ ] km
m

k

m
m XX /*

)1(
1

*
)( }/{ ϑ

+
=
∏

 
                                                  =  (1-ρθ/k)-k   
 
Since E[{{X*

(m)/X*
(m+1)}mθ/k] = E[{U(m,1)}-ρmθ/k]  where U(m,1) has density  

B(u:m,1) = mum-1, (0 ≤u ≤ 1), its expectation is (1-ρθ/k)-1. 
 
This completes the proof. 
 

3. SUMMARY AND CONCLUSIONS 
 
Fundamental new results for heavy-tailed extremes are formulated in terms of ratios of 
extremes. Such ratios are non-distribution specific, being independent of normalizing 
constants. 
Individual ratios in the form  {X*

(j)/X*
(j+k)} are distributed like powers of beta variates. 

‘Consecutive’ ratios  X*
(1)/X*

(2), X*
(2)/X*

(3),  ּ ּ ּ   are independently distributed. 
These results affect considerable simplification in dealing with samples of extremes. 
One consequence is that unbiased estimators of the tail-index are available. 

The maximum likelihood estimator ρ̂  = k-1 ∑
=

k

m
m
1

ln {X*
(m)/X*

(m+1)}based on  k  observed 

ratios is itself unbiased. It achieves minimum variance ρ2/k among unbiased estimators, 
and is asymptotically normal. Moreover ρ̂  has moments of all orders, with moment 
generating function Mρ(θ) = (1-ρθ/k)-k. 
 
 
 

APPENDIX   
 

Note 1: Theorem 1  (The distribution of a ratio of extremes) 
 
Denote by X(1), X(2), ⋅  ⋅  ⋅ X(n) ascending order statistics of common parent F ε F. 
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The variables X*
(1), X*

(2),  ⋅ ⋅ ⋅ are descending Frechet extremes, i.e  X*
(j) is the weak limit 

of  normalized order statistic  X(n-j+1)/vn  from the parent F ε F, the normalizing sequence 
{vn}obtained from the  parent tail-quantile function, satisfying n[1-F(vn)]=1, 
(see for instance, David and Nagaraja, (1993), Chapter 10). 
 
Then for any F ε F,  
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X

X
 = {U*(j,k)}-ρ  

 
where  U*(j,k) has  beta density B(u:j,k) = B-1(j,k)uj-1(1-u)k-1, (0 < u < 1) and 
where B(a,b) = Γ(a)Γ(b)/Γ(a+b), (a >0, b>0), Γ(·) representing the gamma function. 
 
Proof:   
 
For the order statistics from common distribution F ε F and corresponding density f(⋅) the 
joint density of  (X(n-j-k+1), X(n-j+1)), (j < k) denoted by f#(x(n-j-k+1),x(n-j+1)) is 
 
 B(u:j,k) × B(v:j+k,n-j-k+1) = B-1(j, k)uj-1(1-u)k-1 ×B-1(j+k,n-j-k+1) vj+k-1(1-v)n-j-k  

 

i.e. that of independent random variables U and V deriving from transformations 
(see for instance, Arnold et al. (1993), Chapter 2). 
 
(i)             u(x(n-j-k+1), x(n-j+1))  = {1-F(x(n-j+1))}/{1-F(x(n-j-k+1))} u ε [0,1] 
 
(ii)            v(x(n-j-k+1), x(n-j+1))   = x(n-j-k+1)   
 

Note that |
),(

),(

)1()1( +−+−−∂
∂

jnkjn xx
vu | = {f(x(n-j+1))/(1-F(x(n-j-k+1))}×f(x(n-j-k+1)) 

 
where ‘|·|’ represents absolute value. 
 
The implication of the transformation: 
       
                     u(x(n-j-k+1), x(n-j+1)) = {1-F(x(n-j+1))}/{1-F(x(n-j-k+1))}  
 
for F ε F, i.e. 1-F(x) = L(x)x-δ when n is large, can be determined as follows: 
 
Put:  (i)   x(n-j+1) = vnx*

(j) 

 
        (ii)  x(n-j-k+1) = vnx*

(j+k) 
 
Note that  for 1-F(x) = L(x)x-δ,     vn

δ = nL(vn) 
 
and                                                  u = {1-F(x(n-j+1))}/{1-F(x(n-j-k+1))} 
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  i.e.                                                 u = L(vnx*

(j))vn
-δ(x*

(j))-δ/ L(vnx*
(j+k))vn

-δ(x*
(j+k))-δ 

 
                                                           = (x*

(j))-δ/ (x*
(j+k))-δ 

 
using for example L(vnx*

(j))/ L(vn) → 1 as n → ∞. 
 
Thus the u-transformation implies for large  n  that 
 

(A.1)                               {U*(j, k)}-ρ = 
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kj

j

X

X
  

 
where  U*(j,k) has density  B(u:j, k), independent of X*

(j+k).  
 
 
Check: The independence can be checked by showing equivalence of the moments of 
 
{X*

(j)}φ  and those of {X*
(j)/X*

(j+k)}φ×{X*
(j+k)}φ on any dense φ-set interior to (0, j-ρφ), j-

ρφ>0. 
 
Note that E[{X*

(j)}φ] = Γ(j-ρφ)/Γ(j)  
 
This is the same as E{X*

(j)/X*
(j+k)}φ×E{X*

(j+k)}φ = E[{U(j,k)}-ρφ]× E{X*
(j+k)}φ] 

 
                                                                             = {B(j-ρφ,k)/B(j,k)}×Γ(j+k-ρφ)/Γ(j+j) 
 
                                                                             = Γ(j-ρφ)/Γ(j) 
 
 
 
This completes the proof of Theorem 1 
 
Note 2:  Theorem 2  (independence of consecutive ratios of extremes) 
 
Using the same notation as in Theorem 1 
 
 
For any F ε F,  

(A.2)                           
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where the right side is a product of independent {U*(m,1)}-ρ  variables, the U*(m,1) being  
beta (m,1) random variables, for m = 1,2, ⋅  ⋅  ⋅  j. 
 
Proof 
 
We re-write product (A.2) as 
 

(A.3)               

δ−

+ 
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jX
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Each of the ratios on the right side is a B(m,1) variable, m = 1, 2, ⋅ ⋅ ⋅ j,  using Theorem 1. 
Their independence then follows using Kendall and Stuart (1969), Exercise 11.8, and 
noting that the left side cannot be beta if the betas on the right side are not independent 
An alternative proof by equivalence of moments on a dense set (as outlined in the proof 
of Theorem 1) is also available using the uniqueness of moments for distributions (like 
beta) confined to closed intervals (see for instance Feller (1971) p.227). 
 
In fact Theorem 2 also succumbs to a proof based on extending the proof of Theorem 1 
as follows: 
 
 
Consider the joint distribution of  X(n-i-j-k+1), X(n-i-j+1) and  X(n-i+1) jointly distributed order 
statistics with common parent  F(·) ε F with density denoted by f#, i.e. 
 
 
f#(x(n-i-j-k+1), x(n-i-j+1), x(n-i+1))  
 
                 = Γ(n+1)/{Γ(n-i-j-k+1)Γ(k)Γ(j)Γ(i)×F(x(n-i-j-k+1))n-i-j-k×f(x(n-i-j-k+1)) × 
 
                     {F(x(n-i-j+1))-F(x(n-i-j-k+1))}k-1× f(x(n-i-j+1))× 
 
                     {F(x(n-i+1))-F(x(n-i-j+1))}j-1× f(x(n-i+1))× 
 
                     {1-F(x(n-i+1))}i-1  
 
 
This can be re-written as 
 
f#(x(n-i-j-k+1), x(n-i-j+1), x(n-i+1)) =  
 
  Γ(n+1)/{Γ(i+j+k)Γ(n-i-j-k+1)}×F(x(n-i-j-k+1))n-i-j-k×{1-F(x(n-i-j-k+1))i+j+k-1×f(x(n-i-j-k+1))× 
 
  Γ(i+j+k)/{Γ(k)Γ(i+j)}×[1-{(1-F(x(n-i-j+1))/(1-F(x(n-i-j-k+1))}k-1]× 
{(1-F(x(n-i-j+1))/(1-F(x(n-i-j-k+1))}i+j-1×f(x(n-i-j+1)/(1-F(x(n-i-j-k+1)))× 
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 Γ(i+j)/{Γ(j)Γ(i)}[1-{(1-F(x(n-i+1))/(1-F(x(n-i-j+1))j-1]× 
{(1-F(x(n-i+1))/(1-F(x(n-i-j+1))}i-1×f(x(n-i+1))/(1-F(x(n-i-j+1))) 
 
 
Now make the substitutions: 
 
(i)   u(x(n-i-j-k+1), x(n-i-j+1), x(n-i+1)) = (1-F(x(n-i+1))/(1-F(x(n-i-j+1)) 
 
 
(ii)   v(x(n-i-j-k+1), x(n-i-j+1), x(n-i+1)) = (1-F(x(n-i-j+1))/(1-F(x(n-i-j-k+1)) 
 
(iii)  v(x(n-i-j-k+1), x(n-i-j+1), x(n-i+1)) = x(n-i-j-k+1) 
 
 
Note that  
 
 

),,(
),,(

)1()1()1( +−+−−+−−−∂
∂

injinkjin xxx
wvu  =  

 
                              {f(x(n-i+1)/(1-F(x(n-i-j+1))}× {f(x(n-i-j+1)/(1-F(x(n-i-j-k+1))} 
 
 
So f#(x(n-i-j-k+1), x(n-i-j+1), x(n-i+1))  
 
= B-1(n-i-j-k,i+j+k)wn-i-j-k(1-w)i+j+k-1× 
 
   B-1(i+j,k)vi+j-1(1-v)k-1× 
 

   B-1(i,j)ui-1(1-u)j-1×
),,(

),,(

)1()1()1( +−+−−+−−−∂
∂

injinkjin xxx
wvu  

 
showing U,V, and W to be independently distributed. 
 
As in the proof of Theorem 1, consider the implications as n → ∞ when  
1-F(x) = L(x)x-δ, and 
 
(i')  x(n-i-j-k+1) = vnx*

(i+j+k) 
 
(ii')   x(n-i-j+1) = vnx*

(i+j) 

 
(iii')  x(n-i-j+1) = vnx*

(i) 

 
As outlined in the proof of Theorem 1, under these changes the transformation 
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u(x(n-i-j-k+1), x(n-i-j+1), x(n-i+1)) = (1-F(x(n-i+1))/(1-F(x(n-i-j+1)) 
 
becomes 
 
u(x*

(i+j+k), x*
(i+j), x*

(i)) = {x*
(i)/x*

(i+j)}-δ 
 
while the transformation  
 
v(x(n-i-j-k+1), x(n-i-j+1), x(n-i+1)) = (1-F(x(n-i-j+1))/(1-F(x(n-i-j-k+1)) 
 
becomes 
 
u(x*

(i+j+k), x*
(i+j), x*

(i)) = {x*
(i+j)/x*

(i+j+k)}-δ 
 
These transformations imply that  
 
{X*

(i)/X*
(i+j)} has the distribution of {U(i,j)}-ρ  where U(i,j) has beta density B(u:i,j) 

 
and is distributed independently of  
 
{X*

(i+j)/X*
(i+j+k)} which has the distribution of {V(i+j,k)}-ρ  where V(i+j,k) has beta 

density B(v:i+j,k). 
 
Thus the dependent set of extremes  {X*

(i), X*
(i+j), X*

(i+j+k)} is transformed to the 
independent random variables{(X*

(i)/X*
(i+j))-δ,  (X*

(i+j)/X*
(i+j+k))-δ, X*

(i+j+k)} the first two 
random variables having densities  B(u:i,j) and B(v:i+j,k) respectively. 
 
A special case of Theorem 2 then follows on putting i = j = k = 1; 
 
i.e. (X*

(1)/X*
(2)), (X*

(2)/X*
(3)) are independently distributed with distributions like 

{U(1,1)}-ρ, {U(2,1)}-ρ  where U(m,1) has beta density B(u:m,1), m = 1, 2. 
 
Evidently the mechanism extends to k ratios and Theorem 2 follows. 
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