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Abstract

In this paper, we argue that there is no compelling reason for restricting the class of
multivariate models considered for macroeconomic forecasting to VARs given the recent
advances in VARMA modelling methodology and improvements in computing power.
To support this claim, we use real macroeconomic data and show that VARMA models
forecast macroeconomic variables more accurately than VAR models.
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1 INTRODUCTION

Finite order vector autoregressive moving average VARMA models are motivated by the Wold
decomposition theorem (Wold 1938) applied in a multivariate setting, as an appropriate class
of models for stationary time series. Hence, the study of VARMA models has been an im-
portant area of time series analysis for a long time (see, amongst others, Quenouille 1957;
Hannan 1969; Tunnicliffe-Wilson 1973; Hillmer and Tiao 1979; Tiao and Box 1981; Tiao and
Tsay 1989; Tsay 1991; Poskitt 1992; Lütkepohl 1993; Lütkepohl and Poskitt 1996; Reinsel
1997; Tiao 2001). However, macroeconomists have yet to be convinced of the advantages
of employing such models. One of the reasons might be that, to date, no applied macro-
econometric research paper has considered the VARMA model as an alternative to the finite
order vector autoregressive VAR model.

Ever since the publication of the seminal paper by Christopher Sims (Sims 1980), the finite
order VAR model has become the cornerstone of macro-econometric modelling. The reason
for this cannot be that economic theory implies finite order VAR dynamics for economic
variables. Economic theory rarely has any sharp implications about the short-run dynamics
of economic variables. In the rare situations where theoretical models include a dynamic
adjustment equation, one has to work hard to exclude moving average terms from appearing
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in the implied dynamics of the variables of interest. Even if we believe that a finite order VAR
is a good dynamic model for a particular set of variables, for any subset of these variables, a
VARMA model rather than a VAR model would be appropriate. Therefore, the apparent lack
of interest in multivariate models with moving average errors could be either because they are
too difficult to implement, or because pure autoregressive models can perform just as well.

Any invertible VARMA process can be approximated by a finite long order VAR. However,
this does not imply that forecasts based on an estimated long order VAR will be as good as
those based on a parsimonious VARMA model, since a long order VAR has many estimated
parameters. It appears that the main reason for the lack of enthusiasm for using models
with moving average errors is that they are too difficult. In particular, in a multivariate
setting, the identification and estimation of VARMA models are quite involved. This is in
sharp contrast to the ease of identification and estimation of VAR models. This difficulty in
model identification and estimation has thus far prevented any comprehensive assessment of
whether VARMA models outperform VAR models in forecasting macroeconomic variables in
finite samples.

Theoretically, there is no subtlety involved in the estimation of an identified
VARMA(p, q) model. Based on the assumption of normality, the likelihood function con-
ditional on the first p observations being fixed and the q errors before time p + 1 set to zero
is a well-defined function that can be calculated recursively. The exact likelihood function
can also be computed via the Kalman filter after the model is written in its state space form.
However, it is not possible to fit a “general” VARMA(p, q) model to any set of observations and
then to try and reduce the system to a more parsimonious one by eliminating the insignificant
parameters. The reason for this is that if the parameters of a VARMA(p, q) model satisfy
certain restrictions, the model will not be identified. The following simple example illustrates
this point.

Example 1 Consider the following bivariate VARMA(1, 1) process

y1,t = φ11y1,t−1 + φ12y2,t−1 + θ11η1,t−1 + θ12η2,t−1 + η1,t (1)

y2,t = φ21y1,t−1 + φ22y2,t−1 + θ21η1,t−1 + θ22η2,t−1 + η2,t.

This model is not identified if φ21 = φ22 = θ21 = θ22 = 0. In this case the second equation
implies that y2,t−1 = η2,t−1 and therefore φ12 and θ12 in the first equation cannot be identified
separately.

There are several methods for identifying VARMA models. The method that we consider
in this paper is the Athanasopoulos and Vahid (2005) extension to Tiao and Tsay (1989). This
methodology consists of three stages. In the first stage, “scalar component models” (SCM s)
embedded in the VARMA model are identified using a series of tests based on canonical
correlations analysis between judiciously chosen sets of variables. In the second stage, a fully
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identified structural form is developed through a series of logical deductions and additional
canonical correlations tests. Then in the final stage, the identified model is estimated using
full information maximum likelihood (FIML). An overview of this methodology is presented
in Section 2. In this paper we employ this methodology in order to answer the question of
whether VARMA models outperform VAR models in forecasting macroeconomic variables.

To compare the forecasting performance of VARMA and VAR models we use real data. We
compile seventy trivariate sets of monthly macroeconomic variables, and fit VAR and VARMA
models to them, using only one portion of the available sample for estimation and holding the
rest of the sample for forecast comparison. Using the estimated models, we forecast these
variables 1 to 15 steps into the future throughout the forecast period. We then use several
measures of forecast accuracy to compare the performance of the VARMA and VAR models.

In practice, VAR models are used not only for forecasting, but also for impulse response
and variance decomposition analysis. However, since the true model is not known, it is not
possible to use real data to compare the performance of VARMA versus VAR models in tasks
other than forecasting. Comparisons of impulse responses and variance decompositions can
only be performed when the data generating process is known. However, because of the large
dimension of the parameter space in multivariate time series models, designing a Monte Carlo
study that is sufficiently rich to lead to convincing general conclusions would be difficult, if
not impossible. For this reason, we use real macroeconomic data for this investigation and
compare the out-of-sample forecast performance of fitted VARMA and VAR models. The
advantage of this method is that the results will be of direct relevance for macroeconomic
forecasting. The drawback is the inability to assess or comment on which model produces a
better impulse response function or a better decomposition of forecast error variance, since
these objects of interest are not observable.

The structure of the paper is as follows. Section 2 outlines our VARMA modelling method-
ology. Section 3 describes the data, the forecast evaluation method and the empirical results.
Section 4 provides some conclusions.

2 A VARMA MODELLING METHODOLOGY BASED
ON SCALAR COMPONENTS

The VARMA modelling methodology we employ in this paper is the Athanasopoulos and
Vahid (2005) extension to Tiao and Tsay (1989). In this section we present a brief overview
of the methodology. For more details, readers should refer to the above mentioned papers.

The aim of identifying scalar components is to examine whether there are any simplifying
embedded structures underlying a VARMA(p, q) process.

Definition 2 For a given K−dimensional VARMA(p, q) process

yt = Φ1yt−1 + . . . + Φpyt−p + ηt −Θ1ηt−1 − . . .−Θqηt−q, (2)
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a non-zero linear combination zt = α′yt, follows an SCM(p1, q1) if α satisfies the following
properties:

α′Φp1 6= 0T where 0 ≤ p1 ≤ p; (3)

α′Φl = 0T for l = p1 + 1, . . . , p; (4)

α′Θq1 6= 0T where 0 ≤ q1 ≤ q; (5)

α′Θql
= 0T for l = q1 + 1, . . . , q. (6)

Notice that the scalar random variable zt depends only on lags 1 to p1 of all variables,
and lags 1 to q1 of all innovations in the system. Tiao and Tsay (1989) employ a sequence of
canonical correlations tests to discover K such linear combinations.

Denote the squared sample canonical correlations between Ym,t ≡
(
y′t, . . . , y

′
t−m

)
and

Yh,t−1−j ≡ (y′t−1−j , . . . , y
′
t−1−j−h)′ by λ̂1 < λ̂2 < . . . < λ̂K . The test statistic suggested by

Tiao and Tsay (1989) for testing for the null of at least s SCM (pi, qi) against the alternative
of fewer than s scalar components is

C (s) = − (n− h− j)
s∑

i=1

ln

{
1− λ̂i

di

}
a∼ χ2

s×{(h−m)K+s}, (7)

where di is a correction factor that accounts for the fact that the canonical variates in this
case can be moving averages of order j. Specifically,

di = 1 + 2
j∑

v=1

ρ̂v (r̂′iYm,t) ρ̂v (ĝ′iYh,t−1−j) (8)

where ρ̂v (.) is the vth order autocorrelation of its argument and r̂′iYm,t and ĝ′iYh,t−1−j are
the sample canonical variates corresponding to the ith canonical correlation between Ym,t and
Yh,t−1−j .

Suppose we have K linearly independent scalar components characterized by the transfor-
mation matrix A = (α1, . . . , αK)′. If we rotate the system in equation (2) by A, we obtain

Ayt = Ψ1yt−1 + . . . + Ψpyt−p + εt −Θ∗
1εt−1 − . . .−Θ∗

qεt−q, (9)

where Ψi = AΦi, εt = Aηt and Θ∗
i = AΘiA

−1, in which the right hand side coefficient
matrices have many rows of zeros. However, as the following simple example shows, even if A

is known there are still situations where the system is not identified.

Example 3 Consider the bivariate VARMA(1, 1) system with two scalar components
SCM(1, 1) and SCM(0, 0), i.e.,

[
a11 a12

a21 a22

]
yt =

[
ψ

(1)
11 ψ

(1)
12

0 0

]
yt−1 + εt −

[
θ
(1)
11 θ

(1)
12

0 0

]
εt−1.
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The second row of the system implies that

a21y1,t−1 + a22y2,t−1 = ε2,t−1.

y1,t−1, y2,t−1 and ε2,t−1 all appear in the right hand side of the first equation of the system
and therefore their coefficients are not identified. We set θ

(1)
12 = 0 to achieve identification.

In general if there exist two scalar components SCM (pr, qr) and SCM (ps, qs), where pr > ps

and qr > qs, the system will not be identified. In such cases min {pr − ps, qr − qs}, autoregres-
sive or moving average parameters must be set to zero for the system to be identified. This
is referred to as the “general rule of elimination” (Tiao and Tsay 1989). The methodology we
employ here requires us to set the moving average parameters to zero in these situations ( see
Athanasopoulos and Vahid 2005 for a more detailed explanation).

Tiao and Tsay (1989) construct a consistent estimator for A using the estimated canonical
covariates corresponding to insignificant canonical correlations. Conditional on these esti-
mates, they estimate the row sparse parameter matrices on the right hand side of equation
(2). The lack of proper attention to efficiency in the estimation of A, which affects the accu-
racy of the second stage estimates, was a major criticism of the Tiao and Tsay methodology
raised by many eminent time series analysts (see the discussion by Chatfield, Hannan, Reinsel,
Tunnicliffe-Wilson that followed Tiao and Tsay 1989).

The Athanasopoulos and Vahid (2005) extension to the Tiao and Tsay (1989) methodology,
concentrates on establishing necessary and sufficient conditions for the identification of A such
that all parameters of the system can be estimated simultaneously using FIML (Durbin 1963).
These rules are:

1. Each row of A can be multiplied by a constant without changing the structure of the
model. Hence, we are free to normalize one parameter in each row to one. However, as
always in such situations, there is a danger of choosing a parameter whose true value is
zero for normalization, i.e., a zero parameter might be normalized to one. To safeguard
against this, the procedure adds tests of predictability using subsets of variables. Starting
from the SCM with the smallest order (the SCM with minimum p + q), exclude one
variable, say the Kth variable, and test whether a SCM of the same order can be found
using the K−1 variables alone. If the test is rejected, the coefficient of the Kth variable
is then normalized to one and the corresponding coefficients in all other SCM s that
nest this one are set to zero. If the test concludes that the SCM can be formed using
the first K − 1 variables only, the coefficient of the Kth variable in this SCM is zero,
and should not be normalized to one. It is worth noting that if the order of this SCM
is uniquely minimal, then this extra zero restriction adds to the restrictions discovered
before. Continue testing by omitting variable K − 1 and test whether the SCM could
be formed from the first K − 2 variables only, and so on.

5



2. Any linear combination of a SCM (p1, q1) and a SCM (p2, q2) is a
SCM (max {p1, p2} , max {q1, q2}). In all cases where there are two embedded scalar
components with weakly nested orders, i.e., p1 ≥ p2 and q1 ≥ q2, arbitrary multiples
of SCM (p2, q2) can be added to the SCM (p1, q1) without changing the structure of the
system. This means that the row of A corresponding to the SCM (p1, q1) is not identified
in this case. To achieve identification, if the parameter in the ith column of the row of
A corresponding to the SCM (p2, q2) is normalized to one, the parameter in the same
position in the row of A corresponding to SCM (p1, q1) should be restricted to zero.

A brief summary of our complete VARMA methodology is as follows.

Stage I: Identification of the Scalar Components

This stage follows the Tiao and Tsay (1989) methodology and comprises two steps:

Step 1 : Determining an overall tentative Order

Starting from m = 0, j = 0 and incrementing sequentially one at a time, find all zero sample
canonical correlations between Ym,t and Ym,t−1−j . Organize the results in a two way table.
Starting from the upper left corner and considering the diagonals perpendicular to the main
diagonal, search for the first time s + K zero eigenvalues are found, given that there were s

zero eigenvalues in position (p− 1, q − 1) (when either p = 1 or q = 1, s = 0). This (p, q) is
taken as the overall order of the system. Note that it is possible to find more than one such
(p, q) and therefore more than one possible overall order. In such cases one should pursue all
of these possibilities and choose between competing models using a model selection criterion.
(This procedure produces exactly the same results as those implied by the “Criterion Table”
in Tiao and Tsay 1989).

Step 2 : Identifying orders of SCM s

Conditional on (p, q), test for zero canonical correlations between Ym,t and Ym+(q−j),t−1−j

for m = 0, . . . , p and j = 0, . . . , q. Note that since an SCM (m, j) nests all scalar
components of order (≤ m,≤ j), for every one SCM (p1 < p, q1 < q) there will be
s = min {m− p1 + 1, j − q1 + 1, } zero canonical correlations at position (m ≥ p1, j ≥ q1).
Therefore, for every increment above s, a new SCM (m, j) is found. This procedure does not
necessarily lead to a unique decision about the embedded SCM s. In all such cases all pos-
sibilities should be pursued and the final models can be selected based on a model selection
criterion. (The tabulation of all zero eigenvalues produces the “Root Table” of Tiao and Tsay
1989).
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Stage II: Placing Identification Restrictions on Matrix A

Apply the identification rules stated above to identify the structure of the transformation
matrix A. Extensive Monte-Carlo experiments in Athanasopoulos (2005) show that these two
stages perform well in identifying some pre-specified data generating processes with various
orders of embedded SCM s.

Stage III: Estimation of the Uniquely Identified System

Estimate the parameters of the identified structure using FIML (Durbin 1963). The canonical
correlations procedure produces good starting values for the parameters, in particular for the
SCM s with no moving average components. Alternatively, lagged innovations can be estimated
from a long VAR and used for obtaining initial estimates for the parameters as in Hannan
and Risannen (1982). The maximum likelihood procedure provides estimates and estimated
standard errors for all parameters, including the free parameters in A. All usual considerations
that ease the estimation of structural forms are also applicable here, and should definitely be
exploited in estimation.

3 EMPIRICAL RESULTS

3.1 Data

The data we employ in this paper are 40 monthly macroeconomic time series from March
1959 to December 1998 (i.e., N = 480 observations). These are extracted from the Stock
and Watson (1999) data set (see Appendix 4). The series fall within eight general categories
of economic activity: (i) output and real income; (ii) employment and unemployment; (iii)
consumption, manufacturing, retail sales and housing; (iv) real inventories and sales; (v) prices
and wages; (vi) money and credit; (vii) interest rates; (viii) Exchange Rates, Stock Prices
and Volume. The data are transformed in various ways as indicated in Appendix 4. These
transformations are exactly the same as those in Stock and Watson (1999) and Watson (2001).
We have selected seventy trivariate systems which include at least one combination from each
of the eight categories. For example, at least one system from categories (i) , (ii) and (iii) ,

one system from (i) , (ii) and (iv) and so on.

3.2 Models Considered

For each of the seventy data sets we estimate five models: (i) a VARMA model developed
employing the SCM methodology of Section 2, (ii) a VAR model chosen by the AIC, (iii) a
VAR model chosen by the BIC (iv) a restricted version of (ii) with all insignificant coefficients
restricted to zero, and (v) a restricted version of (iii) with all insignificant coefficients restricted
to zero. We consider the restricted VAR models to ensure that unfavourable results of VAR
models are not due to redundant parameters in the unrestricted VARs. In both (iv) and (v)
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restrictions are imposed one at a time by eliminating the parameter with the highest p-value
among all insignificant parameters at the 5 percent level of significance. Restricted models are
estimated using the seemingly unrelated regression estimation method (Zellner 1963) as not
all equations include the exact same regressors.

3.3 Forecast Evaluation Method

We have divided the data into two sub-samples: the estimation sample (March 1959 to Decem-
ber 1983 with N1 = 298 observations) and the hold-out sample (January 1984 to December
1998 with N2 = 180 observations). We estimate each model using the estimation sample, i.e.,
all models are estimated using y1 to yN1 . We then use each estimated model to produce a
sequence of h-step-ahead forecasts for h = 1 to 15. That is, with yN1 as the forecast origin, we
produce forecasts for yN1+1 to yN1+15. The forecast origin is then rolled forward one period,
i.e., using observation yN1+1, we produce forecasts for yN1+2 to yN1+16. We repeat this pro-
cess to the end of the hold-out sample. Therefore, for each model and each forecast horizon
h, we have N2 − h + 1 forecasts to use for forecast evaluation purposes.

For each forecast horizon h, we consider two measures of forecasting accuracy. The first is
the determinant of the mean squared forecast error matrix, |MSFE|, and the second is the
trace of the mean squared forecast error matrix, tr (MSFE). Clements and Hendry (1993)
show that the |MSFE| is invariant to elementary operations on the forecasts of different
variables at a single horizon, but not invariant to elementary operations on the forecasts
across different horizons. The tr (MSFE) is not invariant to either. In this forecast evaluation
exercise, both of these measures are informative in their own right, as no elementary operations
take place. The only apparent drawback would be with the tr (MSFE), as the rankings of the
models using this measure would be affected by the different scales across the variables of the
system. Therefore, we have standardized all variables by their estimated standard deviation
that is derived from the estimation sample, making the variances of the forecast errors of the
three series directly comparable. This makes the tr (MSFE) a useful measure of forecast
accuracy.

In order to evaluate the overall forecasting performance of the models over the seventy data
sets, we calculate two measures. Firstly, we calculate the percentage better (PB) measure
which has been used in forecasting competitions (see Makridakis and Hibon 2000). This
measure is the percentage of times each model performs best in a set of competing models.

The second measure we compute is the average (over the seventy data sets) of the ratios of
the forecast accuracy measures for each model, relative to the VARMA. The reason that we
compute these ratios, as well as the PB counts, is that it is possible that one class of models
is best more than 50 percent of the time, say 80 percent, but that in all those cases other
alternatives are close to it. However, in the 20 percent of cases that this model is not the best,
it may make huge forecast errors. In such a case, a user who is risk averse would not use this
model, as the preferred option would be a less risky alternative. The average of the relative
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ratios provides us with this additional information.
The relative ratios considered are the average of the relative ratios of the determinants of

the mean squared forecast error matrices defined as

RdMSFEh =
1
M

M∑

i=1

|MSFE (VAR)i|
|MSFE ( VARMA)i|

,

and the average of the relative ratios of the traces of the mean squared forecast error matrices
defined as

RtMSFEh =
1
M

M∑

i=1

tr (MSFE (VAR)i)
tr (MSFE (VARMA )i)

,

where h is the forecast horizon, and M is the number of data sets considered.

3.4 PB Results

The PB counts have been plotted in Figures 1 to 5 (the actual counts for all measures are
presented in Appendix 4). In these figures there are three lines, each one representing a class
of models. The marked points on each line depict the percentage of times for which that class
of models produces the best forecast for that horizon amongst all models. For example, con-
sider the 7 -step-ahead forecast performance for VARMA models versus the unrestricted VAR
models selected by the AIC, i.e., VAR(AIC ) , and those selected by the BIC, i.e., VAR(BIC ).
Figure 1 shows that the VARMA models outperform both sets of VAR models, as approxi-
mately 60 percent of the time they produce lower values of |MSFE|. In general, Figure 1
shows that the VARMA models produce the highest PB counts for the |MSFE| for all h = 1
to 15-step-ahead forecast horizons when compared to their VAR counterparts.

 Forecast horizon (h) 

%

2 4 6 8 10 12 14

10
20

30
40

50
60

70
80

VARMA VAR(AIC) VAR(BIC)

Figure 1: PB counts for |MSFE| for VARMA versus unrestricted VAR models selected by
AIC and BIC
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Figure 2 shows the PB counts again for the |MSFE|, however now the VAR counterparts
of the VARMA models are VAR models whose insignificant lags have been omitted as described
in Section 3.2. This figure shows that the only forecast horizon for which VARMA models are
outperformed by VARs is for h = 3. For this forecast horizon the restricted VARs selected by
the AIC perform slightly better than their VARMA counterparts.

 Forecast horizon (h) 

%

2 4 6 8 10 12 14

10
20

30
40

50
60

70
80

VARMA VAR(AIC) VAR(BIC)

Figure 2: PB counts for |MSFE| for VARMA versus restricted VAR models selected by AIC
and BIC

Figures 3 and 4 present the PB counts of VARMA models versus unrestricted and restricted
VARs respectively, when the forecast accuracy measure is tr (MSFE). Again the results are
overwhelmingly in favour of the VARMA models.

 Forecast horizon (h) 

%

2 4 6 8 10 12 14

10
20

30
40

50
60

70
80

VARMA VAR(AIC) VAR(BIC)

Figure 3: PB counts for tr(MSFE) for VARMA versus unrestricted VAR models selected by
AIC and BIC
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 Forecast horizon (h) 

%

2 4 6 8 10 12 14

10
20

30
40

50
60

70

VARMA VAR(AIC) VAR(BIC)

Figure 4: PB counts for tr(MSFE) for VARMA versus restricted VAR models selected by AIC
and BIC

As a general observation for both accuracy measures and for both restricted and unre-
stricted VAR models, VARMA models perform better at least 50 percent of the time for
forecast horizons of more than six or seven steps ahead. The significance of the 50 percent
figure is that if we could somehow choose the best of the VAR models selected by either the
AIC or the BIC, the VARMA models would still “out-forecast” them.

Furthermore, Figure 5 shows a head-to-head comparison of the PB counts for the |MSFE|
of VARMA models versus VARs, selected by either the AIC or the BIC. The results based on
the tr (MSFE) are qualitatively similar and the raw figures for both measures are presented
in Appendix 4. This comparison further supports the dominance of the VARMA models.
Now that the comparison is between VARMA models and one class of VAR models at a time,
the VARMA models outperform their VAR counterparts for each and every forecast horizon.
The lowest PB count that the VARMA models achieve is 51 percent, for the h = 3 forecast
horizon when compared to the restricted VAR(AIC ). Every other count is above 53 percent
with a maximum of 79 percent for h = 10 and 12 when compared to unrestricted VAR(AIC ).
Furthermore, for h > 3 at least 60 percent of the time VARMA models outperform their VAR
counterparts.

3.5 Relative Ratios Results

The results for the relative ratios are tabulated in Table 1, and plotted in Figure 6. All panels
of Table 1 and Figure 6 indicate that for all forecast horizons and for both restricted and
unrestricted VARs, all relative ratio measures are consistently greater than one. A relative
ratio greater than one shows that for that forecast horizon VARMA models perform better
than VARs. For example, in Panel A for h = 4, the determinant of the MSFE matrix for
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 Forecast horizon (h) 

%

2 4 6 8 10 12 14

20

40

60

80

VARMA VAR(AIC)

                                                                              PANEL A: PB counts for |MSFE| for VARMA versus Unrestricted VARs

 Forecast horizon (h) 

%

2 4 6 8 10 12 14

20

40

60

80

VARMA VAR(BIC)

 Forecast horizon (h) 

%

2 4 6 8 10 12 14

20

30

40

50

60

70

80 VARMA VAR(AIC)

                                                                              PANEL B: PB counts for |MSFE| for VARMA versus Restricted VARs

 Forecast horizon (h) 

%

2 4 6 8 10 12 14

20

30

40

50

60

70

80 VARMA VAR(BIC)

Figure 5: A head to head comparison of PB counts for |MSFE| between VARMA and unre-
stricted and restricted VAR models selected by either AIC or BIC
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VAR(AIC ) is on average 8 percent larger than that of VARMAs. For the same horizon, this
improvement jumps to approximately 10 percent when compared to the VAR(BIC ) models.

Table 1: Average relative ratios for the determinant and the trace of the MSFE matrices for
VAR models selected by AIC and BIC over VARMA

Panel A: RdMSFE of Unrestricted VAR over VARMA

Forecast Horizon (h) Av. of Forecast Horizon

1 2 3 4 8 12 15 1-4 1-8 1-12 1-15

VAR(AIC ) 1.058 1.079 1.059 1.078 1.080 1.087 1.080 1.069 1.075 1.078 1.080

VAR(BIC ) 1.043 1.055 1.062 1.099 1.110 1.099 1.087 1.065 1.089 1.094 1.094

Panel B: RdMSFE of Restricted VAR over VARMA

Forecast Horizon (h) Av. of Forecast Horizon

1 2 3 4 8 12 15 1-4 1-8 1-12 1-15

VAR(AIC ) 1.028 1.040 1.020 1.042 1.050 1.058 1.053 1.033 1.042 1.046 1.048

VAR(BIC ) 1.032 1.042 1.054 1.093 1.109 1.101 1.089 1.055 1.083 1.090 1.091

Panel C: RtMSFE of Unrestricted VAR over VARMA

Forecast Horizon (h) Av. of Forecast Horizon

1 2 3 4 8 12 15 1-4 1-8 1-12 1-15

VAR(AIC ) 1.022 1.030 1.030 1.031 1.027 1.032 1.035 1.028 1.028 1.029 1.030

VAR(BIC ) 1.011 1.010 1.013 1.021 1.025 1.029 1.031 1.014 1.019 1.022 1.024

Panel D: RtMSFE of Restricted VAR over VARMA

Forecast Horizon (h) Av. of Forecast Horizon

1 2 3 4 8 12 15 1-4 1-8 1-12 1-15

VAR(AIC ) 1.021 1.025 1.023 1.025 1.013 1.017 1.021 1.023 1.020 1.018 1.019

VAR(BIC ) 1.014 1.013 1.016 1.023 1.026 1.032 1.034 1.017 1.021 1.024 1.026

The last four columns of each panel of Table 1 show the average relative ratio over sev-
eral forecast horizons. These also highlight the improvement VARMA models bring to out-
of-sample forecasting in comparison to VARs. The last column shows the overall average
improvement over all fifteen forecast horizons. This overall improvement ranges between ap-
proximately 2 percent, achieved for the average of the relative ratio for the tr (MSFE) for
restricted VAR(AIC ) models (see Panel D), and 9.5 percent, achieved for the average of the
relative ratio for the |MSFE| for restricted VAR(BIC ) models (see Panel A).

While the main objective of this forecasting exercise is to compare the forecast performance
of VARMA models with that of VARs, one can also compare the forecast performance between
the VAR models selected by the two model selection criteria. Figure 6 allows for a head-to-
head comparison between the VAR models selected by the AIC those selected by the BIC.
Panels A and B compare the determinants of the mean squared forecast error matrices for the
unrestricted and restricted VARs. Panel A shows that for h ≤ 2, VAR(BIC ) perform better,
but for all h > 2 VAR(AIC ) dominate. The performance of the two seems to converge beyond
h ≥ 7.

Panel B compares the performance of the restricted VAR models. Recall that the restricted

13



 Forecast horizon (h) 

%

5 10 15

1.00

1.05

1.10

1.15 VAR(AIC) VAR(BIC)

PANEL A

 RdMSFE for Unrestricted VAR

 Forecast horizon (h) 

%

5 10 15

1.00

1.05

1.10

1.15 VAR(AIC) VAR(BIC)

PANEL B

 RdMSFE for Restricted VAR

 Forecast horizon (h) 

%

5 10 15

1.00

1.01

1.02

1.03

1.04

1.05
VAR(AIC) VAR(BIC)

PANEL C

RtMSFE for Unestricted VAR

 Forecast horizon (h) 

%

5 10 15

1.00

1.01

1.02

1.03

1.04

1.05
VAR(AIC) VAR(BIC)

PANEL D

RtMSFE for Restricted VAR

Figure 6: Average relative ratios of the determinant and the trace of the MSFE matrices for
VAR models selected by AIC and BIC over VARMA
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VAR models are VARs with their lag length selected by a model selection criterion which then
have their insignificant right hand side variables omitted. This figure shows that the restricted
VAR(AIC ) models are at least as good as the restricted VAR(BIC ) models. Comparing panels
A and B shows that eliminating insignificant variables improves the performance of VAR(AIC )
models considerably, but it does not improve (in fact it slightly worsens) the performance of
VAR(BIC ) models. Panels C and D present the performance of the VAR models based on the
tr (MSFE). The strong message from these figures is that VAR(AIC ) models must be used
for forecasting only after their insignificant variables are eliminated.

4 CONCLUSION

The message of this paper is that we can obtain better forecasts for macroeconomic variables
by considering VARMA models rather than restricting ourselves to VAR models. With recent
methodological advances in the identification and estimation of VARMA models, and with
the improvement in computing power and econometrics software, there is no compelling rea-
son to restrict the class of models to VARs only. Our empirical results show that VARMA
models developed by a scalar components methodology outperform VAR models in forecasting
macroeconomic variables. Are these favourable results specific to VARMA models developed
by the scalar component methodology that we adopt in this paper? The answer is negative.
Athanasopoulos (2005) shows that the same conclusion emerges when one uses an “echelon
form” approach (Hannan and Deistler 1988; Lütkepohl and Poskitt 1996) to develop VARMA
models. Therefore the improvements seem to be a result of expanding the set of possible
models to VARMA models rather than any specific approach for developing VARMA models.

APPENDIX A: DATA SUMMARY

This appendix lists the time series that are used in this paper. The series have been directly
downloaded from Mark Watson’s web page (http://www.wws.princeton.edu/mwatson/). The
names (mnemonics) given to each series and the brief description following each series name
have been reproduced from Watson (2001). The superscript index on the series name is the
transformation code which corresponds to: (1) the level of the series, (2) the first difference
(∆yt = yt − yt−1) and (3) the first difference of the logarithm, i.e., series transformed to growth
rates (100 ∗∆ln yt). The following abbreviations also appear in the brief data descriptions: SA
= seasonally adjusted; SAAR = seasonally adjusted at an annual rate; NSA = not seasonally
adjusted.
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(i) Output and income

1. IP3 Industrial production: total index (1992=100,SA)

2. IPP3 Industrial production: products, total (1992=100,SA)

3. IPF3 Industrial production: final products (1992=100,SA)

4. IPC3 Industrial production: consumer goods (1992=100,SA)

5. IPUT3 Industrial production: utilities (1992=100,SA)

6. PMP1 NAPM production index (percent)

7. GMPYQ3 Personal income (chained) (series #52) (Bil 92$, SAAR)

(ii) Employment and hours

8. LHUR1 Unemployment rate: all workers, 16 years & over (%,SA)

9. LPHRM1 Avg. weekly hrs. of production wkrs.: mfg., manufacturing. (SA)

10. LPMOSA1 Avg. weekly hrs. of production wkrs.: mfg., overtime hrs. (SA)

11. PMEMP1 NAPM employment index (percent)

(iii) Consumption, manufacturing and retail sales, and housing

12. MSMTQ3 Manufacturing & trade: total (mil of chained $1992 SA)

13. MSMQ3 Manufacturing & trade: manufacturing, total (mil of chained $1992 SA)

14. MSDQ3 Manufacturing & trade: manufacturing, durable goods (mil of chained $92 SA)

15. MSNQ3 Manufacturing & trade: manufacturing, nondurable goods (mil of chd. $92 SA)

16. WTQ3 Merchant wholesalers: total (mil of chained $1992 SA)

17. WTDQ3 Merchant wholesalers: durable goods total (mil of chained $1992 SA)

18. WTNQ3 Merchant wholesalers: nondurable goods total (mil of chained $1992 SA)

19. RTQ3 Retail trade: total (mil of chained $1992 SA)

20. RTNQ3 Retail trade: nondurable goods (mil of chained $1992 SA)

21. CMCQ3 Personal consumption expend - total (bil of chained $1992 SAAR)

(iv) Real inventories and inventory-sales ratios

22. IVMFGQ3 Inventories, business, manufacturing (mil of chained $1992 SA)

23. IVMFDQ3 Inventories, business durables (mil of chained $1992 SA)

24. IVMFNQ3 Inventories, business nondurables (mil of chained $1992 SA)

25. IVSRQ2 Ratio for manufacturing & trade: inventory/sales (chained $1992 SA)

26. IVSRMQ2 Ratio for manufacturing & trade: manufacturing inventory/sales ($87 SA)

27. IVSRWQ2 Ratio for manufacturing & trade: wholesaler; inventory/sales ($87 SA)

28. IVSRRQ2 Ratio for manufacturing & trade: retail trade; inventory/sales ($87 SA)

29. MOCMQ3 New orders (net) - consumer goods & materials ($1992 BCI)

30. MDOQ3 New orders, durable goods industries ($1992 BCI)

(v) Prices and wages

31. PMCP1 NAPM commodity prices index (percent)

(vi) Money and credit quantity aggregates

32. FM2DQ3 Money supply - M2 in ($1992 BCI)

33. FCLNQ3 Commercial & industrial loans outstanding in ($1992 BCI)
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(vii) Interest rates

34. FYGM32 Interest rate: US treasury bills, sec mkt, 3-MO. (% p.a. NSA)

35. FYGM62 Interest rate: US treasury bills, sec mkt, 6-MO. (% p.a. NSA)

36. FYGT12 Interest rate: US treasury const maturities, 1-YR. (% p.a. NSA)

37. FYGT102 Interest rate: US treasury const maturities, 10-YR. (% p.a. NSA)

38. TBSPR1 Term spread FYGT10-FYGT1

(viii) Exchange rates, stock prices and volume

39. FSNCOM3 NYSE common stock prices index: composite (12/31/65=50)

40. FSPCOM3 S&P’s common stock prices index: composite (1941-43=10)
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APPENDIX B: RAW DATA FOR THE PERCENTAGE
BETTER (PB) COUNTS CONSIDERING ALL MOD-
ELS

Table 2: PB counts for |MSFE| for VARMA versus unrestricted VAR models selected by AIC
and BIC

Forecast horizon (h)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

VARMA 43.0a 41.0 41.0 54.0 51.0 50.0 59.0 60.0 61.0 66.0 63.0 61.0 63.0 61.0 56.0
VAR(BIC ) 27.0 34.5 30.0 23.0 24.5 21.0 24.0 21.0 20.0 17.0 18.5 23.0 21.0 20.0 23.0
VAR(AIC ) 30.0 24.5 29.0 23.0 24.5 29.0 17.0 19.0 19.0 17.0 18.5 16.0 16.0 19.0 21.0

Table 3: PB counts for |MSFE| for VARMA versus restricted VAR models selected by AIC
and BIC

Forecast horizon (h)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

VARMA 44.0a 42.0 37.0 46.0 46.0 49.0 54.0 47.0 49.0 47.0 49.0 48.0 46.0 47.0 46.0
VAR(BIC ) 23.0 24.0 24.0 21.0 20.0 17.0 20.0 20.0 20.0 21.5 23.0 26.0 23.0 23.0 23.0
VAR(AIC ) 33.0 34.0 39.0 33.0 34.0 34.0 26.0 33.0 31.0 31.5 29.0 26.0 31.0 30.0 31.0

Table 4: PB counts for tr(MSFE) for VARMA versus unrestricted VAR models selected by
AIC and BIC

Forecast horizon (h)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

VARMA 47.0a 41.0 37.0 49.0 50.0 49.0 57.0 56.0 57.0 60.0 63.0 59.0 57.0 56.0 51.0
VAR(BIC ) 27.0 39.0 40.0 31.0 33.0 30.0 30.0 30.0 27.0 26.0 21.0 25.5 26.0 27.0 30.0
VAR(AIC ) 26.0 20.0 23.0 20.0 17.0 21.0 13.0 14.0 16.0 14.0 16.0 15.5 17.0 17.0 19.0

Table 5: PB counts for tr(MSFE) for VARMA versus restricted VAR models selected by AIC
and BIC

Forecast horizon (h)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

VARMA 48.5a 41.0 43.0 43.0 46.0 44.5 49.0 48.5 53.0 48.5 46.0 46.0 46.0 47.0 44.5
VAR(BIC ) 23.0 33.0 31.0 30.0 24.0 24.0 26.0 18.5 17.0 18.5 20.0 23.0 21.0 21.5 24.0
VAR(AIC ) 28.5 26.0 26.0 27.0 30.0 31.5 26.0 33.0 30.0 33.0 34.0 31.0 33.0 31.5 31.5

a Figures are rounded to the nearest .5 figure
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APPENDIX C: RAW DATA FOR THE HEAD TO HEAD
COMPARISON OF THE PERCENTAGE BETTER (PB)
COUNTS

Table 6: Percentage of times VARMA models forecast more accurately than unrestricted VAR
models selected by AIC

Accuracy Forecast horizon (h)
Measure 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

|MSFE| 59 60 57 66 64 63 76 74 76 79 77 79 76 76 71
tr (MSFE) 61 57 57 67 69 71 76 71 76 77 76 73 74 74 71

Table 7: Percentage of times VARMA models forecast more accurately than unrestricted VAR
models selected by BIC

Accuracy Forecast horizon (h)
Measure 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

|MSFE| 59 54 54 70 67 69 67 67 69 71 70 67 69 67 69
tr (MSFE) 59 54 50 61 63 61 66 69 70 70 70 67 66 64 63

Table 8: Percentage of times VARMA models forecast more accurately than restricted VAR
models selected by AIC

Accuracy Forecast horizon (h)
Measure 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

|MSFE| 54 53 51 60 57 60 70 61 59 59 60 61 59 61 61
tr (MSFE) 57 59 57 63 61 59 64 61 63 59 59 57 56 59 57

Table 9: Percentage of times VARMA models forecast more accurately than restricted VAR
models selected by BIC

Accuracy Forecast horizon (h)
Measure 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

|MSFE| 59 56 56 63 64 64 61 66 64 66 66 64 63 64 64
tr (MSFE) 61 54 56 59 60 63 61 69 69 67 63 63 61 63 63
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