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An improved method for bandwidth selection

when estimating ROC curves

Peter G. Hall1 and Rob J. Hyndman1,2 13 September 2002

Abstract: The receiver operating characteristic (ROC) curve is used to describe the

performance of a diagnostic test which classifies observations into two groups. We

introduce a new method for selecting bandwidths when computing kernel estimates of

ROC curves. Our technique allows for interaction between the distributions of each

group of observations and gives substantial improvement in MISE over other proposed

methods, especially when the two distributions are very different.
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1 INTRODUCTION

A receiver operating characteristic (ROC) curve can be used to describe the performance

of a diagnostic test which classifies individuals into either group G1 or group G2. For

example, G1 may contain individuals with a disease and G2 those without the disease.

We assume that the diagnostic test is based on a continuous measurement T and that a

person is classified as G1 if T ≥ τ and G2 otherwise. Let G(t) = Pr(T ≤ t | G1) and

F (t) = Pr(T ≤ t | G2) denote the distribution functions of T for each group. (Thus F is

the specificity of the test and 1 −G is the sensitivity of the test.) Then the ROC curve is

defined as R(p) = 1 − G(F−1(1 − p)) where 0 ≤ p ≤ 1.

Let {X1, . . . , Xm} and {Y1, . . . , Yn} denote independent samples of independent data

from G1 and G2, and let F̂ and Ĝ denote their empirical distribution functions. Then

a simple estimator of R(p) is R̂(p) = 1 − Ĝ(F̂−1(1 − p)), although this has the obvious

weakness of being a step function while R(p) is smooth.

Zou, W.J. Hall & Shapiro (1997) and Lloyd (1998) proposed a smooth kernel estimator

of R(p) as follows. Let K(x) be a continuous density function and L(x) =
∫ x
−∞ K(u) du.

The kernel estimators of F and G are

F̃ (t) =
1

m

m∑

i=1

L

(
t − Xi

h1

)
and G̃(t) =

1

m

m∑

i=1

L

(
t − Yi

h2

)
.
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For the sake of simplicity we have used the same kernel for each distribution, although of

course this is not strictly necessary. The kernel estimator of R(p) is then

R̃(p) = 1 − G̃(F̃−1(1 − p)).

Qiu & Le (2001) and Peng & Zhou (2002) have discussed estimators alternative to R̃(p).

Lloyd and Yong (1999) were the first to suggest empirical methods for choosing band-

widths h1 and h2 of appropriate size for R̃(p), but they treated the problem as one of

estimating F and G separately, rather than of estimating the ROC function R. We shall

show that by adopting the latter approach one can significantly reduce the surplus of mean

squared error over its theoretically minimum level. This is particularly true in the practi-

cally interesting case where F and G are quite different. In the present paper we introduce

and describe a bandwidth choice method which achieves these levels of performance.

A related problem, which leads to bandwidths of the correct order but without the

correct constants, is that of smoothing in distribution estimation. See, for example, Miel-

niczuk, Sarda and Vieu (1989), Sarda (1993), Altman and Legér (1995), and Bowman,

Hall and Prvan (1998).

2 METHODOLOGY

2.1 Optimality criterion and optimal bandwidths

If the tails of the distribution F are much lighter than those of G then the error of an

estimator of F in its tail can produce a relatively large contribution to the error of the

corresponding estimator of G(F−1). As a result, if the L2 performance criterion

α1(S) =

∫

S
E

[
Ĝ(F̂−1(p)) − G(F−1(p))

]2
dp (2.1)

for a set S ⊆ [0, 1], is not weighted in an appropriate way then choice of the optimal

bandwidth in terms of α1(S) can be driven by relative tail properties of f and g. Formula

(A.1) in the appendix will provide a theoretical illustration of this phenomenon. We

suggest that the weight be chosen equal to f(F −1), so that the L2 criterion becomes

α(S) =

∫

S
E

[
Ĝ(F̂−1(p)) − G(F−1(p))

]2
f(F−1(p)) dp . (2.2)

We shall show in the appendix that for this definition of mean integrated squared

error,

α(S) ∼ β(S) ≡

∫

F−1(S)

{
E[F̂ (t) − F (t)]2g2(t) + E[Ĝ(t) − G(t)]2f2(t)

}
dt (2.3)

where F−1(S) denotes the set of points F−1(p) with p ∈ S. Note particularly that the

right-hand side is additive in the mean squared errors E(F̂ − F )2 and E(Ĝ −G)2, so that

in principle h1 and h2 may be chosen individually, rather than together. That is, if h1 and
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h2 minimise

β1(S) =

∫

F−1(S)
E[F̂ (t) − F (t)]2g2(t) dt and β2(S) =

∫

F−1(S)
E[Ĝ(t) − G(t)]2f2(t) dt,

respectively, then they provide asymptotic minimisation of α(S).

To express optimality we take F−1(S) equal to the whole real line, obtaining the

global criterion γ(h1, h2) = γ1(h1, h2) + γ2(h1, h2) where

γ1(h1, h2) =

∫ ∞

−∞
E[F̂ (t) − F (t)]2g2(t) dt and γ2(h1, h2) =

∫ ∞

−∞
E[Ĝ(t) − G(t)]2f2(t) dt

(2.4)

Suppose K is a compactly supported and symmetric probability density, and f ′ is

bounded, continuous and square-integrable. Then arguments similar to those of Azzalini

(1981) show that

E(F̂ − F )2 = m−1 [(1 − F )F − h1 κ f ] + (1
2 κ2 h2

1 f ′)2 + o(n−1 h1 + h4
1) ,

where κ =
∫
(1 −L(u))L(u) du, κ2 =

∫
u2 K(u) du. Of course, an analogous formula holds

for E(Ĝ − G)2, and so the formulae at (2.4) admit simple asymptotic approximations:

γ1 = m−1
∫

(1 − F )F g2 + δ1 + o(m−1 h1 + h4
1)

γ2 = n−1
∫

(1 − G)Gf 2 + δ2 + o(n−1 h2 + h4
2)

where

δ1 = −m−1 h1 κ

∫
f g2 + 1

4 κ2
2 h4

1

∫
(f ′g)2 (2.5)

and δ2 = −n−1 h2 κ

∫
f2 g + 1

4 κ2
2 h4

2

∫
(fg′)2 (2.6)

The asymptotically optimal bandwidths are therefore

h1 = m−1/3c(f, g) and h2 = n−1/3c(g, f)

where

c(f, g)3 =

{
κ

∫
f(u) g2(u) du

}/{
κ2

2

∫
[f ′(u) g(u)]2du

}
.

A conventional plug-in rule for choosing h1 and h2 may be developed directly from

these formulae. However, it requires selection of pilot bandwidths for estimating f , g and

their derivatives. The technique suggested in the next section avoids that difficulty.
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2.2 Empirical choice of bandwidth

Let f̂2 and ĝ2 denote leave-one-out kernel estimators of f 2 and g2, respectively:

f̂2(x|h1) =
2

m(m − 1)h2
1

∑ ∑

1≤i1<i2≤m

K
(x − Xi1

h1

)
K

(x − Xi2

h1

)

ĝ2(y|h2) =
2

n(n − 1)h2
2

∑ ∑

1≤i1<i2≤n

K
(y − Yi1

h2

)
K

(y − Yi2

h2

)
.

Let f̂−i(x|h1) = {(m − 1)h1}
−1 ∑

j 6=i K{(x − Xj)/h1}, and define ĝ−i(y|h2) analogously,

and let f̂2
1 and ĝ2

1 denote the kernel estimators of (f ′)2 and (g′)2, respectively:

f̂2
1 (x|h1) =

2

m(m − 1)h4
1

m∑

i1=1

m∑

i2=1

K ′
(x − Xi1

h1

)
K ′

(x − Xi2

h1

)

ĝ2
1(y|h2) =

2

n(n − 1)h4
2

n∑

i1=1

n∑

i2=1

K ′
(y − Yi1

h2

)
K ′

(y − Yi2

h2

)
.

Note that the latter two estimators include all terms whereas the other estimators are

“leave-one-out” estimators. We include the diagonal terms in the estimators of (f ′)2 and

(g′)2 as they act like ridge parameters and produce better empirical performance.

Now let

∆(h1, h2) = −m−1 h1 κm−1
m∑

i=1

ĝ2(Xi|h2) + 1
4 κ2

2 h4
1 n−1

n∑

i=1

f̂2
1 (Yi|h1) ĝ−i(Yi|h2)

− n−1 h2 κn−1
n∑

i=1

f̂2(Yi|h1) + 1
4 κ2

2 h4
2 m−1

m∑

i=1

ĝ2
1(Xi|h2) f̂−i(Xi|h1).

We could choose h1 and h2 to minimize ∆(h1, h2). To motivate this approach, note that

E{∆(h1, h2)} = −m−1 h1 κ

∫
(Eĝ)2f + 1

4 κ2
2 h4

1

∫
(Ef̂ ′)2 (Eĝ) g

−n−1 h2 κ

∫
(Ef̂)2g + 1

4 κ2
2 h4

2

∫
(Eĝ′)2 (Ef̂) f , (2.7)

which indicates that ∆ is an almost-unbiased approximation to δ = δ1 + δ2; compare

(2.7) with the sum of the terms at (2.5) and (2.6). The relative size of stochastic error

may also be shown to be asymptotically negligible. Indeed, if m � n as n → ∞, if K is

compactly supported and has a Hölder-continuous derivative, and if f and g are compactly

supported and have three bounded derivatives, then ∆(h1, h2)/δ(h1, h2) converges to 1

with probability 1, uniformly in n−1+ε ≤ h1, h2 ≤ n−ε for each 0 < ε < 1
2 , as n → ∞.

However, minimizing ∆(h1, h2) leads to some numerical instability. Instead, we con-

strain the minimization so that h1 = ρh2 where ρ = h∗
1/h

∗
2 and h∗

1 and h∗
2 are the band-

widths selected for estimating F and G using the plug-in rule proposed by Lloyd and Yong

(1999). Minimizing ∆(h1, h2) under this constraint provides values of h1 and h2 which are

suitable for estimating R̃(p).
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3 SOME SIMULATIONS

We compare the estimates obtained with our bandwidth selection method outlined above

to those obtained by Lloyd and Yong (1999) using their plug-in rule. Let

W (p) = E
[
G̃(F̃−1(p)) − G(F−1(p))

]2
f(F−1(p)) (3.1)

denote mean squared error. Thus, mean integrated squared error, introduced at (2.2), is

given by α(S) =
∫
S W (p) dp. The ideal but practically unattainable minimum of W (p),

for a nonrandom bandwidth, can be deduced by simulation, and will be denoted by W0(p).

This value will be compared with its analogue, W1(p), obtained from (3.1) using the values

of h1 and h2 chosen using the method outlined in Section 2.2; and with W2(p), obtained

from (3.1) using the values of h1 and h2 chosen using the plug-in procedure suggested by

Lloyd and Yong (1995).

In our first example, illustrated in the first panel of Figure 1, we used Lloyd and Yong’s

(1999) model, where F and G are N(0, 1) and N(1, 1) respectively. In the second example

we chose F and G to be more different; F was N(0, 1) and G was an equal mixture of

N(−2, 1) and N(2, 1). In both cases our method offers an improvement, which as expected

is greater when the distributions are further apart. The areas under the curves represent

the increase in α(S) due to bandwidth selection. In these terms our method improves on

that of Lloyd and Yong (1999) by 1.2% and 28.6%, in the respective examples.
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Figure 1: Solid lines: W1(p) − W0(p). Dashed lines: W2(p) − W0(p).
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APPENDIX: Derivation of (2.3)

Assume that f and g have continuous derivatives and are bounded away from 0 on S. Put

A = F̂ − F , B = Ĝ − G and C = F̂−1 − F−1, and write I for the identity function. Then

by Taylor expansion,

I = F̂ (F−1 + C) = I + A(F−1) + C f(F−1) + op(|A(F−1)| + |C|) ,

whence it follows that C = −[A(F−1)/f(F−1)] + op(|A(F−1)|). Hence,

Ĝ(F̂−1) − G(F−1) = B(F−1) −
g(F−1)

f(F−1)
A(F−1) + op(|A(F−1)| + |B(F−1)|) . (A.1)

Note the ratio g(F−1)/f(F−1) on the right-hand side of (A.1). Since the variance of

A equals (1 − F )F then the unweighted criterion α1, defined at (2.1), can be largely

determined by the value of (g/f)2(1 − F )F in the tails if this quantity is not bounded.

Using instead the weighted criterion α, defined at (2.2), we may deduce from (A.1),

related computations and the independence of the samples that

∫

S
E[Ĝ(F̂−1) − G(F−1)]2 f(F−1) = [1 + o(1)]

∫

F−1(S)
[E(B2) f2 + E(A2) g2]

which is equivalent to (2.3).
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