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Nonparametric time series

forecasting with dynamic updating

Abstract

We present a nonparametric method to forecast a seasonal univariate time series, and pro-

pose four dynamic updating methods to improve point forecast accuracy. Our methods consider

a seasonal univariate time series as a functional time series. We propose first to reduce the di-

mensionality by applying functional principal component analysis to the historical observations,

and then to use univariate time series forecasting and functional principal component regression

techniques. When data in the most recent year are partially observed, we improve point forecast

accuracy using dynamic updating methods. We also introduce a nonparametric approach to con-

struct prediction intervals of updated forecasts, and compare the empirical coverage probability

with an existing parametric method. Our approaches are data-driven and computationally fast,

and hence they are feasible to be applied in real time high frequency dynamic updating. The

methods are demonstrated using monthly sea surface temperatures from 1950 to 2008.

Keywords: Functional time series, Functional principal component analysis, Ordinary least

squares, Penalized least squares, Ridge regression, Sea surface temperatures, Seasonal time se-

ries.
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1 Introduction

We consider how to forecast a functional time series when the most recent curve is partially ob-

served. This situation arises most frequently when a seasonal univariate time series is sliced into

segments and treated as a time series of functions. The idea of forming a functional time series

from a seasonal univariate time series has been considered by several authors, including Besse et al.

(2000), Antoniadis & Sapatinas (2003), Ferraty & Vieu (2006, Chapter.12), Aneiros-Pérez & Vieu

(2008) and Antoch et al. (2008). However, little attention has been given to the practical problem

of forecasting when the final curve is incompletely observed.

Let {Zw , w ∈ [1, N]} be a seasonal univariate time series which has been observed at N equispaced

times, where the seasonality is of length p. When the seasonal pattern is strong, one way to model

the time series nonparametrically is to use ideas from functional data analysis (Ramsay & Silverman

2005). We divide the observed time series into n trajectories each of length p, and then consider

each trajectory as a curve rather than as p distinct points. The functional time series is then given

by

yt(x) = {Zw , w =∈ (p(t − 1), pt]}, t = 1, · · · , n, 1< x < p.

The usual problem of interest is to forecast yn+h(x), the data in year n + h, from the observed

data, {y1(x), . . . , yn(x)}. For example, in Section 2 we consider {Zw} to be monthly sea surface

temperatures from 1950 to 2008, so that p = 12 and N = 59× 12 = 708, and we are interested in

forecasting sea-surface temperatures in 2009 and beyond.

When N = np, all trajectories are complete, and forecasting is straightforward with several avail-

able methods. These techniques include the functional autoregressive of order 1 (Bosq 2000, Bosq

& Blanke 2007), functional kernel regression (Ferraty & Vieu 2006, Aneiros-Pérez & Vieu 2008),

functional principal component regression (Hyndman & Ullah 2007, Hyndman & Booth 2008, Hyn-

dman & Shang 2009), and functional partial least squares regression (Preda & Saporta 2005a,b). In

this article, we consider the problem of forecasting when the last trajectory is incomplete. We call

this “dynamic updating” and we propose and compare four possible dynamic updating methods.

Our methods are all based on functional principal component analysis (FPCA), as described in Sec-

tion 3. When all trajectories are complete, FPCA allows a decomposition of the historical data,

{yt(x), t = 1, · · · , n}, into a number of functional principal components and their uncorrelated prin-

cipal component scores. To forecast the principal component scores, one can employ univariate

time series (TS) models on the historical principal component scores. Conditioning on the historical
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observations and fixed functional principal components, the point forecasts are obtained by multi-

plying the forecasted principal component scores with the fixed functional principal components.

Since this method uses univariate time series forecasts, we call it the “TS method”.

We introduce four dynamic updating methods in Section 4 to deal with the situation when the most

recent curve is partially observed. These are the called the block moving (BM), ridge regression

(RR), ordinary least squares (OLS) and penalized least squares (PLS) methods.

Distributional forecasts are discussed in Section 5, including a new nonparametric approach to

construct prediction intervals for the TS, BM and PLS methods. Our methods are illustrated using

the monthly sea surface temperature data set described in Section 2.

Conclusions are discussed in Section 6, along with some thoughts on how the methods developed

here might be further extended.

2 Data set

As a vehicle of illustration, we consider the monthly sea surface temperatures from January 1950 to

December 2008, available online at http://www.cpc.noaa.gov/data/indices/sstoi.indices.

These averaged sea surface temperatures are measured by moored buoys in the “Niño region” de-

fined by the coordinate 0− 10◦ South and 90− 80◦ West. A univariate time series display is given

in Figure 1a, with the same data shown in Figure 1b as a time series of functions.
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(a) A univariate time series display of the monthly sea surface
temperatures.
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(b) A functional time series display of the monthly sea surface
temperatures.

Figure 1: Exploratory plots suggesting that both predictive regularity and abnormality are presented in
the sea surface temperature data set from Jan 1950 to Dec 2008 measured by moored buoys
in the region defined by the coordinate 0− 10◦ South and 90− 80◦ West.

From Figure 1b, there are some years showing extreme sea surface temperatures and are suspected
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to be outliers. Since the presence of outliers can seriously affect the performance of modeling and

forecasting, we applied the outlier detection method of Hyndman & Shang (2008) and identified

four outliers. These outliers correspond to the years 1982–1983 and 1997–1998, highlighted by the

thick black lines in Figure 1b. The sea surface temperatures during 1982–1983 began in June 1982

with a moderate increase, which was followed by abnormal increases between September 1982 and

June 1983 (Moran et al. 2006, Timmermann et al. 1999). The sea surface temperatures during

1997–1998 were also unusual and became extreme in the latter half of 1997, and stayed high for

the early part of 1998. Dioses et al. (2002) reported that the northern central region of Peru was

strongly affected because warm waters with low salinity approached the coast, while the southern

region was influenced more by oceanic waters. These detected outliers have consequently been

removed from further analysis.

3 Forecasting method

Our forecasting method utilizes FPCA, which plays a central role in the development of functional

data analysis. An account of the statistical properties of FPCA, along with applications of the method-

ology, are given by Ramsay & Silverman (2002), Ramsay & Silverman (2005) and Ferraty & Vieu

(2006). Papers covering the development of FPCA include those of Rice & Silverman (1991), Sil-

verman (1995), Silverman (1996), Reiss & Ogden (2007), Hyndman & Ullah (2007), Hyndman &

Shang (2009) and Shen (2009). Significant treatments of the theory of FPCA are given by Dauxois

et al. (1982), Cai & Hall (2006), Hall & Hosseini-Nasab (2006), Hall et al. (2006), Hall & Horowitz

(2007), Hall & Hosseini-Nasab (2009), and Delaigle et al. (2009).

In this section, we assume that all trajectories are complete. Our forecasting method begins with

decentralizing the functional data by subtracting the functional mean. The functional mean µ(x) is

estimated by

µ̂(x) =
1

n

n
∑

t=1

yt(x).

If one seeks a robust estimator, then the L1 median of data should be used, and is denoted by

µ̂(x) = arg min
θ(x)

n
∑

t=1



yt(x)− θt(x)


 ,

where ‖g(u)‖ = (
∫

g2(u)du)1/2. The algorithm of Hössjer & Croux (1995) can be used to compute

µ̂(x).
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Using FPCA, {yt ; t = 1, · · · , n} can be approximated by the sum of orthogonal functional principal

components and their associated principal component scores:

yt(x) = µ̂(x) +
K
∑

k=1

φ̂k(x)β̂k,t + εt(x), (1)

where {φ̂1(x), · · · , φ̂K(x)} are the estimated functional principal components, {β̂1,t , · · · , β̂K ,t} are

uncorrelated principal component scores, εt(x) is the zero-mean residual function, and K < n is the

number of functional principal components.

3.1 Point forecasts

Because the principal component scores are uncorrelated to each other, it is appropriate to fore-

cast each series {β̂k,1, · · · , β̂k,n} using univariate time series models, such as the state-space models

(Harvey 1990), ARIMA models (Box et al. 2008), or exponential smoothing state-space models

(Hyndman et al. 2008). It is noteworthy that although the lagged cross correlations are not neces-

sarily zero, they are likely to be small because the contemporaneous correlations are zero (Hyndman

& Ullah 2007, Shen & Huang 2008, Shen 2009).

Based on the historical observations (I ) and the functional principal components Φ =

{φ̂1(x), · · · , φ̂K(x)}, the forecasted curves are expressed as

ŷTS
n+h|n(x) = E[yn+h(x) | I ,Φ] = µ̂(x) +

K
∑

k=1

φ̂k(x)β̂
TS
k,n+h|n, (2)

where β̂TS
k,n+h|n denotes an h-step-ahead forecast of βk,n+h.

3.2 Component selection

Hyndman & Booth (2008) found that the point forecasts are insensitive to the choice of K , provided

that K is large enough. Although there is a computational difficulty in choosing a large K , a small

K may result in a poor forecast accuracy. Consequently, in the analysis we choose K = 6, which

should be larger than any of the components really require. In the context of overparametrized re-

gression problems, Greenshtein & Ritov (2004) and Greenshtein (2006) described this phenomenon

as “persistence in high-dimensional linear predictor selection”.
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4 Updating point forecasts

When the functional data are segments of a univariate time series, the most recent trajectory is

observed sequentially. When we have observed the first m0 time periods of yn+1(x), denoted by

yn+1(xe) = [yn+1(x1), · · · , yn+1(xm0
)]′, we are interested in forecasting the data in the remainder

of year n+ 1, denoted by yn+1(x l). However, the TS method described in Section 3 does not utilize

the most recent data, namely the partially observed trajectory. Instead, using (2), the time series

forecast of yn+1(x l) is given by

ŷTS
n+1|n(x l) = E[yn+1(x l) | I l ,Φl] = µ̂(x l) +

K
∑

k=1

φ̂k(x l)β̂
TS
k,n+1|n, for m0 < l ≤ p,

where µ̂(x l) is the mean function corresponding to the remaining time periods, I l denotes the

historical data corresponding to the remaining time periods, and Φl = {φ̂1(x l), · · · , φ̂K(x l)} are the

estimated functional principal components corresponding to the remaining time periods.

In order to improve point forecast accuracy, it is desirable to dynamically update the point forecasts

for the remaining time periods of the year n+1 by using the information from the partially observed

data. To address this issue, we shall introduce four dynamic updating methods.

4.1 Block moving method

The block moving (BM) method simply redefines the start and end points of our “year” (the time

for a single trajectory). Because time is a continuous variable, we can change the support of our

trajectories from [1, p] to [m0 + 1, p] ∪ [1, m0]. Then the first trajectory y1(x) becomes partially

observed as it is only observed on 1< x < m0.

The redefined data are shown diagrammatically in Figure 2 where the bottom box has moved to

become the top box. The colored region shows the data lost in the first year. The partially observed

last trajectory under the old “year” completes the last trajectory under the new year.

The TS method can be applied to the new complete data block. The loss of data will have minimal

effect on the forecasts, if the number of curves is large.

4.2 Ordinary least squares

We can estimate the remaining part of the last trajectory using a regression based on the principal

components obtained in (1). Let Fe be the m0× K matrix whose ( j, k)th entry is φ̂k(x j) for 1≤ j ≤

Shang and Hyndman: August 2009 7
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m0 and 1 ≤ k ≤ K . Let �n+1 = [β1,n+1, · · · ,βK ,n+1]′, and �n+1(xe) = [εn+1(x1), · · · ,εn+1(xm0
)]′. As

the mean-adjusted ŷ∗n+1(xe) = yn+1(xe)− µ̂(xe) becomes available, we have a regression equation

expressed as

ŷ∗n+1(xe) =Fe�n+1+ �n+1(xe).

The �n+1 can be estimated via ordinary least squares giving

�̂OLS
n+1 =

�

Fe
′Fe
�−1Fe

′ŷ∗n+1(xe).

The OLS forecast of yn+1(x l) is then given by

ŷOLS
n+1(x l) = E[yn+1(x l) | I l ,Φl] = µ̂(x l) +

K
∑

k=1

φ̂k(x l)β̂
OLS
k,n+1.

4.3 Ridge regression

The OLS method uses the partially observed data in the most recent curve to improve point forecast

accuracy for the remainder of year n+1, but it needs a sufficiently large number of observations (at

least equal to K) in order for �̂OLS
n+1 = {β̂

OLS
1,n+1, · · · , β̂OLS

K ,n+1} to be numerically stable. To address this
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Figure 2: Dynamic update via the block moving approach. The colored region shows the data loss in
the first year. The forecasts for the remaining months in year n+ 1 can be updated by the
forecasts using the TS method applied to the upper block.
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problem, we adapt the ridge regression (RR) method of Hoerl & Kennard (1970) with the predictors

being the corresponding principal components and the partially observed data being the responses.

The main advantage of RR is that it uses a square penalty function, which is a rotationally invariant

hypersphere centered at the origin (Izenman 2008). Two-dimensional contours of the different

penalty functions are presented in Figure 3.
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Figure 3: Two-dimensional contours of the symmetric penalty function pq(�) = |�1|q + |�2|q = 1
for q = 0.2, 0.5,1, 2,5. When q = 2, the square penalty function is rotationally invariant
hypersphere centered at the origin.

The RR method shrinks the regression coefficient estimates towards zero. The RR coefficient esti-

mates are obtained by minimizing a penalized residual sum of squares

arg min
�n+1

¦

(ŷ∗n+1(xe)−Fe�n+1)
′(ŷ∗n+1(xe)−Fe�n+1) +λ�

′

n+1�n+1

©

, (3)

where λ > 0 is a tuning parameter that controls the amount of shrinkage. By taking the first

derivative with respect to �n+1 in (3), we obtain

�̂RR
n+1 =

�

Fe
′Fe +λIK

�−1Fe
′ŷ∗n+1(xe),
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where IK is the K × K identity matrix. When λ = 0, this reduces to the unregularized OLS regres-

sion coefficient estimates, provided that
�

Fe
′Fe
�−1 exists. As λ approaches infinity, the regression

coefficient estimates tend toward zero.

The RR forecast of yn+1(x l) is given by

ŷRR
n+1(x l) = E[yn+1(x l) | I l ,Φl] = µ̂(x l) +

K
∑

k=1

φ̂k(x l)β̂
RR
k,n+1.

4.4 Penalized least squares

Although the RR method solves the potential singularity problem, it does not take account of the

TS forecasted regression coefficient estimates, �̂TS
n+1|n. This motivates the development of the PLS

method (Shen & Huang 2008, Shen 2009), in which the regression coefficients are selected by

shrinking them toward �̂TS
n+1|n. The PLS regression coefficients minimize a penalized residual sum

of squares

�

ŷ∗n+1(xe)−Fe�̂n+1
�
′
�

ŷ∗n+1(xe)−Fe�̂n+1
�

+λ
�

�̂n+1− �̂TS
n+1|n

�
′
�

�̂n+1− �̂TS
n+1|n

�

. (4)

The first term in (4) measures the goodness of fit, while the second term penalizes the departure of

the regression coefficient estimates from the TS forecasted regression coefficient estimates. The �̂PLS
n+1

obtained can thus be seen as a tradeoff between these two terms, subject to a penalty parameter λ.

By taking the first derivative with respect to �̂n+1 in (4), we obtain

�̂PLS
n+1 =

�

Fe
′Fe +λIK

�−1�Fe
′ŷ∗n+1(xe) +λ�̂

TS
n+1|n

�

. (5)

When the penalty parameter λ→ 0, �̂PLS
n+1 approaches �̂OLS

n+1; when λ→∞, �̂PLS
n+1 approaches �̂TS

n+1|n;

when 0< λ <∞, �̂PLS
n+1 is a weighted average between �̂TS

n+1|n and �̂OLS
n+1.

The PLS forecast of yn+1(x l) is given by

ŷPLS
n+1(x l) = E[yn+1(x l) | I l ,Φl] = µ̂(x l) +

K
∑

k=1

φ̂k(x l)β̂
PLS
k,n+1.

4.5 Penalty parameter selection

We split the data into a training sample (including sea surface temperatures from 1950 to 1992

excluding the outliers) and a testing sample (including sea surface temperatures from 1993 to 2008
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excluding the outliers). Within the training sample, we further split the data into a training set

(including sea surface temperatures from 1950 to 1970) and a validation set (including sea surface

temperatures from 1971 to 1992 excluding the outliers). The optimal values of λ for different

updating periods are determined by minimizing the MAE and MSE criteria, expressed as

MAE=
1

hp

h
∑

j=1

p
∑

i=1

�

�yn+ j(x i)− ŷn+ j(x i)
�

�,

and MSE=
1

hp

h
∑

j=1

p
∑

i=1

�

yn+ j(x i)− ŷn+ j(x i)
�2,

within the validation set. In Table 1, the optimal tuning parameters for different updating periods

are given for both the PLS and RR methods.

Updating period
Minimum MSE Minimum MAE
PLS RR PLS RR

Mar–Dec 908.43 0.00 1118.58 0.00
Apr–Dec 335.40 3.11 197.66 3.35

May–Dec 233.53 8.99 245.64 7.34
Jun–Dec 111.85 11.00 138.92 8.29
Jul–Dec 7.47 6.23 4.86 4.91

Aug–Dec 27.90 11.62 18.42 7.61
Sep–Dec 279.05 15.59 197.80 10.50
Oct–Dec 9.01 4.60 7.77 5.41
Nov–Dec 3.29 0.73 4.82 1.44

Dec 3.60 1.74 8.25 2.33

Table 1: For different updating periods, the optimal tuning parameters are determined by minimizing
the MSE and MAE criteria within the validation set.

5 Distributional forecast methods

Prediction intervals are a valuable tool for assessing the probabilistic uncertainty associated with

point forecasts. As emphasized in Chatfield (1993, 2000), it is important to provide interval forecasts

as well as point forecasts so as to

1. assess future uncertainty;

2. enable different strategies to be planned for a range of possible outcomes indicated by the

interval forecasts;

3. compare forecasts from different methods more thoroughly; and

4. explore different scenarios based on different assumptions.
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In our forecasting method, there are two sources of errors that need to be taken into account:

errors in estimating the regression coefficient estimates and errors in the model residuals. First,

in Sections 5.1 and 5.2, we describe two methods for constructing prediction intervals for the TS

method. Then in Section 5.3 we show how the prediction intervals can be updated using the most

recent data.

5.1 Parametric prediction intervals

Based on orthogonality and linear additivity, the total forecast variance for the TS method can be

approximated by the sum of individual variances (Hyndman & Ullah 2007):

ϑ̂n+h|n(x) = Var
�

yn+h(x) | I ,Φ
�

≈
K
∑

k=1

φ̂2
k(x)ζ̂k,n+h|n+ v̂n+h(x),

where ζ̂k,n+h|n = Var(β̂k,n+h|β̂k,1, · · · , β̂k,n) can be obtained by a time series model, and the model

residual variance v̂n+h(x) is estimated by averaging model residual square in year n+ h, ε̂2
n+h(x),

for each x variable. Under the normality assumption, the 100(1 − α)% prediction intervals for

yn+h(x) are constructed as usual. This will also work for the BM method with appropriately defined

functions.

5.2 Nonparametric prediction intervals

We present a nonparametric bootstrap method used in Shen (2009) and Hyndman & Shang (2009)

to construct prediction intervals for the TS method. We can obtain one- or multi-step-ahead forecasts

for the principal component scores {β̂k,1, . . . , β̂k,n}, using a univariate time series model. Let the h-

step-ahead forecast errors be given by ξ̂k,t,h = β̂k,t|t−h− β̂k,t , for t = h+ 1, · · · , n where h < n− 1.

These can then be sampled with replacement to give a bootstrap sample of βk,n+h:

β̂ b
k,n+h|n = β̂k,n+h|n+ ξ̂

b
k,∗,h, for b = 1, · · · , B.

Assuming the first K functional principal components approximate the data relatively well, the

model residual should contribute nothing but independent and identically distributed random noise.

Consequently, we can bootstrap the model fit error ε̂b
n+h|n(x) by sampling with replacement from

the residual term {ε̂1(x), · · · , ε̂n(x)}.

Adding all possible components of variability and assuming that those components of variability do

Shang and Hyndman: August 2009 12
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not correlate to each other, we obtain B forecast variants of yn+h|n(x),

ŷ b
n+h|n(x) = µ̂(x) +

K
∑

k=1

φ̂k(x)β̂
b
k,n+h|n+ ε̂

b
n+h|n(x).

Hence, the 100(1− α)% prediction intervals are defined as α/2 and (1− α/2) empirical quantiles

of ŷ b
n+h|n(x). This will also work for the BM method with appropriately defined functions.

5.3 Updating distributional forecasts

The prediction intervals of the nonparametric distributional forecasts can also be updated using a

bootstrap method. First, we bootstrap B samples of the TS forecasted regression coefficient esti-

mates, �̂b,TS
n+1|n, and these bootstrapped samples in turn lead to �̂b,PLS

n+1 , according to (5). From �̂b,PLS
n+1 ,

we obtain B replications of

ŷ b,PLS
n+1 (x l) = µ̂(x l) +

K
∑

k=1

φ̂k(x l)β̂
b,PLS
k,n+1+ ε̂

b
n+1(x l). (6)

Hence, the 100(1− α)% prediction intervals for the PLS method are defined as α/2 and (1− α/2)

empirical quantiles of ŷ b,PLS
n+1 (x l).

5.4 Evaluating distributional forecasts

To evaluate the empirical coverage probabilities of prediction intervals, we compare the calculated

prediction intervals with the original observations in the testing set (including sea surface tempera-

tures from 1993 to 2008). The calculation process was performed as follows: for each curve in the

testing sample, prediction intervals were generated by the TS, BM and PLS methods, at the 90% and

95% nominal coverage probabilities, and were tested to check if the known values fall within the

specific prediction intervals. The empirical coverage probability was calculated as the ratio between

the number of observations falling in the calculated prediction intervals and the number of total

observations. Furthermore, we calculated the coverage probability deviance, which is the difference

between the empirical and nominal coverage probabilities as a performance measure. Subject to

the same average width of prediction intervals, the smaller the coverage probability deviance is, the

better the method is.
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The average width of prediction intervals is a way to assess which approach gives narrower predic-

tion intervals. It can be expressed as:

W =
1

hp

h
∑

j=1

p
∑

i=1

�

�

� ŷ b,(1−α/2)
n+ j|n (x i)− ŷ b,α/2

n+ j|n(x i)
�

�

� .

The narrower the average width of prediction intervals is, the better the method is, subject to the

empirical coverage probability being close to the nominal coverage probability.

5.5 Density forecasts

As a by-product of the nonparametric bootstrap method, we can produce kernel density plots for

visualizing density forecasts using the bootstrapped forecast variants. This graphical display can be

useful for visualizing the extremes and the median. As with the kernel density estimate, we select

the bandwidth using a pilot estimation of derivatives proposed by Sheather & Jones (1991), which

seems to be close to optimal and generally preferred (Venables & Ripley 2002).

6 Results

6.1 Point forecasts

Our forecasting method decomposes a functional data set into a number of functional principal

components and their associated scores. For simplicity of presentation, we display and attempt to

interpret only the first three functional principal components and their associated scores in Figure 4,

although we used K = 6 in modeling. Clearly, the mean function illustrates a strong seasonal

pattern, with a peak in March and a trough in September. The functional principal components are

of second order effects, as indicated by much smaller scales. The first functional principal component

models the mid-year sea surface temperatures. While the second functional principal component

models the contrast in sea surface temperatures between March and September, the third functional

principal component models the contrast in sea surface temperatures from September to February

and from March to August. Using the exponential smoothing state-space models of Hyndman et al.

(2008), we obtained the forecasted principal component scores, and their 90% and 95% prediction

intervals highlighted by the dark and light gray regions.

By conditioning on the historical data and fixed functional principal components, the decentral-

ized forecasts are obtained by multiplying the forecasted principal component scores with the fixed
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Figure 4: The mean function, the first three functional principal components and their associated scores
for the monthly sea surface temperatures from 1950 to 1992 (excluding the outliers). The
90% and 95% prediction intervals of the principal component scores are shown by the dark
and light gray regions.

functional principal components. For instance, Figure 5 displays the forecasted monthly sea surface

temperatures in 2008, along with the 95% parametric and nonparametric prediction intervals. We

found that the parametric prediction intervals seem to be similar to the nonparametric counterparts.
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Figure 5: One-step-ahead point forecasts of monthly sea surface temperatures in 2008, and the 95%
prediction intervals constructed parametrically and nonparametrically.
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6.2 Comparisons with some existing methods

By means of comparison, we also investigate the point forecast accuracy of seasonal autoregres-

sive integrated moving average (SARIMA), random walk (RW), and mean predictor (MP) methods.

The MP method consists in predicting values at year t + 1 by the empirical mean values for each

month from the first year to the tth year. The RW approach predicts new values at year t + 1 by

the observations at year t. In the forecasting literature, SARIMA has been considered a benchmark

method for forecasting a seasonal time series (Besse et al. 2000, Antoniadis & Sapatinas 2003, Fer-

raty et al. 2005). However, it requires the specification of the orders of seasonal components and

non-seasonal components of an ARIMA model, which can be troublesome due to a large number of

possible orders of seasonal and non-seasonal components. However, an automatic algorithm devel-

oped by Hyndman & Khandakar (2008) can be used to select the optimal orders for both seasonal

and non-seasonal components. As a result, the optimal model selected is a SARIMA(2,0,1)(0,1,0)12.

Update month MP RW SARIMA TS OLS BM PLS RR
Mar-Dec 0.7166 0.8581 0.9604 0.7265 0.6885 0.7048 0.7131 0.6885
Apr-Dec 0.7307 0.8659 0.9835 0.7364 0.6411 0.7262 0.6859 0.6295
May-Dec 0.7099 0.8579 0.8767 0.7141 0.9346 0.7062 0.6675 0.5974
Jun-Dec 0.7071 0.8421 0.8592 0.7119 0.9696 0.6973 0.6641 0.5722
Jul-Dec 0.7189 0.8652 0.8602 0.7278 0.8026 0.6805 0.6023 0.5378
Aug-Dec 0.7146 0.9063 0.8348 0.7379 1.1162 0.6875 0.6247 0.5331

M
A

E

Sep-Dec 0.7062 0.9329 0.8380 0.7443 1.3868 0.7049 0.6910 0.5928
Oct-Dec 0.7239 0.9607 0.5709 0.7819 0.6268 0.7381 0.5717 0.5422
Nov-Dec 0.7235 0.9229 0.5211 0.7892 0.2598 0.7469 0.2698 0.2445
Dec 0.6403 0.8307 0.2110 0.7115 0.2996 0.5857 0.2648 0.2601
Mean 0.7092 0.8843 0.7516 0.7382 0.7726 0.6978 0.5755 0.5198
Mar-Dec 0.6928 1.3196 1.4155 0.7100 0.7967 0.6895 0.7036 0.8324
Apr-Dec 0.7115 1.3607 1.4706 0.7296 0.6161 0.7180 0.6399 0.6233
May-Dec 0.6822 1.3683 1.3195 0.7026 1.2242 0.6903 0.6173 0.6142
Jun-Dec 0.6792 1.3710 1.1880 0.7035 1.3420 0.6803 0.6077 0.5852
Jul-Dec 0.6984 1.4660 1.2089 0.7322 0.9243 0.6772 0.5237 0.5135
Aug-Dec 0.7011 1.5726 1.1279 0.7541 2.0693 0.6835 0.5415 0.5132

M
SE

Sep-Dec 0.7056 1.6499 1.0624 0.7801 2.6651 0.7095 0.6284 0.6112
Oct-Dec 0.7261 1.6972 0.5394 0.8263 0.5173 0.7443 0.4537 0.5759
Nov-Dec 0.7112 1.5097 0.4244 0.8202 0.1296 0.7566 0.1096 0.1091
Dec 0.5646 1.1353 0.0676 0.6615 0.1501 0.5093 0.1171 0.0997
Mean 0.6873 1.4450 0.9824 0.7420 1.0435 0.6858 0.4943 0.5078

Table 2: MAE and MSE of the point forecasts via the MP, RW, SARIMA, TS, OLS, BM, PLS, and RR
methods with different updating months in the testing sample. The minimal values for each
updating period are marked in bold.

To compare the point forecast accuracy, we calculated the averaged MAE and MSE over the forecast

horizon, shown in Table 2, for all methods investigated with different updating months in the testing
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sample. Although the TS method performs better than the SARIMA and RW, it performs worse than

the MP model for this data set. Among all dynamic updating methods, the RR performs the best

with the minimum MAE, followed by the PLS, BM and OLS methods. Measured by the minimum

MSE, the PLS method performs the best, followed by the RR, BM and OLS methods.

6.3 Distributional forecasts

Supposing we observe the sea surface temperatures from January to February 2008, it is possible

to dynamically update the distributional forecasts for the remaining of 2008 using the BM and PLS

methods. Based on the historical data from 1950 to 2007 (excluding the outliers), we obtain the

forecasted principal component scores using the exponential smoothing state-space model. Utilizing

the relationship between the �̂b,TS
n+1|n and �̂b,PLS

n+1|n, the PLS prediction intervals for the updating periods

can be obtained from (6). For instance, Figure 6 presents the 95% prediction intervals of the TS,

BM and PLS methods for the sea surface temperatures from March to December 2008.
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Nonparametric prediction intervals of TS
Nonparametric prediction intervals of BM
Nonparametric prediction intervals of PLS

Figure 6: Distributional forecasts of the sea surface temperatures during Mar-Dec 2008.

From Figure 6, the PLS prediction intervals are comparably narrower, thus more informative than

the TS and BM prediction intervals. Furthermore, we also examine the average coverage probability

deviance and the average width of prediction intervals using different updating periods, shown in

Tables 3 and 4 respectively.

An advantage of generating bootstrap samples is to provide density forecasts obtained using kernel

density estimation. For example, Figure 7 displays the density plots of the monthly sea surface

temperatures in 2008 based on B = 1000 replications.
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Figure 7: Density plots of the monthly sea surface temperatures in 2008. The bandwidth is selected
using a pilot estimation of derivatives.

7 Conclusions

Our forecasting and updating approaches treat the historical data as a functional time series. Us-

ing FPCA, the dimensionality of data is effectively reduced, and the main features in the data are

represented by a set of functional principal components, which explain more than 95% of the total

variation in the monthly sea surface temperature data set.

The problem of forecasting future sea surface temperatures has been overcome by forecasting K = 6

one-dimensional principal component scores. Based on the historical data and the fixed functional

principal components, the decentralized forecasts are obtained by multiplying the forecasted princi-

pal component scores with fixed functional principal components.

When partial data in the most recent curve are observed, four dynamic updating methods can not

only update the point forecasts in order to improve point forecast accuracy, but also eliminate the

assumption, N = np, made in Besse et al. (2000), Antoniadis & Sapatinas (2003), Ferraty & Vieu

(2006, Chapter.12), Aneiros-Pérez & Vieu (2008) and Antoch et al. (2008). The BM approach rear-

ranges the observations to form a complete data block, on which the TS method can still be applied.

The OLS approach considers the partially observed data in the most recent curve as responses, and

uses them to regress against the corresponding principal components. It however may suffer from

the singularity problem when the number of partially observed data are less than the number of
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principal components. To overcome this problem, the RR method heavily penalizes those regression

coefficient estimates that deviate significantly from 0. However, the OLS and RR methods fail to con-

sider all of the historical information. In contrast, the PLS method combines the TS forecasts and

OLS forecasts by heavily penalizing for those regression coefficients that deviate significantly from

�̂TS
n+1|n. Based on the the MAE and MSE in the testing sample, the RR and PLS show better forecast

accuracy than other methods investigated and the difference between them is almost negligble.

Furthermore, we proposed a nonparametric method to construct prediction intervals, and compared

the empirical coverage probability to a parametric method. Although the coverage probabilities of

the parametric and nonparametric methods are similar, the nonparametric method is appropriate

to produce density plots and to construct prediction intervals for updated forecasts. With a similar

empirical coverage probability, the prediction interval width of the updated forecasts is narrower,

thus the PLS and BM methods are more informative than the TS method without updating.

R code for calculating the point forecasts, updating point forecasts, and constructing parametric and

nonparametric prediction intervals is available from the authors upon request.
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