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ABSTRACT 
Rapid growth in heavy-tailed claim severity in commercial liability insurance 
requires insurer response by way of flexible mechanisms to update premiums.  
To this end in this paper a new premium principle is established for heavy-tailed 
claims, and its properties investigated. 
Risk-neutral premiums for heavy-tailed claims are consistently and unbiasedly 
estimated by the ratio of the first two extremes of the claims distribution. 
That is, the heavy-tailed risk-neutral premium has a Pareto distribution with the same 
tail-index as the claims distribution. Insurers must predicate premiums on larger tail-
index values, if solvency is to be maintained. 
Additionally, the structure of heavy-tailed premiums is shown to lead to a natural 
model for tail-index imprecision (demonstrably inescapable in the sample sizes with 
which we deal). Premiums which compensate for tail-index uncertainty preserve the 
ratio structure of risk-neutral premiums, but make a 'prudent' adjustment which 
reflects the insurer's risk-profile. An example using Swiss Re's (1999) major disaster 
data is used to illustrate application of the methodology to the largest claims in any 
insurance class. 
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Introduction: objectives and motivation 
 
The economic imperative   
In an important report and policy document released by Swiss Re “The economics of 
liability losses – insuring a moving target” Enz and Holzheu (2004) have drawn 
attention to the alarming rate of increase of commercial liability insurance claims. The 
problem is most acute in the US where long term estimates suggest claims are 
growing 1.5 to 2 times as fast as nominal GDP. The relative cost of commercial 
liability claims in the US is currently about 0.64% of GDP, about three times the level 
seen in Europe’s largest economies. 
The report signals the need for a flexible mechanism for rapid adjustment of liability 
premiums to enable insurers to remain solvent, and for commercial liability insurance 
systems to remain in place and affordable.  
 
The pragmatic imperative 
In the introduction to their excellent book, Embrechts et al. (1997) declare 
 
 “ It is all too easy for the academic to hide constantly behind the screen of 
theoretical research: the actuary or finance expert facing the real problems has to 
take important decisions based on the data at hand.” 
 
In response to these two imperatives, this paper proposes a means of updating 
premiums for commercial liability insurance on an annual basis, to augment, not 
replace, existing statistical procedures.  
 
 
Specifically, we seek to provide a convincing answer to the question 'For the most 
costly classes of commercial liability insurance, to what extent can insurance 
premiums for next year's  k  largest claims be determined on the basis of this year's  k  
largest claims?' We have in mind a value of  k no greater than about 20; but for the 
relevant classes of insurance, 20 claims will cover the most significant costs. 
   
Claims are assumed to arise from heavy-tailed distributions with a mean but no 
variance, so not subject to conventional central limit theorems. 
The objective is to provide an apparatus for independent assessment of the impact of 
the previous year’s largest claims, held apart, so to speak from the ongoing trend in 
claim severity. 
 
Premium-setting for the largest fat-tailed general insurance claims based on a small 
sample poses two distinct statistical problems. 
 
Problem 1 is determination of a suitable premium principle for fat-tailed claims; that 
is, formulation of a general procedure by which premiums with appropriate properties 
can be calculated. 
 
Problem 2  comprises the very considerable technical difficulties which beset 
estimation of the tail-index of the any claims distribution, especially when sample 
sizes are small. Standard analyses of tail-index error derived from asymptotic results 
are ruled out, so that any tail-index value used to set premiums is necessarily 
imprecise.  
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In respect of Problem 1, we show that there is a natural premium principle ('the power 
principle' for fat-tailed claims delivering a premium which: 
  
•  has the ‘usual’ properties of a good premium (outlined below), 
•  characterises the claims distribution in terms of its first two extremes, 
•  admits a consistent unbiased estimator (with, it transpires, a Pareto distribution with 
the same tail-index as claims). 
 
The structure of the premium obtained from the power principle leads naturally to a 
particular model for tail-index uncertainty, which can then be used to construct 
risk-averse premiums which compensate for imprecision in knowledge of the tail-
index. 
 
•  By modelling imprecision in tail-index knowledge we are also able to clarify the 
nature of implicit judgements premium-setters make when resorting to pragmatic 
rules adopted in the face of tail-index uncertainty. 
 
•  In particular, it is shown that an insurer cannot remain risk-neutral in the face of 
tail-index uncertainty 
 
For Problem 2, a new methodology is developed for setting premiums for next year's  
k  largest extreme losses, based only on this year's set of extremes. 
This methodology is illustrated using Swiss Re’s ten largest man-made insured losses 
of 1999 (major fires and explosions).  
That premiums are themselves estimates (and so random variables) is frequently 
overlooked. The random nature of premiums for heavy-tailed extreme claims is made 
quite explicit; its exact distribution is determined. 
Further information about the dangerousness of the tail generating a particular class of 
claim is provided by the expected new record loss, and its approximate confidence 
interval. 
 
The paper is divided into the following sections. 
 
1: Premium principles 
 
Problem 1 We briefly survey premium principles for both thin and fat-tailed insurance 
claims; this serves to introduce in context, the power principle for fat-tailed claims. 
Properties of power principle premiums are outlined. 
 
2: Estimation of the tail-index 
 
Problem 2 We look briefly at models used for large claims, dedicated estimators of 
the tail-index, and maximum likelihood estimation. Results of a simulation example 
demonstrate the difficulties attaching to use of small samples to elicit information 
about heavy tails. Estimation and error assessment problems are discussed. 
 
3: The nature of risk-neutral fat-tailed premiums 
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The power principle is applied to heavy-tailed claims and features of risk-neutral 
premiums are discussed. The premiums are shown to be ratios of the two largest 
expected extremes of the claim distribution, consistently and unbiasedly estimated by 
the ratio of actual extremes. The distribution of the ratio of extremes i.e. the premium, 
is shown to be Pareto with the same tail-index as the claims.  
By implication, the long-term solvency of commercial liability system providers 
depends upon their setting premiums based on a larger tail-index than the claims 
generator.  
 
4: Modelling tail-index imprecision; risk-averse premiums   
 
The structure of the heavy-tailed premium is shown to lead to a natural model for tail-
index uncertainty. Risk-averse premiums are constructed as weighted mean values or 
alternatively as Bayesian posterior means. Use of such risk-weighted premiums is 
shown to be essentially equivalent to making a ‘prudent’ adjustment (i.e. based on 
each insurer's risk profile) to tail-index used for risk-neutral premiums.  
The consequence of an insurer remaining risk-neutral in the face of tail-index 
uncertainty is discussed. 
 
 
5: Setting premiums for the largest extreme claims  
 
The methodology is most transparent when the pattern of extreme claims is fairly 
pronounced. An illustration using Swiss Re (1999) data ‘man-made disasters; 10 
largest major fires and explosions’ which exhibits a fairly strong pattern enables 
convincing premium determination and provision of approximate confidence intervals 
for the largest expected claims.  
 
6: The expected new record disaster claim 
The dangerousness of the tail is further revealed by the value of the expected new 
record loss and its approximate confidence interval. 
 
7. Summary and conclusions 
 
8: Appendix with mathematical derivations 
 
9:  References 
 
 
 
 1.  Premium principles 
 
1.1  Survey of premium principles     
 
In general insurance markets, insurers are price setters. Markets are non-arbitrabeable 
(Albrechts, 1992), the competitive markets paradigm of Black and Scholes (1973), the 
starting point of so much of modern finance not being directly applicable.  
Bladt and Rydberg (1998) provide an alternative methodology for setting insurance 
premiums as an option price, without market assumptions. Our focus however, is on 
the traditional approach. 
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In the traditional approach annual aggregate claims SN for a given class of insurance 
derive from independent identically distributed random variables {Xi }, (Xi ≥ 0) with 
common distribution  F(⋅), i.e.  
 
(1.1)                                     SN = X1+X2+ ⋅ ⋅ ⋅ + XN 
 
where  N  is the claims number, independent of {Xi}. The expected value E[Xi] is 
assumed to exist, but in this paper, not necessarily  E[Xi

2] 
 
Part of the attraction of setting a premium as an option price is that the claims number 
distribution does not need to be formulated; the option premium determines the cost 
of bearing risk for each and every claim. 
 
We adopt the traditional approach because no convincing general model of the 
evolution of a claim over time, essential to an option-based treatment is available.  
The most basic premium principle applying to any realized claim  Xi (≡ X)  is to set 
premium P as 
 
(1.2)                                         P = E[X]+ W 
 
where  W  is a loading which does some or all of the following: 
 
 (i) takes account of the variability (at least) of claims 
(ii)  in probability, enables a reserve to accumulate  
(iii)  reflects the insurer's risk preferences, and 
(iv)  compensates the insurer for bearing risk. 
 
So called 'office premiums' take further account of costs of administration, marketing, 
management, government charges and so on. 
 
In this paper we distinguish between thin- and fat-tailed claims as follows:  
 
Thin-tailed  claims:  X  has moments of all orders.  
 
Fat-tailed claims:  E[Xr] only exists for r < δ. 
 
Even this dichotomy is not uncontroversial.  Notwithstanding, it is usual to describe 
distributions  F(x) generating fat-tailed claims X  as belonging to class F for which 
 
(1.3)                                       1- F(x) = L(x)x-δ (x > 0, δ > 0) 
 
                   
where L(x) is 'slowly varying at infinity' (L(ax)/L(x) → 1 as x → ∞, (a > 0)).  
(See for instance, Feller, (1971), p.278, Embrechts et al. (1997), p.131).  
 
For existence of E[X], δ > 1 is needed. If δ > 2, E[X2] exists and annual aggregate 
claims are subject to central limit theorems for the usual claims number distributions. 
(See for instance, Mikosch (1997). 
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A classic result for aggregate claims (1.1) is that when constituent claims {Xi} arise 
from (1.3), and when the sum is large, it is likely to be mainly attributable to the 
largest claim.  
Because for large x 
 
              Pr[largest of {Xi  of  N} > x] =  [1-{1-L(x)x

N
E -δ}N] 

 
                                                             ≈ ∑pn×nL(x)x-δ + o(x-δ) 
 
                                                             = E[N]×L(x)x-δ +o(x-δ) 
 
On the other hand,  
                                          Pr[SN > x] = Pr[∑pnF²(n) > x]   
 
where F²(n) represents the convolution of any  n  of the {Xi}, pn the probability of the 
realization of  n  claims. Thus 
 
                                         Pr[SN > x] ~  ∑npnL(x)x-δ         (using Feller, 1971, p.279)   
 
                                                          = E[N]×L(x)x-δ  
i.e. 
 
         Pr[largest of {Xi  of  N} > x] ~ Pr[SN > x] = E[N]×L(x)x-δ   
 
(c.f. Feller, 1971, p288, Problem 31, where the result is posed for Poisson N).                                             
 
Premium (1.2) gives no clue as to how  W  is to be determined. Other general 
premium principles which result in premium form (1.2) do provide some direction in 
this matter. 
 
One such general principle employs a pricing function mα(x) and a pricing rule (Gay, 
2004a) which determines premium P for claim  X  via 
 
(1.4)                                         mα(P) = E[mα(X)] 
 
where α is a 'risk' parameter. Some special cases are: 
 
(i)  Risk-neutral premiums;  P = E[X]  follows from (1.4) using mα(x) = x. 
 
(ii)  The important exponential principle (Rolski et al, (1999), p.80) for thin-tailed 
claims  X  possessing a moment generating function MX(⋅) determines P as 
 
(1.5)                                             P = {lnMX(s)}/s 
 
Premium (1.5) derives from pricing rule (1.4) using ms(x) = exp(sx).  
In this case risk parameter  s  is a measure of the (constant) absolute risk-aversion of 
the insurer (Pratt, (1964), Arrow (1971) Gay (2004b)). 
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Bowers et al (1986), p.7 infer that insurers are risk-neutral or only mildly risk-averse. 
 
This means that s is small and (1.5) leads to 
 
(1.6)                                P = µ + ½sσ2 + o(s) 
 
- 'the variance principle' (Rolski et al, (1999)). Here  µ = E[X], σ2 = Var[X] 
 
In fact if the claims number  N of (1.1) also possesses a moment generating function,  
the exponential pricing function can be applied to annual aggregate claims (1.1) since 
the moment generating function of  SN is MN[ln{MX(s)}], and this leads to some 
satisfyingly transparent expressions for the aggregate premium in various special 
cases(e.g. {Xi} negative exponential, N Poisson, full and stop-loss insurance) 
 
Equation (1.6) is much more informative about loading W to be added to the mean for 
each realised claim. It depends on variability of claims through claims variance  σ2, 
and the insurer’s risk preference via its measure s of constant absolute risk-aversion.  
 
Insurer compensation for bearing risk increases therefore, with both  s  and σ2. 
Because the premium is larger than the mean claim µ, and because the claims are 
subject to central limit theorems, reserves will, in probability accumulate.  
 
Variants of (1.6) are:   
 
the 'standard deviation principle' whereby premium P is set as:   P = µ + κσ,  
 
and 
 
the 'modified standard deviation principle' where P is set as:  P = µ +κσ/µ   
 
(both principles given in Rolski et al.(1999), p.80).  
 
These principles for thin-tailed claims specify the premium in terms of the first two 
moments of the distribution.           
 
(iii)  The quantile principle (e.g. Rolski et al.(1999), p.82) sets premium  P  for claim  
X  from distribution  F(⋅) using a suitable quantile of the distribution satisfying for 
instance 
 
(1.7)                               F(P) = (1+θ)-1/θ 
 
Equation (1.7) follows from (1.4) using the pricing function  mθ(x) = Fθ(x), (θ ≥ 0). 
Note that (1+θ)-1/θ is monotonically increasing with  θ with  e-1 < (1+θ)-1/θ < 1, (see 
Gay (2004a)). The quantile principle applies both to thin- and fat-tailed risk. 
 
(iv)  Fat-tailed claims  
Claims  X  arising from distributions from class F are characterised by tail-index  δ 
(often ρ (or γ) = 1/δ). The very description (1.3) of the class F in terms of  δ  suggests 
that the importance of any other distributional parameters pales into insignificance 
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compared with that of  δ. This is particularly so when  δ ε (1,2] (ρ ε [ ½ , 1), the focus 
of this paper when claims have no second moment.  
Distributions with tail-index in this range are used to model large claims arising in 
natural/man-made disaster, public liability, professional indemnity insurance and the 
like. 
The variance principle, standard deviation principle, the modified standard deviation 
principle (and of course the exponential principle) are not applicable to claims with no 
second moment.  
 
Indeed, application of the quantile principle is hazardous in these circumstances. 
Reasonably precise knowledge of the tail-index value is required to set premiums 
under the quantile principle. But estimation of  δ  is notoriously difficult, particularly 
with small sample sizes (simulation results and references are given below).  One 
cannot ensure, using an estimate of  δ,    that  chosen  P exceeds E[X].  Premium  P  
needs to be chosen using (1.7) with θ > θµ where 
 

(1.8)                                            F(µ) = µθ
µθ

/1)1( −+  
 
But the mean is 'a rare event' as δ ↓ 1 in that Pr(X > µ) → 0, µ ultimately being larger 
than any quantile! 
Use of a suitable pricing function mα(x) and pricing rule (1.7) leads to a new pricing 
principle for fat-tailed claims which we now describe. 
 
 
 
 
1.2  A new principle for fat-tailed claims: the power principle 
 
The pricing function mα(x) = xα+1 with pricing rule (1.4) leads to premium  P  for 
claims arising from distributions F(⋅)  of (1.3) as  
 
(1.9)                                          P(α) = {µ′α+1}1/(α+1),    (α+1 < δ) 
 
Premium P(α) depends on what moments claim X does possess, the risk parameter α 
measuring constant relative risk-aversion in the insurer (Pratt, (1964), Arrow (1971)). 
A more complete rationale for (1.9) is provided in Gay (2004b). 
 
 
1.3  Properties of  P(α) 
 
(i)  P(α) is risk-neutral for α =0, i.e. is the mean; P(α) increases as α increases (see 
for instance Puri and Sen, (1971), p.12) and reflects increasing risk aversion in the 
insurer. 
Additionally in obvious notation,  P  has the following attributes of a good premium 
(see for instance, Rolski et al, (1999, p.79):  
 
(ii)  PX+Y ≤ PX+PY  (premiums can't be reduced by splitting risks) 
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(iii)  PaX = aPX  (proportionality) 
 
(iv)  Pa = a   (no unjustified safety loading) 
 
(v)  If  X stochastically greater than Y, PX ≥ PY 
 
Note that µ′α+1 is the Mellin Transform of  f(x) for which extensive tables exist (e.g. 
Oberhettinger, (1974)). 
 
1.4  Application: Pareto premiums  
 
The Pareto distribution with F(⋅) such that 
 
 
(1.10)                               1 - F(x:δ,λ) = (1+x/λ)-δ  (x > 0, δ > 0) 
 
is used to model large claims. Not only because it is one of the simplest fat-tailed 
models, but also because, for all claim distributions F from F,  Balkema and De Haan 
(1974) and Pickands (1975) proved that it provides a good approximation to the 
conditional distribution Ft(x) where 
 

(1.11)                              Ft(x) = P(X ≤ t+x|X>t) = 
)(1

)()(
tF

tFxtF
−

−+  

 
governs behaviour of 'exceedances over threshold  t'. 
Distribution (1.11) is the heavy-tailed version of the Generalised Pareto Distribution 
(GPD); (for a more precise statement of exact convergence results see Drees, Ferreira 
and de Haan (2004)).  
In general δ is independent of  t, but  λ  is not. Leadbetter (1991) provided conditions 
under which  λ  also is independent of level t. 
For  δ > (α+1) application of the power principle (1.9) to Pareto claim (1+X/λ) leads 
to premium 
 
(1.12)                                   P(α) = {1-(α+1)/δ}-1/(α+1) 
 
for insurer with constant relative risk-aversion  α  for the class of insurance 
generating claim X (dealing with a claim in the form (1+X/λ) fulfils our purposes, and 
leads to results in a more convenient form than dealing directly with claim X). 
 
It is convenient to re-parameterise premium (1.12) in the form 
 
(1.13 )                                      Pβ = (1-ρ/β)-β 
 
where now β = 1/(α+1)  determines for each particular risk, the insurer's level of risk-
tolerance as the heaviest tail (β = ρmax)  with which the insurer will deal. 
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2.  Estimation of the tail-index 
 
Mikosch (1997) stated "Statistical analyses of large claim data are based on extreme 
value theory and related methods. These methods are known to be very sensitive with 
respect to the tails of the distribution, and therefore the existence of one very large 
claim may justify the fit of a Pareto instead of a lognormal distribution, say." 
 
While Teugels and Vanroelen (2004) declare  "The estimation of the extreme value 
index is the first and main statistical challenge" 
 
2.1  Estimators of the tail-index 
 
Direct tail-index estimators due to Hill (1975), Pickands (1975), Hall (1982), Smith 
(1987), Dekkers, Einmahl and De Haan (1989), Feuerverger and Hall (1999) are 
popularly used, perhaps in tandem with bootstrap methods (Draisma et al, (1999)).  
An inherent dilemma besets these methods; large variability when the number of 
extremes is too low, large bias when it is too large. A survey of estimators is provided 
in Grimshaw (1990), of bias problems by Beirlant et al, (1996). An approach to bias 
reduction via Box-Cox transforms is outlined in Teugels and Vanroelen (2004). 
Choice of an appropriate sample fraction to reduce bias is discussed for example in 
Dekkers and de Haan (1993), Pickands (1994), Drees and Kaufmann (1998), 
Danielsson et al (2001) and many of the references cited by these authors. 
 
2.2 A simulated estimation example  
 
Imprecision in knowledge of the tail-index, especially when estimated from small 
samples is inescapable (Beirlant et al, (1994), Huisman et al (2002)). The simulation 
results below clearly illustrate the problem, and give an indication of the level of 
estimation performance to be expected from tail-index estimators using small samples 
(the exercise can easily be replicated and checked on a standard PC or laptop). 
 
Simulation exercise 
A large number (100,000) samples of size n = 100 were generated from Pareto 
distribution    
 
(2.1)                          F(x) = 1-(1+x)-δ 
 
with δ = 1.1 
 
 Three tail-index estimators for δ were used:  
 
(i) the maximum likelihood estimator (MLE) 
 
(ii) a method of moments estimator in conjunction with a Box-Cox power 
transformation (see Teugels and Vanroelen, (2004), referred to as TVBC). 
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(iii) Hill's estimator   
 
Starting with 100,000 samples of fixed size n = 100 from distribution (2.1) with   
δ = 1.1 (so that µ = 10) we calculated the proportion of estimates which lay in the 
range δ = 1.11111 and δ = 1.09091  
That is, the proportion of estimates, expressed as a percentage, from which it would 
be concluded that  µ  is in the range (9,11).  
 
These values appear in rows 1-3,  "%; Run 1" etc.  
 
The overall 'grand mean' tail-index of the 100,000 sample estimates is also provided 
for each estimator. 
 
These values appear in "Values: Run 1" etc. 
 
Less relevant in the context of the fat-tailed class (1.3) but included for comparison is 
the performance of the sample mean of (2.1).  
Thus the first row of Table 1.1 shows that in the first run of 100,000 samples of size 
100, only 2.41% of tail-index estimates from the MLE and TVBC were consonant 
with a mean in the range (9,11), while for Hill's estimator the figure was 2.40%. The 
sample mean fell in this range in 3.09% of samples. 
Rows 2 and 3 have the results for Runs 2 and 3. 
 
The fourth row (Values: Run 1) gives the grand average of tail-index estimates over 
100,000 samples of size 100. For the MLE this was 1.205, 1.205 for TVBC, 1.207 for 
Hill's estimator. The mean of means was 7.749 (implying a tail-index of 1.129). 
 
 
Sample size  100 
Estimator MLE TVBC Hill Mean 
% ; Run 1 2.41 2.41 2.40 3.09 
% ; Run 2 2.45 2.43 2.44 3.08 
% ; Run 3 2.45 2.45 2.56 3.09 
Values: Run1 1.205 1.205 1.207 7.749 
Values: Run 2 1.133 1.132 1.128 7.585 
Values: Run 3 1.303 1.302 1.292 7.955 
Table 1.1  The percentage of Pareto samples of size 100 with δ = 1.1 (µ = 10) for 
which tail-index estimates imply a mean in the range (9,11) in 3 runs of size 100,000 
(rows 1-3). The grand average tail-index estimate is also given (rows 4-6). Column 
(5) contains corresponding values for the sample mean. 
 
The simulation exercise was repeated for sample size  n  increased to 200. Results are 
given in Table 1.2 
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Sample size 200 
Estimator MLE TVBC Hill Mean 
% Run 1 3.44 3.44 3.46 3.32 
% Run 2 3.34 3.44 3.42 3.33 
% Run 3 3.40 3.39 3.41 3.24 
Values: Run1 1.117 1.119 1.128 8.169 
Values: Run 2 1.177 1.178 1.180 8.197 
Values: Run 3 1.077 1.078 1.077 8.263 
Table 1.2  The percentage of Pareto samples of size 200 with δ = 1.1 (µ = 10) for 
which tail-index estimates imply a mean in the range (9,11) in 3 runs of size 100,000 
(rows 1-3). The grand average tail-index estimate is also given. Column (5) contains 
corresponding values for the sample mean. 
 
 
The results are not particularly encouraging. Perhaps the most unnerving aspect of the 
exercise is the variability in grand totals (means of 100,000 tail-index estimates) in 
the "Values" rows. While concordance between all three estimators is satisfactory, the 
results are less than reassuring for an insurer desperate to know the mean and tail-
index of the claims generating process. 
 
Doubling the sample size improves matters, but not markedly. 
 
(Hall (1982) investigated optimal achievable convergence rates of tail-index 
estimators). 
 
Conditional maximum likelihood (ML) estimation of  δ  based on the largest extremes 
is attractive, because for all insurance losses  governed by distributions from  F 
'exceedances over a threshold' have a generalized Pareto distribution equivalent to 
(1.10). 
 
2.3  An extended Pareto model  
 
Bierlant, Joossens and Segers (2004) have proposed an extension of the GPD devised 
to approximate the conditional distribution of  (X-t)  given  X > t  for much lower 
thresholds  t,  than the GPD is capable of. Establishing their result involves a 
refinement of Pickands' original (1975) workings. The new model is: 
 
(2.2)                       1-Ft(x:δ,λ,γ) = {1+x/λ+ν[1-(x/t+1)1+γ]}-δ 
 
where ν = t/λ-1 of which (1.10) is a special case when γ = -1. 
 
The extended model has the capacity to fit a much larger proportion of claims in large 
data sets. For the Society of Actuaries, (1991) Group Medical Insurance, Large 
Claims Database, the authors report good fits for 75,789 claims above $25,000  
compared with Generalized Pareto which only provided a good fit for 7,860 claims 
above $100,000. The principal deficiency of the new 3-parameter distribution being 
its inability to handle only the very largest claims. Such claims are the focus of this 

 12



paper (for which the (1.10) can be assumed to provide an adequate model, as does the 
Frechet distribution, which we now describe). 
 
2.4  Frechet extreme value distribution  
 
Another law which serves to characterise class  F is the Frechet distribution, 
 
 
(2.3)                             fk(x) = δx-kδ-1exp(-x-δ)/Γ(k)     (x > 0, δ > 0) 
 
 
for which  F  is the maximum domain of attraction (Embrechts et al, (1997) p.131) 
The standardised order statistic  X(n-k+1)/vn from a large sample of n  independent 
identically distributed claims with a common distribution  F ε F tends under non-
restrictive regularity conditions in law to  X*(k) - the kth extreme value  with 
distribution (2.3). Precise results are to be found in Gnedenko (1943).  
 
The sequence of normalizing constants {vn} – ‘the tail-quantile function – derives 
from n{1-F(vn)}=1  for large n  and for all k not too large compared with n (Kendall 
and Stewart, (1969), p.331, David and Nagaraja, (2003), p.306). For example, for 
Pareto (1.10), vn = λnρ. Tables of tail-quantile functions are given in Embrechts et al. 
(1997), Section 3.4 
 
A number of authors have cautioned about difficulties which arise in applying ML 
theory to tail-index estimation, (e.g. Smith (1985, 1987), Smith and Naylor (1987), 
Nagaraja, (2004)) which in any case only provides asymptotic standard errors 
((Embrechts et al, (1997), Chapter 6), Drees, Ferreira and de Haan, (2004)) for 
situations (i.e. for particular classes of general insurance) where in fact sample sizes 
are likely to be small even with pooled data across entire national industries.  
 
 
 3. The nature of risk-neutral fat-tailed premiums 
 
The insurer is risk-neutral or only mildly risk-averse. 
 
From (1.13) for claims above a sufficiently high level, i.e. which are Pareto (1.10) 
premium  P  for a claim in the form (1+X/λ) is given by  P  = (1-ρ/β)-β.  
Risk-neutral insurers have risk-aversion parameter  α = 0, i.e. β = 1, the premium 
being E[1+X/λ] = (1-ρ)-1. 
 
Less obvious is that for Pareto (1.10),    
 

(3.1)                              (1-ρ)-1 = 
]/1[

]/1[

)1(

)(

λ

λ

−+

+

n

n

XE
XE

 

 
where  X(k) is the  kth  order statistic from a sample of size  n. 
 
Thus the risk-neutral premium is the ratio of the two largest expected claims. 
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More generally, we have the following. 
 
Theorem 1 For integer k ≥ 1, and Pareto (1.10) order statistics X(⋅)  
 

(3.2)                            
]/1[

]/1[

)(

)(

λ

λ

kn

n

XE
XE

−+

+
= kB(k,1-ρ) 

 
 
independently of  n. Here B(a,b) = Γ(a)Γ(b)/Γ(a+b), a ≥0, b≥ 0, and ρ = 1/δ. 
 
 
Proof: This appears in Appendix, Note 1. 
 
Heuristically, as  n  is increased, the value of the limit remains unchanged (since it is 
independent of n) but the random variable 1+X(n-k)/λ  takes on the distributional 
character of  vnX*

(1+k)  so that we obtain 
 
 
 
Corollary 
 
For large n (3.2) leads to the relation 
 

(3.3)                      
][

][
*

)1(

*
)1(

kXE

XE

+
= kB(k, 1-ρ) 

 
In fact Equation (3.3): 
 
(i)  can be verified directly (since E[X*

(1+k)] = Γ(k+1-ρ)/Γ(k+1) the expected value 
can be found by  integration from (2.3) in the usual way), or 
 
(ii) follows for k ≥ 0, from existence of  E[(X(n-k))1+ε] for 1+ε < 1/ρ and hence the 
uniform integrability of 1+X(n-k)/λ allowing application of Theorem 25.12 Corollary 
of Billingsley, (1995) on convergence of expected values when sequences of random 
variables converge weakly. 
 
Remark 
Equation (3.3) is of somewhat broader ambit than (3.2) in that it is applicable to any 

distribution from  F. As  n  is increased, the Pareto ratio 
]/1[

]/1[

)(

)(

λ

λ

kn

n

XE
XE

−+

+
 predicated 

on exceedances, has limit 
][

][
*

)1(

*
)1(

kXE

XE

+
 - the ratio of expected extremes for any fat-

tailed distribution in the Frechet domain of attraction.  
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The universality of this latter ratio depends however, on a different limiting process, 
requiring the extremes to be the largest order statistics deriving from a sufficiently 
large sample. (see for instance, Kendall and Stuart, (1969), p.330). That is, the limit 
does not require (directly at least) the notion of 'an exceedance'. 
 
For any fat-tailed distribution approximately Pareto above level  t, the risk neutral 

premium for claim 1+X/λ(t) is  
][

][
*

)2(

*
)1(

XE

XE
 , i.e.  

 

(3.4)                                    P = λ(t)
][

][
*

)2(

*
)2(

*
)1(

XE

XXE −
 

Fitting exceedances above a threshold is treated for example in Embrechts et al. 
(1997), Section 6.5 
 
Estimating equations for ρ 

Equation (3.3) provides that *
)1(

*
)1(

kX

X

+
is a consistent estimator of kB(k,1-ρ). 

Explicitly:          
][

][
*

)2(

*
)1(

XE

XE
= (1-ρ)-1 

 
 

                           
][

][
*

)3(

*
)1(

XE

XE
= (1-ρ)-1(1-ρ/2)-1 

 

                         
][

][
*

)4(

*
)1(

XE

XE
= (1-ρ)-1(1-ρ/2)-1(1-ρ/3)-1 

and so on. 
 
Consistency of estimators is sine qua non; a real bonus however is the following: 
 
Theorem 2     
 
For Pareto (1.10) order statistics  X(⋅)   
 

(3.5)                              












+

+

− λ

λ

/1
/1

)(

)(

kn

n

X
X

E  = kB(k,1-ρ) 

for integer  k ≥1, independently of n.  
 
Proof: This appears in Appendix, Note 2 
 
Since the result is true for all  n, we obtain: 
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Corollary:   

(3.6)                           














+
*

)1(

*
)1(

kX

X
E  = kB(k,1-ρ) 

 

Thus the ratios *
)1(

*
)1(

kX

X

+
are also unbiased estimators of  kB(k,1-ρ) 

 
Proof : This is in Appendix Note 2. 
 
 
 
3.1  The distribution of the heavy-tailed premium 
 

It is shown in Appendix Note 2, that  U(k,δ) = 

δ−

+ 













*
)1(

*
)1(

kX

X
is distributed as B(k,1). 

In particular U(1,δ) = 

δ−















*
)2(

*
)1(

X

X
is  B(1,1), i.e. uniformly distributed, and  

 

V = *
)2(

*
)1(

X

X
, the unbiased estimator of premium (3.4), has Pareto distribution  

 
(3.7)                                  Fδ(v) = 1-v-δ   (1 <v < ∞) 
 
i.e. is Pareto with the same tail-index as the claims distribution. 
 
Note that E[V] = δ/(δ-1) = (1-ρ)-1 = E[1+X/λ] with Var[V] = ∞ follow from (3.7). 
 
It is indeed remarkable that the premium principle (1.9) determines heavy-tailed 
premiums so transparently and so convincingly! 
 
Remarks:   
 
(i)   In the case claims are purposively modelled with no variance, all premiums are 
greater than (1- ½)-1 = 2 by assumption.  
 
(ii)  Distribution (3.7) offers new insight into the nature of heavy tailed premiums, and 
the requirements for long-term insurer solvency; premiums must be set via a 
mechanism dependent on a larger tail-index than the claims generation process. 
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(iii)  Broadly speaking:  "premiums for thin-tailed claims are determined largely by 
the first two moments of the claims distribution; premiums for fat-tailed claims are 
determined by the first two extremes" 
 
 
4. Modelling tail-index imprecision: risk-averse premiums 
 
4.1 A natural model for tail-index imprecision 
 
For Pareto claim (1+X/λ) the risk-averse premium is Pβ = (1-ρ/β)-β  for an insurer 
with constant relative risk-aversion α; β = 1/(α+1). Thus  β represents the largest tail-
index with which an insurer with this risk profile will deal; i.e. β = ρmax. 
 
A natural model for uncertainty in  ρ  thus suggests itself in the form of the 
transformed beta distribution 
 
(4.1)                                       fρ(x) = νβ-νxν-1,   (0 ≤ β <1, ν ≥ 1) 
 
A premium P(ν,β) which takes account of tail-index uncertainty is then determined by 
the integral 
 

(4.2)                                       P(ν,β) =  ν (x/β)∫
β

0

ν-1(1-x/β)-βdx/β 

 
either as a mean value, or as a Bayesian posterior mean, if (4.1) is taken as the prior 
for  ρ. Under either interpretation, 
 
(4.3)                                       P(ν,β) = νB(ν,1-β) 
 
is a premium compensating for uncertainty in  ρ (c.f. Theorem 2 with ν = k). 
 
 
4.2  Pragmatism for the insurer: 
 
 If  ν = 1 in (4.3), prior uncertainty in  ρ  is modelled by the uniform distribution over 
[0,β). This is the 'least informative prior', the 'law of equal ignorance' for  ρ on [0,β). 
 
Then                                             
 
(4.4)                                            P(1,β) = (1-β)-1  
 
where the unknown tail-index  ρ  is now replaced by β =ρmax. 
 
•  For claim (1+X/λ) with  ρ  known, a risk-neutral insurer would set premium (1-ρ)-1.  
If  ρ  is unknown, the insurer hedges against uncertainty by setting premiums on the 
basis of the largest tail-index (ρ = β) with which it will deal!  
 
•  For finite premiums, the insurer must have β <1, i.e. must be risk-averse. 
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•  If the insurer has chosen β it has in effect stipulated the distribution  Fδ(v) = 1-v-1/β 
for the premium (c.f. Equation (3.7)). So long as β > µ, reserves will in probability 
accumulate, and the insurer may remain solvent. 
 
Embrechts and Veraverbeke (1982) found that insurers required very large reserves to 
deal in heavy-tailed claims. 
 
We now illustrate how the foregoing theory provides a coherent methodology not 
only for pricing general claims, but also for pricing of next year's  k  largest claims on 
the basis of this year's  k  largest claims. 
 
5.0  Setting premiums for the  k  largest extreme claims  
 
That claim severity is increasing in expensive classes of general insurance seems 
overwhelmingly probable. 
Swiss Re identify the increasing litigiousness in US as a major factor (less than half 
the costs awarded by courts are returned to victims). But other factors are easily 
identifiable. Hurricanes and winterstorms account for a large proportion of US annual 
insured losses (see for instance Swiss Re’s annual summary of world catastrophe’s 
and insured losses in  Sigma, No. 2, (1999), (2000), etc.). 
Hsieh (2004) points to a 1994 report by Insurance Services Office, Inc. suggesting 
that population density on the storm-prone southwestern Atlantic coast of the US 
increased nearly 75% from 1970 to 1990, a much greater increase than the 20% 
countrywide figure. 
Accepting the likelihood of a gradually increasing tail-index in claims generation 
processes (whatever the mechanisms) how can insurers monitor developments? 
This can only come from examination of the largest claims in relevant insurance 
classes.   
 
5.1 Application: Premiums for year 2000 ten largest extreme claims for man-made 
disasters 'major fires and explosions' based on 1999  largest claims (Table 2) 
 
Ten largest insured losses (man-made disasters 'major fires and explosions, 1999) 
Date Place Event Insured Loss (USD 

millions, 1999) 
1 March US, Dearborn, MI Explosion and fire 

at power station 
650 

5 July US, Gramercy, LA Explosion, 
Aluminium plant 

275 

25 March US, Richmond, CA Oil refinery 
explosion 

247 

17 February US, Kansas City Power plant 
explosion 

196 

12-13 April UK, Edinburgh Explosion at 
transformer factory 

137 

8 June Germany, 
Wuppertal-
Eberfield 

Chemicals plant 
explosion and fire 

102.5 

18 August Germany, Gendorf Polymer plant 
explosion 

92.2 
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27 October Germany, Vahdorf Turkey 
slaughterhouse fire 

82 

20 October Germany, 
Darmstadt-
Arheilgen 

Fire at liquid 
crystal production 
plant 

71.7 

23 February US, Martinez, CA Oil refinery 
explosion 

71 

Table 2  Extreme claims data: Insured losses, (1999)  Man-made disasters  
Source: Sigma No. 2 (2000), published by Swiss Re.  
 
The ten extremes display a consistent pattern (Figure 1) suggestive in relative terms, 
of the sort of 'decay' among the largest extremes to be expected from theory; that is 
from equations (3.3) and (3.5) assuming a fixed tail-index ρ. 
Hall and Tavjidi (2000) have investigated non-parametric trend-fitting to extremes 
over time. 
 
The assumptions which underpin our subsequent analysis are as follows: 
 
(i)  The data represent extreme claims from the class of distributions  F 
 
(ii)  The tail-index is fixed for the extreme claims.   
 
(iii)  There are sufficient 'ordinary' claims (not extremes) realized to justify assuming 
that the Frechet extreme distribution applies with tail-index  ρ to the  k  largest claims. 
 
(iv)  Ordinary claims may arise from a mixture of distributions, some with the same 
tail-index as for extremes. Other ordinary claims arise from other thin- or fat-tailed 
distributions.  
 
The total number of claims is not necessarily known; only the  k  largest claims.  
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 Figure 1  Ten largest insured losses for man-made fires and explosions, (1999), USD 
millions. 
 
5.2  Results from Maximum Likelihood Estimation 
 
Drees et al (2004) outline use and discuss properties of conditional maximum 
likelihood estimation in the sense of Cox and Hinkley (1974, p.17) predicated on  
exceedances above a sufficiently high level having a Generalized Pareto distribution. 
 
The conditional likelihood function is of the form: 
 

(5.1)                L1[X| X(n-k) = x(n-k)] =  ∏
−

=
−

1

0
)( )(

k

j
jnyf

 
where  X = [X(n), X(n-1) · · · X(n-k+1)], y(n-j)  = x(n-j) – x(n-k)   and f(·)  is the Pareto density 
(1.10) 
 
An alternative form of the conditional maximum likelihood which follows from the 
Markov character of the order statistics is  
 
(5.2) 
                  L2[X(n), X(n-1) · · · X(n-k+1)| X(n-k) = x(n-k)]     
 

                                            = /[1- F(x∏
−

=
−

1

0
)( )(

k

j
jnxf (n-k)]k 

 
where F(·) is Pareto (1.10) and f(·) is its density. 
 
For application to the data set in Table 2, L1(·) is general in that it is applicable to any 
distribution from (1.10). The second likelihood L2(·) presupposes Pareto for the loss 
distribution. But both assumptions lead to the same Frechet extremes. 
 
MLE procedures applied to the data of Table 2 lead to the following estimates: 
  
(i)  ρ̂  = 0.4982, = 155.1 1̂λ
 
(ii) ρ̂  = 0.4982, = 84.1  2λ̂
 
Note that  = - 71 = - x2λ̂ 1̂λ 1̂λ

*
(10) consistent with the assumptions. 

 
5.3  Estimates from the pattern of the set of extremes 
 
We have from Theorem 2 and Equation (3.5) a set of estimating equations arising 
from 
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













+
*

)1(

*
)1(

jX

X
E  = jB(j,1-ρ)   j = 1,2, ⋅ ⋅ ⋅ (k-1) 

providing (k-1) estimates of ρ all involving the largest extreme.  
 
Equation (3.4) affirms that the two largest observed claims are the most important for 
setting premiums. 
 
 
The estimating equations are: 
 

   *
)2(

*
)1(

X

X
= (1-ρ)-1 ⇒ ρ̂  = 0.5769 

    *
)3(

*
)1(

X

X
= (1-ρ/2)-1(1-ρ)-1 ⇒ ρ̂  = 0.4950 

 

    *
)4(

*
)1(

X

X
= (1-ρ/3)-1(1-ρ/2)-1(1-ρ)-1 ⇒ ρ̂  = 0.5115 

 
etc.   
 
The complete set of tail-index estimates is:  
 
0.5769,0.4950,0.5115,0.5735, 0.6144,0.6139,0.6195,0.6306,0.6178.  
 
The value of  ρ̂  = 0.5769 deriving from the first two extremes would seem to deserve 
special significance. 
The mean of the nine estimates is 0.5836, their mean absolute deviation 0.0395.  
The value ρ̂  = 0.6178 provides the best fit among the estimates in terms of 
minimising  

                               ∑k|observed *
)1(

*
)1(

jX

X

+
 - jB(j,1- ρ̂ )|. 

 
Figure 2  below shows that the maximum likelihood estimate ( ρ̂ = 0.4982) does not 
fit the observed structure of extremes at all well, compared with say ρ̂ = 0.62 
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Observed and expected structure of extremes
Ten most costly man-made disasters (1999)
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Figure 2  The observed and expected structure of Swiss Re's man-made disaster 
extremes, using rho = 0.4982 (the maximum likelihood estimator) and rho = 0.62. 
In Figure 2, the first column in each group represents observed X*(1)/X*(1+j). The 
second bar is its expected value jB(j,1-ρ) when ρ = 0.62.  
 
The third bar is jB(j,1-ρ) when ρ = 0.4982 (the MLE). 
 
 
 
 
5.4  Some diagnostics for the tail-index estimates based on ratios of the extremes 
 

In Appendix Note 2,  the distribution of  U(j,δ)) = 

δ−

+ 










*
)1(

*
)1(

jX

X
   is shown to be 

B(j,1). 
This allows us to do the following. The value  ρ = 0.62  provides a good fit to the 
extremes. 
By assumption, the upper limit of  ρ is 1. To test the adequacy of  rho = 0.62 we find 
first value of  ρ  which would be rejected in a 10% one-sided test.  
 
The rejection region for a size α test is defined by  1- [1- u(k,δ)]j < α or 
 
(5.3)                        ρ < ln[X*

(1)/X*
(1+j)]/ln[{1-(1-α)1/j}-1] 

 
Table 3 below contains for each value of  j = 1,2, ⋅ ⋅ ⋅ (k-1): 

(i)  The lower 90% C.I. on  U(j,δ)) = 

δ−

+ 













*
)1(

*
)1(

jX

X
(whatever value of δ is chosen). 

(ii)  The actual value of  U(j,δ)  for a given value of  ρ = 1/δ  (ρ = 0.62 in Table 3) 
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(iii)  The upper 90% C.I. on  U(j,δ)) = 

δ−

+ 













*
)1(

*
)1(

jX

X
(whatever value of δ is chosen). 

 
(iv)  The largest value of  ρ we would reject at  the lower 10% level given  U. 
i.e. the first value of  ρ (< 0.62) which is not consistent with the observed ratio of 
extremes, at the 10% level. For example, the observed ratio X*

(1)/X*
(2) is inconsistent 

with values of  ρ  below ρ = 0.3736 using an α = 0.10 test; the ratio X*
(1)/X*

(3) is 
inconsistent with values of  ρ < 0.3258 and so on. 
 
 
 
               j               lower 90%        U(j,δ)          upper 90%      Rejection ρ   

1                 0.1000          0.2497          0.9000          0.3736 
2                 0.0513          0.2100          0.6838          0.3258 
3                 0.0345          0.1446          0.5358          0.3561 
4                 0.0260          0.0812          0.4377          0.4266 
5                 0.0209          0.0508          0.3690          0.4772 
6                 0.0174          0.0429          0.3187          0.4821 
7                 0.0149          0.0355          0.2803          0.4925 
8                 0.0131          0.0286          0.2501          0.5084 
9                 0.0116          0.0281          0.2257          0.4972 

              Table 3   Diagnostics for  ρ = 0.62  based on the distribution of  U(j,δ) 
 
If the proposed value of  ρ were changed from ρ = 0.62, only the third column of 
Table 3 would be altered (i.e. U(j,δ)). 
 
In particular, the MLE estimate is not consistent (at the 10% level) with the actual 
ratio  X*

(1)/X*
(9)  since the MLE value ρ = 0.4982  is less than 0.5084  

 
 
5.4 Setting premiums 
 
Once a value of  ρ  is chosen, the structure of the expected values of 

*
)1(

*
)1(

jX

X

+
 is fixed at jB(j,1-ρ). The ratios decrease in relative terms as  ρ  is increased; 

that is, lower values of  ρ  produce relatively larger values of lower order extremes. 
This is depicted in Figure 3. Choice of a ‘prudent’ value of  ρ (i.e. ρ = β = ρmax as in 
(4.4) means that the premium income for the k claims is derived mainly from the 
premium for the largest claim. This after all, is what is needed to match expected 
claim losses. 
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Premium Structure as rho varies
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Figure 3  Large values of rho imply large premiums for the largest extreme; in 
relative terms premiums for the other extremes decrease more rapidly for fat tails than 
for thinner tails. (to provide comparison, premiums are standardised on the second 
largest claim) 
 
5.5 Possible premiums (for year 2000 ten largest claims: man-made disasters) 
 
A value of  ρmax = β is decided, and a premium for the largest extreme at least as 
large as the observed extreme is chosen (by doing the latter, we insure the premium 
for the largest extreme has infinite variance). Other premiums ensue from Equation 

(3.3) with ρ = β; i.e. 
][

][
*

)1(

*
)1(

jXE

XE

+
= jB(j,1-β) 
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Premiums based on  Man-Made disasters 1999
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Figure 4  The actual premiums are set as  X*

(2)/(1-β), β = 0.58(0.01)0.62. 
 
More information about the premiums is provided in Table 4 which gives: 
 (i) the premium for the largest claim 
(ii) the sum of the k=10 premiums 
(iii) the upper 90% approximate confidence limit for the expected claim predicated on 

given β; i.e. 0.05-β×X*
(2)  based on the uniform distribution of U(1,δ)) = 

δ−















*
)2(

*
)1(

X

X
for 

given δ (= δmin = 1/ρmax = 1/β). 
 
 
 Actual β = 0.58 β = 0.59 β = 0.60 β = 0.61 β = 0.62 
X*

(1) and 
premiums 

650 655 671 687 705 724 

Total 
premiums 

1924 1921 1923 1923 1926 1931 

90% CI  1563 1610 1659 1710 1762 
Table 4  Table showing premium for largest extreme, total premiums for k = 10 
claims, and 90% upper CI for largest expected claim. 
 
The third row emphasises the dangerousness of tails as heavy as these! 
 
 
 
 
 
 
6.0  Expected value of the new record man-made disaster loss 
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Additional information about the menace in the tail is provided by the expected value 
of the new record disaster loss. 
 
A consistent estimator  (NR)  of the insured cost of the expected new record man-
made disaster is: 
 

  (6.1)          NR =  *
)2(

*
)1(

X

X
× ∑

−

= +

1

1 *
)1(

*
)1(k

j jX

X
× )(*

)1(
)(*

)(

)1*(
)(

)1*(
)1(

δδ

δδ

−−

−−
+

−

−

XX

XX

k

jj  

 
Equation (6.1) - a regression estimator based on observed values of the first  k 
extremes - established in the Appendix, Note 3, the value of  δ  used deriving from 

*
)2(

*
)1(

X

X
. The estimator (like the record itself) has infinite variance. It is nevertheless 

possible to find an approximate confidence interval. 

Since 

δ−

+ 













*
)1(

*
)1(

jX

X
is B(j,1), upper 100(1-α)% confidence limits L(j,δ,α) derive from 

the conditional distribution of  X*
(1) given X*

(1+j)  based on known ρ for each j.  
The approximate upper confidence interval uses the rho estimate obtained from 

*
)2(

*
)1(

X

X
, and is the maximum of the L(j,δ) ; (Appendix, Note 3) 

 
Application 
Substitution of actual extremes for Swiss Re’s  man-made disaster data, gives the 
expected new record value as 733 USD (millions). 
However, the approximate 95% upper C.I. for the new record is 5334 USD (millions). 
 
 
7.0 Summary and Conclusions 
 
The rapid growth in commercial liability insurance claims requires a similar rapid 
adjustment of premiums. A methodology is provided which assists insurers to make 
judgements about premiums for the most costly claims they can expect on the basis of 
the latest available large claims and the tail-index of their generating process. 
Information provided is ancillary to that available from on-going conventional 
statistical data analyses in respect of large claims. 
A premium principle for fat-tailed claims with desirable properties is established. 
Whereas premiums for thin-tailed claims depend on the first two moments of the 
claims distribution, fat-tailed premiums depend on the first two extremes. 
A consistent and unbiased estimator can be found for the premium, as well as its 
distribution. 
Modelling uncertainty in the tail-index effectively requires the insurer to use a 
prudently large value of the tail-index. Long-term solvency can only be attained if the 
premiums are predicated on heavier tails than the claims generation process. 

 26



A large proportion of premium income for the largest  k  claims derives from the 
premium for the largest claim. 
This mimics the structure of expected claims themselves. 
Implementation of the methodology is illustrated using Swiss Re’s 10 largest man-
made disasters of 1999. 
Confidence intervals for the expected largest claim and a formula for the expected 
new record disaster and its approximate upper confidence limit, emphasise the 
dangerousness of tails with ρ in the range [½,1). 
 
8.0 Appendix:  
 
Note 1   For Pareto (1.10) order statistics X(⋅)  
 

                         
]/1[

]/1[

)(

)(

λ

λ

kn

n

XE
XE

−+

+
= kB(k,1-ρ) 

 
By direct integration E[1+X(j)/λ] = B(j,n-j-ρ+1)/B(j,n-j+1) 
 
Using j = n in the numerator and j = n-k in the denominator, the ratio  
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                              = kΓ(k)Γ(1-ρ)/Γ(k+1-ρ) 
 
                              = kB(k,1-ρ) 
  
When k = 1, kB(k,1-ρ) = (1-ρ)-1. 
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For a sample of  n  i.i.d.r.vs with common distribution  F(⋅) and density f(⋅) denote by 
X(1), X(2), ⋅ ⋅ ⋅ X(n) the ascending order statistics. 
 
The conditional density of  X(k) given  X(j) = x(j), (j > k) is f#(x(k)|x(j)) where 
 
(A1)  f#(x(k)|x(j)) = B-1(k-j, n-k+1){F(x(k)-F(x(j)}k-j-1{1-F(x(k))}n-k f(x(k)) 
                             /{1-F(x(j))}n-j  
 
(see for instance Arnold, Balakrishnan and Nagaraja (1993), Theorem 2.4.1) 
 
Putting  k = n-j+1, j = n-j-k+1 we obtain: 
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f#(x(n-j+1)|x(n-j-k+1)) = B-1(k,j) {F(x(n-j+1)-F(x(n-j-k+1)}k-1{1-F(x(n-j+1))}j-1 f(x(n-j+1)) 
                                /{1-F(x(j))}j+k-1 
 
Now consider the special case when F(⋅) is Pareto (1.10), so that  
 
                                           F(x) = 1-(1+x/λ)-δ  (x > 0, δ > 0) 
 
And we make some substitutions: 
 
(i)   u = {1-F(x(n-j+1))/{1-F(x(n-j-k+1))}= (1+x(n-j+1)/λ)-δ/(1+x(n-j-k+1)/λ)-δ 
 
Then  
 
(A2)            f#(x(n-j+1)|x(n-j-k+1))dx = B-1(k,j)(1-u)k-1uj-1du 
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Putting j = 1 leads to 
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Since the conditional expectation is a constant independent of X(n-k) it is also the 
unconditional expectation, and (3.4) follows. Alternatively, the result can be derived 
by direct integration of the joint density of  X(n) and X(n-k).                                                                   
 
(ii)  We could use the Billingsley uniform integrability approach of (3.3) again but the 
following heuristic argument, (which can easily be made rigorous), is more 
interesting. 
 
In anticipation of convergence in law to extreme value distributions, in (A2) we  
 
put                  x(n-j+1) = λnρx*

(j)   and   x(n-j-k+1) = λnρx*
(j+k)    

 
where ρ = 1/δ  and vn = λnρ is the tail-quantile function for Pareto. 
 
Then the substitutions together lead to  
 
                    u = (1+nρx*

(j))-δ/(1+nρx*
(j+k))-δ ≈ (x*

(j))-δ/(x*
(j+k))-δ 

 
for large n. 
 
Thus obtain the conditional distribution of the jth extreme given the (j+k)th extreme 
 
(A3)  f*(x*

(j)|x*
(j+k))dx*

(k) =  
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(Incidentally this also shows that the unconditional distribution of  
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B(j,k). The result can also be established directly from the joint distribution of Pareto 
X(n-j+1) and X(n-j-k+1). The ratio of Pareto order statistics is again independent of  n, 
passage to the limit producing the ratio of general extremes, and the normalizing 
constants ‘cancelling out’ (c.f. Equation (A3) none of the ratios are altered if 
normalizing constants are inserted) 
 

Hence 
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E  = Γ(j-ρ)Γ(k+j)/Γ(k+j-ρ)/Γ(j) from which (3.5) follows on putting 

j=1. 
 
Note that (A3) provides for possible inference for the ratios of extremes since 
 
{X*

(1)/X*
(1+j)}-δ has a B(j,1) distribution. 

 
 
Note 3;  The expected new record man-made disaster insured loss 
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A new record loss is presaged whenever one of the old extremes is superceded. Its 
expected value can be estimated by a regression estimator as follows; 
 
The conditional expected value of a new record (1+j)th extreme, given a new 
observation between X*(1+j) and X*(j) (assuming  δ  or  ρ  to be known, and the 
extremes to be Pareto distributed) is: 
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is an unbiased estimator of jB(j,1-ρ)} 

 
 i.e. of E[X*(1)|X*(1+j)], which is then applied to the new conditional expected value of  
  X*(1+j)  given the new observation  
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 in the old range (X*(1+j), X*(j)).  
 
The mutually exclusive contributions from new extremes replacing the old ones are 

added together with (1-ρ)-1 replaced by its unbiased estimator *
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value δ is also derived. Each of the (k-1) new estimates of the expected values of X*
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is probability weighted by 
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Note that the estimator has infinite variance (as indeed does the largest extreme itself 
when ρ is in the range  [½,1)). 
 
A 100(1-α)% confidence limit for each expected new value of X*

(1) given the average 
value of any new X*

(1+j) in the old range (X*(1+j), X*(j)) is  
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deriving from the conditional distribution of  X*
(1) given X*

(1+j)  based on known ρ for 
each j. The approximate confidence interval uses the estimate of  ρ obtained from 

*
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*
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X
, and the maximum of L(k,δ). 

Hill (1994) used  a Bayesian approach to forecasting extremes; the present approach 
is Bayesian to the extent that ρmax = β (c.f. Equation (4.4) might be used to estimate 
the new record, rather that the value deriving from the unbiased estimator. 
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