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Another look at measures of forecast accuracy

Abstract: We discuss and compare measures of accuracy of univariate time series forecasts. The

methods used in the M-competition and the M3-competition, and many of the measures recommen-

ded by previous authors on this topic, are found to be inadequate, and many of them are degenerate

in commonly occurring situations. Instead, we propose that the mean absolute scaled error become

the standard measure for comparing forecast accuracy across multiple time series.

Keywords: forecast accuracy, forecast evaluation, forecast error measures, M-competition, mean

absolute scaled error.
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1 Introduction

Many measures of forecast accuracy have been proposed in the past, and several authors have

made recommendations about what should be used when comparing the accuracy of forecast

methods applied to univariate time series data. It is our contention that many of these proposed

measures of forecast accuracy are not generally applicable, can be infinite or undefined, and can

produce misleading results. We provide our own recommendations of what should be used in

empirical comparisons. In particular, we do not recommend the use of any of the measures

that were used in the M-competition and the M3-competition.

To demonstrate the inadequacy of many measures of forecast accuracy, we provide three ex-

amples of real data in Figure 1. These show series N0472 from the M3-competition1, monthly

log stock returns for the Walt Disney Corporation, and monthly sales of a lubricant product

sold in large containers. Note that the Disney return series and the lubricant sales series both in-

clude exact zero observations, and the Disney series contains negative values. Suppose we are

interested in comparing the forecast accuracy of four simple methods: (1) the historical mean

using data up to the most recent observation; (2) the “naı̈ve” method or random-walk method

based on the most recent observation; (3) simple exponential smoothing and (4) Holt’s method.

We do not suggest these are the best methods for these data, but they are all simple methods

that are widely applied. We compare the in-sample performance of the methods (based on

one-step-ahead forecasts) and the out-of-sample performance (based on forecasting the data in

the hold-out period using only information from the fitting period).

Tables 1–3 show some forecast error measures for these methods applied to the example data.

The acronyms are defined below and we explicitly define the measures in Sections 2 and 3.

MAPE Mean Absolute Percentage Error

MdAPE Median Absolute Percentage Error

sMAPE Symmetric Mean Absolute Percentage Error

sMdAPE Symmetric Median Absolute Percentage Error

MdRAE Median Relative Absolute Error

GMRAE Geometric Mean Relative Absolute Error

MASE Mean Absolute Scaled Error

1Data downloaded from http://www.forecasters.org/data/m3comp/m3comp.htm
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Figure 1: Example (a): Series 472 from the M3-competition. Example (b): ten years of monthly log stock
returns for the Walt Disney Corporation, 1990–1999. Data source: Tsay (2002), chapter 1. Example (c):
three years of monthly sales of a lubricant product sold in large containers. Data source: ‘Product C’ in
Makridakis, Wheelwright and Hyndman (1998), chapter 1. The vertical dashed lines indicate the end of
the data used for fitting and the start of the “hold-out” set used for out-of-sample forecast.
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Example (a) Mean Random walk SES Holt
In Out In Out In Out In Out

MAPE 14.09 25.57 2.01 5.00 2.08 5.03 1.31 3.94
MdAPE 17.44 26.13 1.61 5.71 1.86 5.74 1.04 4.20
SMAPE 0.16 0.29 0.02 0.05 0.02 0.05 0.01 0.04
SMdAPE 0.19 0.30 0.02 0.06 0.02 0.06 0.01 0.04
MdRAE 6.50 12.06 Undefined Undefined 1.02 3.14 0.50 2.51
GMRAE ∞ ∞ Undefined Undefined ∞ ∞ ∞ ∞
MASE 7.88 17.23 1.00 3.42 1.04 3.44 0.66 2.69

Table 1: Forecast error measures for M3 series N0472.

Example (b) Mean Random walk SES Holt
In Out In Out In Out In Out

MAPE ∞ 96.56 ∞ 125.90 ∞ 102.32 ∞ 113.90
MdAPE 101.61 96.92 159.25 119.19 97.06 98.63 98.70 97.91
sMAPE −0.80 −2.04 ∞ −3.03 −1.10 −0.57 −0.80 −1.12
sMdAPE 0.91 0.35 0.66 0.22 1.01 0.43 0.91 0.48
MdRAE 0.71 0.71 1.00 0.67 0.63 0.75 0.64 0.72
GMRAE 0.66 0.61 1.00 0.58 0.62 0.58 0.60 0.63
MASE 0.72 1.01 1.00 1.06 0.70 1.02 0.70 1.04

Table 2: Forecast error measures for Disney stocks.

Example (c) Mean Random walk SES Holt
In Out In Out In Out In Out

MAPE ∞ ∞ Undefined Undefined ∞ ∞ ∞ ∞
MdAPE ∞ ∞ Undefined Undefined ∞ ∞ ∞ ∞
sMAPE 1.68 1.39 Undefined Undefined 1.62 1.37 1.65 1.62
sMdAPE 2.00 2.00 Undefined Undefined 2.00 2.00 2.00 2.00
MdRAE 1.00 1.20 Undefined Undefined 1.17 1.11 0.91 0.60
GMRAE ∞ ∞ Undefined Undefined ∞ ∞ ∞ ∞
MASE 0.89 0.39 1.00 0.15 0.83 0.35 0.79 0.20

Table 3: Forecast error measures for lubricant sales.
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In these tables, we have included measures that have been previously recommended for use

in comparing forecast accuracy across many series. Most textbooks recommend the use of

the MAPE (e.g., Hanke and Reitsch, 1995, p.120, and Bowerman, O’Connell & Koehler, 2004,

p.18) and it was the primary measure in the M-competition (Makridakis, et al., 1982). In con-

trast, Makridakis, Wheelwright & Hyndman (1998, p45) warns against the use of the MAPE in

some circumstances, including those encountered in these examples. Armstrong and Collopy

(1992) recommended the use of GMRAE, MdRAE and MdAPE. Fildes (1992) also recommen-

ded the use of MdAPE and GMRAE (although he described the latter as the relative geometric

root mean square error or GRMSE). The MdRAE, sMAPE and sMdAPE were used in the M3-

competition (Makridakis & Hibon, 2000).

The M-competition and M3-competition also used rankings amongst competing methods. We

do not include those here as they are dependent on the number of methods being considered.

They also give no indication of the size of the forecast errors. Similarly, both competitions

included measures based on the percentage of times one method was better than a benchmark

method. Again, such measures are not included here as they do not indicate the size of the

errors.

To our knowledge, the MASE has not been proposed before. We consider it the best available

measure of forecast accuracy and we argue for it in Section 3.

Note that there are many infinite values occurring in Tables 1–3 due to division by zero. Divi-

sion by numbers close to zero also results in very large numbers. The undefined values arise

due to the division of zero by zero. Also note that the sMAPE can take negative values although

it is meant to be an “absolute percentage error”.

Of the measures in Tables 1–3, only the MASE can be used for these series due to the occur-

rence of infinite and undefined values. These three series are not degenerate or unusual—

intermittent demand data often contain zeros and many time series of interest to forecasters

take negative observations. The cause of the problems with M3 series N0472 is the occurrence

of consecutive observations taking the same value, something that occurs very often with real

data.
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2 A critical survey of accuracy measures

Let Yt denote the observation at time t and Ft denote the forecast of Yt. Then define the forecast

error et = Yt − Ft. The forecasts may be computed from a common base time, and be of varying

forecast horizons. Thus, we may compute out-of-sample forecasts Fn+1, . . . , Fn+m based on data

from times t = 1, . . . , n. Alternatively, the forecasts may be from varying base times, and be of a

consistent forecast horizon. That is, we may compute forecasts F1+h, . . . , Fm+h where each Fj+h

is based on data from times t = 1, . . . , j. The in-sample forecasts in the examples above were

based on the second scenario with h = 1. A third scenario arises when we wish to compare the

accuracy of methods across many series at a single forecast horizon. Then we compute a single

Fn+h based on data from times t = 1, . . . , n for each of m different series.

We do not distinguish these scenarios in this paper. Rather, we simply look at ways of sum-

marizing forecast accuracy assuming that we have m forecasts and that we observe the data at

each forecast period.

We use the notation mean(xt) to denote the sample mean of {xt} over the period of interest

(or over the series of interest). Analogously, we use median(xt) for the sample median and

gmean(xt) for the geometric mean.

2.1 Scale-dependent measures

There are some commonly used accuracy measures whose scale depends on the scale of the

data. These are useful when comparing different methods on the same set of data, but should

not be used, for example, when comparing across data sets that have different scales. Never-

theless, the MSE was used by Makridakis et al., 1985, in the M-competition. This inappropriate

use of the MSE was widely criticized (e.g., Chatfield, 1988; Armstrong and Collopy, 1992).

The most commonly used scale-dependent measures are based on the absolute error or squared
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errors:

Mean Square Error (MSE) = mean(e2
t )

Root Mean Square Error (RMSE) =
√

MSE

Mean Absolute Error (MAE) = mean(|et|)
Median Absolute Error (MdAE) = median(|et|)

Often, the RMSE is preferred to the MSE as it is on the same scale as the data. Historically,

the RMSE and MSE have been popular, largely because of their theoretical relevance in stat-

istical modelling. However, they are more sensitive to outliers than MAE or MdAE which has

led some authors (e.g., Armstrong, 2001) to recommend against their use in forecast accuracy

evaluation.

2.2 Measures based on percentage errors

The percentage error is given by pt = 100et/Yt. Percentage errors have the advantage of being

scale-independent, and so are frequently used to compare forecast performance across different

data sets. The most commonly used measures are:

Mean Absolute Percentage Error (MAPE) = mean(|pt|)
Median Absolute Percentage Error (MdAPE) = median(|pt|)

Root Mean Square Percentage Error (RMSPE) =
√

mean(p2
t )

Root Median Square Percentage Error (RMdSPE) =
√

median(p2
t ) .

These measures have the disadvantage of being infinite or undefined if Yt = 0 for any t in

the period of interest, and having an extremely skewed distribution when any Yt is close to

zero. This means, for example, that the MAPE is often substantially larger than the MdAPE.

Where the data involves small counts (which is common with intermittent demand data; see

Gardner, 1990) it is impossible to use these measures as occurrences of zero values of Yt occur

frequently. Excessively large (or infinite) MAPEs were avoided in the M3-competition by only

including data that were positive (Makridakis and Hibon, 2000, p.462). However, this is an

artificial solution that is impossible to apply in practical situations.

A further disadvantage of methods based on percentage errors is that they assume a meaning-
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ful zero. For example, they make no sense in measuring forecast error for temperatures on the

Fahrenheit or Celsius scales.

The MAPE and MdAPE also have the disadvantage that they put a heavier penalty on positive

errors than on negative errors. This observation led to the use of the so-called “symmetric”

measures (Makridakis, 1993) defined by

Symmetric Mean Absolute Percentage Error (sMAPE) = mean(200|Yt − Ft|/(Yt + Ft))

Symmetric Median Absolute Percentage Error (sMdAPE) = median(200|Yt − Ft|/(Yt + Ft))

The problems arising from small values of Yt may be less severe for sMAPE and sMdAPE;

however, even there if Yt is close to zero than Ft is also likely to be close to zero, so the measure

still involves division by a number close to zero.

As was seen in the examples in Section 1, sMAPE and sMdAPE can take negative values. It

would seem more natural to define them with absolute values in the denominator, and so avoid

this problem, but this is not what is usually done. Further, these measures are not as “symmet-

ric” as their name suggests. For the same value of Yt, the value of 2|Yt − Ft|/(Yt + Ft) has a

heavier penalty when forecasts are high compared to when forecasts are low. See Goodwin

and Lawton (1999) and Koehler (2001) for further discussion on this point.

Some authors (e.g., Swanson, et al., 2000) have noted that measures based on percentage errors

are often highly skewed, and therefore transformations (such as logarithms) can make them

more stable. See Coleman and Swanson (2004) for further discussion.

2.3 Measures based on relative errors

An alternative way of scaling is to divide each error by the error obtained using another stand-

ard method of forecasting. Let rt = et/e∗t denote the relative error where e∗t is the forecast error

obtained from the benchmark model. Usually, the benchmark model is the random walk where

Ft is equal to the last observation; this is what was used in the examples in Section 1.
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Then we can define:

Mean Relative Absolute Error (MRAE) = mean(|rt|)
Median Relative Absolute Error (MdRAE) = median(|rt|)

Geometric Mean Relative Absoluate Error (GMRAE) = gmean(|rt|)

and so on. Armstrong and Collopy (1992) recommended the use of relative absolute errors,

especially the GMRAE and MdRAE. Fildes (1992) also prefers the GMRAE although he ex-

presses it in an equivalent (but more complex) form as the square root of the geometric mean

of squared relative errors. This equivalence does not seem to have been noticed by any of the

discussants in the commentary by Ahlburg et al. (1992).

A serious deficiency in relative error measures is that e∗t can be small. In fact, rt has infinite

variance because e∗t has positive probability density at 0. One common special case is when et

and e∗t are normally distributed, in which case rt has a Cauchy distribution.

Armstrong and Collopy (1992) recommend the use of “winsorizing” to trim extreme values.

This will avoid the difficulties associated with small values of e∗t , but adds some complexity to

the calculation and a level of arbitrariness as the amount of trimming must be specified.

2.4 Relative measures

Rather than use relative errors, one can use relative measures. For example, let MAEb denote

the MAE from the benchmark model. Then, a relative MAE is given by

RelMAE = MAE/MAEb .

Similar measures can be defined using RMSEs, MdAEs, MAPEs, etc. Note that Armstrong and

Collopy refer to the relative MAE as CumRAE.

When the benchmark model is a random walk, and the forecasts are all one-step forecasts, the

relative RMSE is Theil’s U statistic (Thiel, 1966, chapter 2), sometimes called U2. In fact, Theil’s

definition is ambiguous and the relative RMSPE with the random walk as a benchmark model

is also sometimes called Theil’s U statistic (e.g., in Makridakis, Wheelwright and Hyndman,

1998).
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Thompson’s (1990) LMR measure is simply log(RelMSE). While this has some nice statistical

properties, it is not so easily interpreted which is possibly why it has not been widely used.

The random walk or “naı̈ve” method (where Ft is equal to the last observation) is the most

common benchmark method for such calculations, although another frequently used possibil-

ity is the mean method (where Ft is equal to the mean of all observations). For seasonal data,

the “naı̈ve2” method is sometimes used for comparison; this gives forecasts based on the last

observation adjusted for seasonality using classical decomposition (Makridakis, Wheelwright

and Hyndman, 1998).

An advantage of these methods is their interpretability. For example relative MAE measures

the improvement possible from the proposed forecast method relative to the benchmark fore-

cast method. When RelMAE < 1, the proposed method is better than the benchmark method

and when RelMAE > 1, the proposed method is worse than the benchmark method.

However, they require several forecasts on the same series to enable a MAE (or MSE) to be

computed. One common situation where it is not possible to use such measures is where one

is measuring the out-of-sample forecast accuracy at a single forecast horizon across multiple

series. It makes no sense to compute the MAE across series (due to their different scales).

A related approach is to use the percentage of forecasts for which a given method is more

accurate than the random walk. This is often known as “Percent Better” and can be expressed

as

PB(MAE) = 100 mean(I{MAE < MAEb})
PB(MSE) = 100 mean(I{MSE < MSEb})

However, these give no indication about the amount of improvement possible. Thus, it is

possible to have one method that performs very slightly better than the benchmark method for

99 series but much worse on 1 series, thus giving it a PB score of 99 even though the benchmark

method is preferable.
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3 Scaled errors

Relative measures and measures based on relative errors both try to remove the scale of the

data by comparing the forecasts with those obtained from some benchmark forecast method,

usually the naı̈ve method. However, they both have problems. Relative errors have a statistical

distribution with undefined mean and infinite variance. Relative measures can only be com-

puted when there are several forecasts on the same series, and so cannot be used to measure

out-of-sample forecast accuracy at a single forecast horizon.

We propose a new but related idea that is suitable for all situations, by scaling the absolute error

based on the in-sample MAE from a benchmark forecast method. Assuming the benchmark

method is the naı̈ve method, then a scaled error is defined as

qt =
et

1
n− 1

n

∑
i=2
|Yi −Yi−1|

which is clearly independent of the scale of the data. A scaled error is less than one if it arises

from a better forecast than the average one-step benchmark forecast computed in-sample. Con-

versely, it is greater than one if the forecast is worse than the average one-step benchmark

forecast computed in-sample.

The Mean Absolute Scaled Error is simply

MASE = mean(|qt|).

Related measures such as Root Mean Squared Scaled Error (RMSSE) and Median Absolute

Scaled Error (MdASE) can be defined analogously. Billah et al. (2005) used a similar error

measure when they computed the absolute value of the forecast error as a percentage of the in-

sample standard deviation. However, this approach has the disadvantage that the denominator

grows with the sample size for non-stationary series containing a unit root. Scaling by the in-

sample MAE only assumes that the first differenced series is stationary, which is almost always

true for real data.

When MASE < 1, the proposed method gives, on average, smaller errors than the one-step

errors from the benchmark method. If multi-step forecasts are being computed, it is possible to

scale by the in-sample MAE computed from multi-step benchmark forecasts.
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We propose that measures based on scaled errors should become the standard approach in

comparing forecast accuracy across series on different scales. They have a meaningful scale,

are widely applicable, and are not subject to the degeneracy problems seen in the examples in

Section 1. The only circumstance under which these measures would be infinite or undefined

is when all historical observations are equal.

Of these measures, we prefer MASE as it is less sensitive to outliers and more easily interpreted

than RMSSE, and less variable on small samples than MdASE.

4 Application to M3-competition data

We demonstrate the use of MASE using the M3-competition data (Makridakis & Hibon, 2000).

Figure 2 shows the MASE at each forecast horizon for five forecasting methods applied to the

M3-competition data. The errors have been scaled by the one-step in-sample forecast errors

from the naı̈ve method, and then averaged across all series. So a value of 2 indicates that

the out-of-sample forecast errors are, on average, about twice as large as the in-sample one-

step forecast errors from the naı̈ve method. Because the scaling is based on one-step forecasts,

the scaled errors for multi-step forecasts are typically larger than one. The methods Theta,

Robust-Trend and ForecastPro were part of the M3-competition, and are described in Makrida-

kis & Hibon (2000). The HKSG method uses the state space modelling approach of Hyndman,

Koehler, Snyder and Grose (2002), but only including the additive models.

Table 4 gives the MASE for each of the M3 methods along with the HKSG method. Here, the

absolute scaled errors have been averaged across all out-of-sample forecast horizons, and then

averaged across all series. The best performing method in each category is highlighted with its

MASE in bold.

Comparing Table 4 with the results of the original M3 analysis (Makridakis & Hibon, 2000)

shows that MASE does not substantially affect the main conclusions about the best-performing

methods. In particular, as with the original M3 analysis, the Theta method (Assimakopoulos &

Nikolopoulos, 2000) does very well. Hyndman & Billah (2003) pointed out that this method is

equivalent to simple exponential smoothing (SES) with drift where the drift is half the value of

the slope of a linear regression fitted to the data. Thus, it provides a form of shrinkage which

limits the ability of the model to produce anything wildly inaccurate.
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Figure 2: Mean Absolute Scaled Errors at different forecast horizons for five forecasting methods applied
to the M3-competition data.
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Yearly Quarterly Monthly Other All
645 series 756 series 1428 series 174 series 3003 series

Theta 2.81 1.97 2.08 1.95 2.20
Theta-sm 2.81 2.00 2.09 1.95 2.22
Robust-Trend 2.63 2.15 2.14 1.92 2.23
Comb SHD 2.88 2.05 2.12 2.09 2.26
ForecastX 2.77 2.22 2.20 1.97 2.31
ForecastPro 3.03 2.35 2.04 1.96 2.33
Dampen 3.03 2.10 2.18 2.08 2.34
HKSG 3.06 2.29 2.15 1.86 2.36
RBF 2.72 2.19 2.27 2.70 2.37
BJ automatic 3.16 2.21 2.21 2.30 2.42
Flores/Pearce1 2.94 2.23 2.31 2.27 2.42
Holt 3.18 2.40 2.15 2.04 2.43
ARARMA 3.48 2.29 2.07 2.05 2.43
SmartFcs 3.00 2.39 2.23 2.08 2.43
PP-autocast 3.02 2.12 2.44 2.09 2.46
Flores/Pearce2 3.02 2.41 2.27 2.34 2.47
Autobox3 3.18 2.45 2.23 2.01 2.47
Automatic ANN 3.06 2.35 2.34 2.13 2.49
Winter 3.18 2.37 2.43 2.04 2.55
SES 3.17 2.27 2.44 3.14 2.59
Autobox1 3.68 2.61 2.20 2.12 2.62
Naı̈ve2 3.17 2.28 2.50 3.13 2.62
Autobox2 2.75 2.20 3.39 1.90 2.87

Table 4: Mean Absolute Scaled Errors for the M3-competition data. All methods were participants in
the M3-competition except for HKSG which is based on the method of Hyndman, Koehler, Snyder and
Grose (2002).
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Recently, Koning et al. (2005) have evaluated the M3 results by conducting statistical tests of

the rankings of the various methods. This provides an interesting insight into the performance

of the accuracy measures—good measures should produce more powerful tests, and therefore

more significant differences between forecast methods.

There were 22 methods in the M3-competition that were applied to all 3003 series, and so

there are (22
2 ) = 231 pairs of methods. We used a Wilcoxon test to determine if the MASE

values (averaged across all forecast horizons) were significantly different for each of these 231

pairs of methods. At the 5% level, 49.4% of the pairs were significantly different, while 35.5%

were significantly different at the 1% level. In contrast, the same test applied to sMAPE values

yielded only 30.7% of significant pairs at the 5% level and 21.1% of significant pairs at the 1%

level. Clearly, on this analysis, the MASE is much better at distinguishing between forecast

methods.

5 Conclusion

Despite two decades of papers on measures of forecast error, we believe that some fundamental

problems have been overlooked. In particular, the measures used in the M-competition and the

M3-competition, and the measures recommended by other authors, all have problems—they

can give infinite or undefined values in commonly occurring situations.

We propose that scaled errors become the standard measure for forecast accuracy, where the

forecast error is scaled by the in-sample mean absolute error obtained using the naı̈ve forecast-

ing method. This is widely applicable, and is always defined and finite except in the irrelevant

case where all historical data are equal. This new measure is also easily interpretable: values of

MASE greater than one indicate the forecasts are worse, on average, than in-sample one-step

forecasts from the naive method.

The mean absolute scaled error (MASE) was applied to the M3 data and it was shown that

it gave results that were consistent with the main conclusions of the M3-competition. It also

allows more powerful tests of the difference between methods than the sMAPE.
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