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Summary

A semiparametric method is developed for estimating the dependence parameter and the

joint distribution of the error term in the multivariate linear regression model. The nonpara-

metric part of the method treats the marginal distributions of the error term as unknown,

and estimates them by suitable empirical distribution functions. Then a pseudolikelihood

is maximized to estimate the dependence parameter. It is shown that this estimator is as-

ymptotically normal, and a consistent estimator of its large sample variance is given. A

simulation study shows that the proposed semiparametric estimator is better than the para-

metric methods available when the error distribution is unknown, which is almost always

the case in practice. It turns out that there is no loss of asymptotic efficiency due to the

estimation of the regression parameters. An empirical example on portfolio management

is used to illustrate the method. This is an extension of earlier work by Oakes (1994) and

Genest et al. (1995) for the case when the observations are independent and identically

distributed, and Oakes and Ritz (2000) for the multivariate regression model.

Some key words: Copula; Pseudolikelihood; Robustness.
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1. Introduction

Estimation of the joint distribution of a random vector and learning about inter-dependence

among its components are important topics in statistical inference. This paper develops a

method for estimating the joint distribution and the dependence parameter of the error

distribution in multivariate linear regression.

It is now well-known that the joint cumulative distribution function H(x1, . . . , xk) of

a random vector (X1, . . . , Xk) with continuous marginals Fi(xi) = pr(Xi ≤ xi) has the

unique representation H(x1, . . . , xk) = C{F1(x1), . . . , Fk(xk)}, where C(u1, . . . , uk) is the

joint cumulative distribution of (U1, . . . , Uk) and Ui = Fi(Xi) is distributed uniformly on

[0, 1], i = 1, . . . , k (Sklar (1959)). The function C is called the copula of (X1, . . . , Xk). There

has been a substantial interest in the recent literature on copulas for studying multivariate

observations. Two of the reasons for such increased interest includes the flexibility it offers

because it can represent practically any shape for the joint distribution, and its ability to

separate the intrinsic measures of association between the components of the random vector

from the marginal distributions.

It is possible that distribution functions H, F1, . . . , Fk, and C may belong to parametric

families, for example, H(x1, . . . , xk; α1, . . . , αk, θ) = C{F1(x1; α1), . . . , Fk(xk; αk); θ}. In this

case, θ is called the dependence parameter or association parameter. This helps to separate

the marginal parameters from the intrinsic association which is captured by θ. An attractive

feature of this approach is that the copula C and the association parameter θ are invariant

under continuous and monotonically increasing transformations of the marginal variables.

Hence copulas have an advantage when the interest centers on intrinsic association among

the marginals (Wang and Ding (2000), Oakes and Wang (2003)).

Copulas have been used in a very wide range of applied areas and the literature is quite ex-

tensive indeed. The areas include survival analysis, analysis of current status data, censored
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data and finance (Bandeen-Roche and Liang (2002), Wang (2003), Wang and Ding (2000),

Shih and Louis (1995), and Cherubini et al. (2004)). Joe (1997) provides a comprehensive

and authoritative account of statistical inference in copulas and dependence measures using

copulas. Hutchinson and Lai (1990) provides an extensive range of practical examples where

copulas are useful. In what follows, we shall restrict our discussion to bivariate observations

only, for simplicity. However, the extensions to higher dimensions would be straight forward.

The use of Copulas in risk management has been increasing substantially in the recent

past where the main interest is on the whole distribution rather than just the association

parameter (Cherubini et al. (2004)). As an example, let Y1 and Y2 denote the market

values of two shares, say a bank and a mining company respectively. Let x denote a market

index such as the Dow Jones Index. Suppose that Y1 = xT
1 β1 + ε1 and Y2 = xT

2 β2 + ε2,

where x1 = x2 = (1, x)T . Thus, after accounting for the overall market movements, ε1 and

ε2 represent the risks that are not under the control of the investor. For managing the risks

associated with a portfolio consisting of these two investments, for example, for assessing

the need for diversification of investments, the main quantities of interest are functions

of the joint distribution of (ε1, ε2). Examples of quantities that are of interest include, (i)

pr(Y1 ≤ a1 and Y2 ≤ a2) and pr(Y1 ≤ a1 | Y2 ≤ a2), where a1 and a2 are given numbers, and

(ii) the Value at Risk, c, defined by pr{b1Y1 + (1− b1)Y2 ≤ c} ≤ α, where α is a given small

number, for example α = 0.05, and b1 is the proportion of investment in the first asset.

This paper develops a new semiparametric method for estimating the dependence para-

meter θ and joint distribution of the error term, (ε1, ε2). If the assumptions for the traditional

normal-theory linear model are satisfied, then it would be possible to obtain an optimal esti-

mate of the joint distribution of the error terms by maximum likelihood. However, in many

areas of applications, for example risk management, the marginal distributions of the error

terms are far from being normal. In fact, returns from investments are notorious for being
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long-tailed and skewed. Further, the marginal distributions of (ε1, ε2) may also take different

functional forms. For example, ε1 and ε2 may be distributed as gamma and normal respec-

tively. Consequently, the well known elliptically symmetric families of distributions, such

as the multivariate normal and t, are inadequate. Further, often it is of interest to apply

inference methods that make as few assumptions as possible about the functional form of the

distribution. In this paper, we propose a semi-parametric method that fits this requirement.

An attractive feature of this method is that it does not cause any additional difficulties due

to the marginal distributions being long tailed and skewed, features that are common in

financial data and have attracted considerable interest in financial statistics.

The method introduced in this paper started with Oakes (1994) and Genest et al. (1995).

They proposed a procedure for estimating the dependence parameter in a copula for inde-

pendent and identically distributed observations when the marginal marginal distributions

are treated as unknown. The method involves two stages of estimation: In the first stage,

the marginal distributions are estimated by their respective empirical distribution functions,

and in the second stage, the maximum likelihood is applied with the marginal distributions

replaced by the corresponding empirical distributions. Genest et al. (1995) showed that

this estimator is asymptotically normal for different settings; see also Wang and Ding (2000)

and Shih and Louis (1995). In this paper, we extend this approach to the multivariate linear

regression model when the interest is centered on the joint distribution of the multivariate

error term. Oakes and Ritz (2000) also studied estimation of the copula of the error term in

the same multivariate linear regression setting but they used a fully parametric approach.

Now, to introduce the method developed here, let us consider the bivariate investment

example considered earlier in this section. Let F1(t1) = pr(ε1 ≤ t1), F2(t2) = pr(ε2 ≤ t2)

and let C(u1, u2; θ) denote the copula of (ε1, ε2), θ being an unknown parameter which we

shall assume to be a scalar for simplicity. Therefore, the joint distribution of (ε1, ε2) is
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given by pr(ε1 ≤ t1, ε2 ≤ t2) = C{F1(t1), F2(t2); θ}. Throughout, we shall assume that

the functional form of C(u1, u2; θ) is known, but F1 and F2 are unknown. We propose an

estimator of θ and show that it is consistent and asymptotically normal. Further, we also

obtain a consistent estimator of its asymptotic variance so that confidence intervals may be

constructed. Simulation results show that our proposed method performs better than the

traditional fully parametric methods of inference when the functional forms of the marginal

distributions are unknown, which is of course almost always the case.

The rest of the paper is structured as follows. In the next section, we state the estimation

method more formally. Section 3 presents simulation results to illustrate the superiority

of the semiparametric method when the marginal distributions are unknown. Section 4

illustrates the method using a data example. Section 5 concludes. The proofs are given in

appendix.

2. The main results

As indicated in the introduction, we shall consider the bivariate case for notational sim-

plicity. The extension to the multivariate case is almost straight forward. Let the data

generating process for (Y1, Y2) be Y1 = xT
1 β1 + ε1, and Y2 = xT

2 β2 + ε2 where x1 and x2 are

vectors of covariates associated with Y1 and Y2 respectively. In what follows, these covari-

ates are assumed to be non-stochastic. However, the results would hold, with appropriate

modifications, even if they are stochastic. Suppose that there are n independent obser-

vations (Y1i, x1i, Y2i, x2i), (i = 1, . . . , n). Thus, we have Ypi = xT
piβp + εpi, (i = 1, . . . , n,

p = 1, 2). Let fp and Fp denote the probability density and cumulative distribution func-

tions of εp respectively, p = 1, 2. Let C(u1, u2; θ) and c(u1, u2; θ) denote the copula of

(ε1, ε2) and the corresponding density function, respectively. Then, the loglikelihood takes

the form, `∗(θ, β1, β2) = L∗(θ; β1, β2, F1, F2)+ B(β1, β2, f1, f2) where L∗(θ; β1, β2, F1, F2) =
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∑
log c{F1(ε1i), F2(ε2i); θ} and B(β1, β2, f1, f2) =

∑
log{f1(ε1i), f2(ε2i)}. The maximum like-

lihood estimator of (θ, β1, β2) is simply the point at which `∗(β1, β2, θ) reaches its maximum.

If the joint distribution of (ε1, ε2) is correctly specified then this estimator is consistent and

asymptotically normal, provided some regularity conditions are satisfied. Since the term

B(β1, β2, f1, f2) does not depend on θ, it may be ignored for the purposes of estimating θ by

maximum likelihood.

Now, we introduce the following semiparametric estimator of the copula parameter θ,

when (F1, F2) is unknown:

(a) Let β̃p be an estimator βp such that n1/2(β̂p − βp) = Op(1), for p = 1, 2.

(b) Compute the residuals ε̃pj = ypj − xT
pjβ̃p, for p = 1, 2 and j = 1, . . . , n.

(c) Estimate Fp(t) by F̃pn(t) defined by F̃pn(t) = {1/(n + 1)}Σn
i=1I(ε̃pi ≤ t), where I is the

indicator function; thus F̃pn is the empirical distribution of {ε̃p1, . . . , ε̃pn}, except for the

denominator (n + 1) instead of n.

(d) Estimate θ by θ̃, defined by θ̃ = argmaxθ L(θ) where

L(θ) = Σ log c{F̃1n(ε̃1i), F̃2n(ε̃2i); θ}.

This four-step procedure reduces to that proposed by Oakes (1994) and Genest et al.

(1995) for the case when (Y1i, Y2i) are independent and identically distributed for i = 1, . . . , n.

Since (F̃1n, F̃2n) is expected to be close to (F1, F2) for large n, it is reasonable to expect that

the foregoing estimator is likely to be a reasonable estimator.

We will show that θ̃ is consistent and asymptotically normal, and obtain a closed form

expression for the asymptotic variance. By substituting sample estimates for the asymptotic

variance formulae, we shall obtain a consistent estimator of the large sample variance.

While the idea that underlies our new method is intuitively simple and is a natural

extension of Oakes (1994) and Genest et al. (1995), the mathematical arguments to derive
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its essential properties are quite involved. Therefore, in this section we shall indicate the

main ideas in a simple form and relegate the rigorous details to an appendix. Even there,

only the main steps are indicated. More detailed and rigorous proofs are given in a working

paper of the authors at Monash University.

To indicate the general approach, let l(θ, u1, u2) = log{c(u1, u2; θ)}, and let l with sub-

scripts θ, 1, and 2 denote partial derivatives with respect to θ, u1 and u2 respectively. For

example, lθ(θ, u1, u2) = (∂/∂θ)l(θ, u1, u2) and lθ,1(θ, u1, u2) = (∂2/∂u1∂θ)l(θ, u1, u2). Now,

let us first expand L(θ̃) in Taylor series about the true value θ0.

0 = (∂/∂θ)L(θ̃) = (∂/∂θ)L(θ0) + (θ̃ − θ0)(∂
2/∂θ2)L(θ0) + (1/2)(θ̃ − θ0)

2(∂3/∂θ3)L(θ∗)

where θ∗ lies in the line segment [θ0, θ̃]. Now, solving this for n1/2(θ̃ − θ0), we have that

n1/2(θ̃ − θ0) = An/(Bn + Cn) (1)

where

An = n−1/2Σn
i=1lθ{θ0, F̃1n(ε̃1i), F̃2n(ε̃2i)}, (2)

Bn = −n−1Σn
i=1lθ,θ{θ0, F̃1n(ε̃1i), F̃2n(ε̃2i), (3)

Cn = −(θ̃ − θ0)[(2n)−1Σn
i=1lθ,θ,θ{θ∗, F̃1n(ε̃1i), F̃2n(ε̃2i)}]. (4)

The main reasons for the technical details leading to the asymptotic properties of θ̃ turns

out to be complicated are that the expressions in (2)- (4) are sums of dependent random

variables and F̃pn(ε̃pi) is a non-smooth function. The dependence of the random variables

will be dealt with by using results for U -statistics and multivariate rank order statistics.

To deal with the non-smoothness due to the presence of F̃pn, results for weighted empirical

processes in Koul (2002) will be used.

By essentially mimicking the arguments in section 6.4 of Lehmann (1983), it can be shown

that the estimator θ̃ is consistent. To establish the asymptotic normality of n1/2(θ̃− θ0), we
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consider the behaviour of the terms in (2) - (4). We will show that {F̃1n(ε̃1i), F̃2n(ε̃2i)} in (3)

can be approximated by {F1(ε1i), F2(ε2i)} so that Bn = −n−1Σn
i=1lθ,θ{θ0, F1(ε1i), F2(ε2i)} +

op(1), which converges to γ in probability, where

γ = E
[(

lθ{θ0, F1(ε1), F2(ε2)}
)2]

. (5)

By assuming that the third order derivatives lθ,θ,θ are bounded by integrable functions in a

small neighbourhood of θ0, we have n−1Σn
i=1lθ,θ,θ{θ∗, F̃1n(ε̃1i), F̃2n(ε̃2i)} = Op(1) and hence

Cn = op(1). Therefore, Bn + Cn converges to γ in probability. To obtain the asymptotic

distribution of An in (2), we approximate F̃pn by Fpn, the empirical distribution of the

unobserved error terms rather than by its true population distribution Fp, (p = 1, 2). This

leads to An = An1 + op(1), where An1 = n−1/2Σn
i=1lθ{θ0, F1n(ε1i), F2n(ε2i)}. It may be noted

that An1 is a multivariate rank order statistic of the form n−1ΣJ{F1n(ε1i), F2n(ε2i)} for

some function J. The asymptotic distribution of such general rank order statistics have been

studied extensively in the literature, for example see Rüschendorf and Ruschendorf (1976)

and Ruymgaart et al. (1972). The asymptotic distribution of the foregoing particular form

of An1 was obtained by Genest et al. (1995). Applying Proposition 2.1 therein, we have

that An1 converges in distribution to N(0, σ2), where

σ2 = var
[
lθ{θ0, F1(ε1), F2(ε2)}+ W1(ε1) + W2(ε2)

]
, (6)

Wp(εp) =

∫ ∫
I
(
Fp(εp) ≤ up

)
lθ,p{θ0, u1, u2}c(u1, u2; θ)du1du2, p = 1, 2. (7)

Thus, we conclude that n1/2(θ̃− θ0) converges in distribution to N(0, ν2), where ν2 = σ2/γ2.

To obtain an estimate of the asymptotic variance ν2, we estimate σ2 and γ2 separately.

By substituting estimated quantities to the unknown quantities in (5), an estimate of γ2 is

γ̃ = −n−1Σn
i=1lθ,θ{θ̃, F̃1n(ε̃1i), F̃2n(ε̃2i)}. (8)

Since σ2 = var{T (θ0)}, where T (θ0) = {lθ{θ0, F1(ε1), F2(ε2)}+ W1(ε1) + W2(ε2)}, and T (θ0)
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cannot be observed, we estimate σ2 by the sample variance

σ̃2 = Sample variance of T̃1(θ̃), . . . , T̃n(θ̃), (9)

of the pseudo observations,

T̃i(θ) = lθ{θ, F̃1n(ε̃1i), F̃2n(ε̃2i)}+ W̃1(ε̃1i, θ) + W̃2(ε̃2i, θ), i = 1, . . . , n, (10)

where W̃p(t, θ) = n−1Σn
j=1I(t ≤ ε̃pj)lθ,p{θ, F̃1n(ε̃1j), F̃2n(ε̃2j)}, p = 1, 2. (11)

This leads to the consistent estimator ν̃2 = σ̃2/s̃2 for ν2. Now, let us state the main theorem.

A set of regularity conditions to ensure that the theorem holds, is stated in the Appendix

where the proof of theorem is also given.

Theorem 0.1. Assume that the regularity conditions given in the Appendix hold. Then, the

semiparametric estimator θ̃ is a consistent estimator of θ0 and the asymptotic distribution of

n1/2(θ̃− θ0) is N(0, ν2), where ν2 = σ2/γ2. Further, a consistent estimator ν̃2 of ν2 is given

by ν̃2 = σ̃2/γ̃2, where σ̃2 and γ̃ are as in (9) and (8) respectively.

The expression for the asymptotic variance of n1/2(θ̃ − θ0) is the same as that for the

case when the there is no regression structure and the observations are independent and

identically distributed. Therefore, Proposition 2.2 of Genest et al. (1995) is applicable to

the setting in the above theorem as well. In particular, the semiparametric estimator θ̃ is

fully efficient for the independent copula, otherwise there is a loss of asymptotic efficiency

due to the marginal distributions being unknown.

The parameter θ can be estimated by other methods as well. The two main ones that play

central roles in inference for copulas are the maximum likelihood and the inference function

for margins (see Joe (1997)). Both of these are fully parametric. Let Fp(t; αp) denote the

distribution of the error term εp for every p. Now the loglikelihood takes the form

`(θ, β1, β2, α1, α2) = L(θ, β1, β2, α1, α2) + B(β1, β2, α1, α2)
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where B(β1, β2, α1, α2) =
∑

log{f1(ε1i, α1) f2(ε2i, α2)} and L(θ, β1, β2, α1, α2) =

∑
log c{F1(ε1i, α1), F2(ε2i, α2); θ}.
The maximum likelihood estimator of (θ, β1, β2, α1, α2) is simply the maximizer of

`(θ, β1, β2, α1, α2). The method of maximum likelihood for copulas is usually not the preferred

one due to difficulties such as multiple maxima for the likelihood and erratic behaviour of

the estimator. The inference function method has been proposed as a close alternative - see

Joe (1997) for a thorough account of this topic. In this method, the model is estimated in

two stages. In the first stage, the parameter (βp, αp) is estimated using the data for the pth

margin, for every p; let this estimator be denoted by (β̂p, α̂p). Then, in the second stage, θ is

estimated by maximizing the likelihood function with (βp, αp) replaced by its estimator (p =

1, 2). Thus, the inference function for margins estimator of θ is argmaxθ `(θ, β̂1, β̂2, α̂1, α̂2).

One would expect that the maximum likelihood and the inference function for margins

methods are likely to be non-robust against misspecification of the marginal distributions.

The simulation results in section 4 illustrate that the semiparametric method is considerably

better than the maximum likelihood and inference function for margins method when the

form of the marginal distributions are unknown, which is almost always the case in practice.

3. Simulation study

We carried out a simulation study to compare the semiparametric method with its com-

petitors, the maximum likelihood and inference function for margins, and also to evaluate

the reliability of the large sample confidence interval for θ given in Theorem 1.

Design of the simulation study

The following five copulas were considered in the study. More details about them may

be found in Joe (1997) and Nelsen (1999).

(1) Ali-Mikhail-Haq [AMH] Family of copulas: C(u, v; θ) = uv/{1− θ(1− u)(1− v)}.
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(2) Frank copula: C(u, v; θ) = −θ−1 log
(
[1 + (e−θu − 1)(e−θv − 1)]/(e−θ − 1)

)

(3) Gumbel copula: C(u, v; θ) = exp−(
(− log u)θ + (− log v)θ

) 1
θ

(4) Joe copula: C(u, v; θ) = 1− (
(1− u)θ + (1− v)θ − (1− u)θ(1− v)θ

) 1
θ

(5) Plackett copula:

C(u, v; θ) = [1 + (θ − 1)(u + v)− {{(1 + (θ − 1)(u + v)}2 − 4θ(θ − 1)uv} 1
2 ]/{2(θ − 1)}.

These copulas cover a very wide range of distributional shapes. The maximum likelihood

and inference function for margins estimators that are used in this simulation study assumed

that the marginal distributions were normal. The following sets of marginal distributions

were considered: (1) X1 and X2 are normally distributed, (2) X1 ∼ tr and X2 ∼ tr, (3)

X1 ∼ tr and X2 ∼ skew tr with skewness = 0.5, and (4) X1 ∼ tr and X2 ∼ χ2
2. The first

one corresponds to the correct specification of the marginal distributions, while each of the

others leads to a misspecification of the model. A skew tr-distribution has tails that are

of the same order as that for tr but the probability masses on either sides of the origin

are different, leading to skewness. The values 3 and 8 were considered for the degrees of

freedom r of the tr-distribution. Since the semiparametric method estimates each marginal

distribution nonparametrically, it is meant to be used when the sample size is moderate to

large. In this study, we considered sample sizes ranging from 50 to 1000. This captures a

broad range of realistic settings.

All the computations were programmed in MATLAB Version 7.0.4. Optimizations were

performed using the procedure ”fmincon.m” in the ”Optimization Toolbox (3.0.2).

Results:

Only a selection of the simulation results are presented here to save space. Overall, the

difference between the inference functions for margins and maximum likelihood estimators

were small, with the former performing slightly better. Therefore, the results for maximum

likelihood are not presented here.
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——— Tables 1-2 about here ————-

Each marginal distribution is correctly specified as normal: The results are given in Table

1 under the heading N-N. Since the marginal distributions and the copula are correctly

specified, there is no mis-specification. Thus, as expected, the inference function for mar-

gin estimators perform slightly better than the semiparametric estimator. However, the

differences are small.

Each marginal distribution is incorrectly specified as Normal:

Table 2 provides estimated bias computed as the mean of the simulated estimates of θ

minus the true value of θ. The same table also provides standard deviations of the simulated

estimates of θ. Table 2 shows quite clearly that (i) the maximum likelihood and inference

function for margin estimators are highly nonrobust against misspecification of the marginal

distributions, and (ii) the distribution of the semiparametric estimator is centered around the

true value of θ and is far superior to the maximum likelihood and the inference function for

margin estimators of θ. We recognize that the very large values for relative MSE in Table 1 are

not precise, but we presented them because they convey the message that misspecification of

the marginal distribution may cause the parametric estimators to be biased and the standard

deviation of the estimators could become relatively unimportant compared to the bias.

Table 3 shows that an approximate 95% confidence interval based on a normal approx-

imation for the large sample distribution of θ̃, has coverage rates close to 95% for sample

size ≥ 40. In some isolated cases, it dropped to a rate just below 90 %. These results show

that the semiparametric method also offers a reliable and easy to compute large sample

confidence interval for θ.
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4. An illustrative example

To illustrate the semiparametric method, we discuss an example that is very similar to

that we discussed in the Introduction. The response variables are returns on shares of ANZ

Bank and of BHP-Billiton. We consider regression of these variables on the All Ordinaries

Index (Australia), a market index similar to the Dow Index in the USA. The variables

are defined as follows: y1t = ln(At/At−1) − ln(Tt/Tt−1), y2t = ln(Bt/Bt−1) − ln(Tt/Tt−1),

zt = ln(It/It−1)− ln(Tt/Tt−1), where At = ANZ price index, Bt = BHP-Billiton price index,

Tt = 90-day Treasury bill rates, and It = All Ordinaries Index. We used monthly data for

the period July 1981 to July 2001.

We consider the regression model, Ypt = xT
t βp + εpt, p = 1, 2, where xt = (1, zt)

T . In

the first stage, we estimated β1 and β2 by least squares. The estimated models are, y1t =

−0.064 + 0.840zt + ε̃t and y2t = −0.470 + 0.992zt + ε̃t, respectively. Then we considered Ali-

Mikhail-Haq, Clayton, Gumbel, Joe, and Independent copulas for the joint distribution of the

error term, (ε1, ε2). Closed form expressions for the copulas were given in the previous section.

We assessed the goodness of fit using the chi-square statistic with a grid of 20 cells. Since the

models are nonnested and method is semiparametric, the distribution theory of the chisquare

statistic is not available. However, it is reasonable to compare the chi-square statistics. Based

on such diagnostics, we concluded that a Gumbel copula provided the best fit for the joint

distribution of the error terms, although some of the others were not too different. The

estimated value of the Gumbel copula parameter is θ̃ = 1.076 and the standard error =

0.046. Hence, an estimate of the joint distribution of (ε1, ε2) is C(F̃1(ε1), F̃2(ε2); 1.076), and

an estimate of the joint distribution of (y1, y2) conditional on x is

C{F̃1{y1 − (−0.064 + 0.840z)}, F̃2{y2 − (−0.470 + 0.992z)}; 1.076], (12)

where F̃1 and F̃2 are the empirical distributions of the residuals of the error terms in the two

regression models. This estimated distribution can be used for estimating various quantities
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associated with risk. For example, it can be used to estimate (i) the probability of the

random components of returns, namely ε1 and ε2, falling below a1 and a2 respectively where

a1 and a2 are given, (ii) the probability, pr(Y1 ≤ a1, Y2 ≤ a2 | z), of the returns falling below

a1 and a2 for a given value of the explanatory variable z, and (iii)Value-at-Risk c of the

portfolio w = b1Y1 + (1 − b1)Y2, defined by pr{b1Y1 + (1 − b1)Y2 ≤ c | z} ≤ α, where α is

a given small number, for example α = 0.05, and b1 is the proportion of investment in the

first asset.

As an example, Table 4 provides estimates of Value-at-Risk of the portfolio for several

values of b1 and z. This is very similar to those for the example on pages 68-69 in Cherubini

et al. (2004). Table 4 shows that as the proportion b1 moves closer to 50%, the Value-at-

Risk decreases indicating that portfolio diversification reduces risk, and the rate at which

the Value-at-Risk decreases is indicative of the effectiveness of diversification on reducing

risk. Table 4 also shows that the Value-at-Risk is almost symmetric about b1 = 50%, which

is consistent with our observation that the histograms, not given here, of the regression

residuals for the two assets appear to have approximately equally heavy tails.

The chi-square goodness fit statistics for a 5 by 4 grid, turned out to be 5.2 and 380 for

the semiparametric method and for the inference function for margins method with normal

distribution for each margin, respectively. Therefore, the the former method provided a

significantly better fit than the latter one.

5. Conclusion

We extended a semiparametric estimator of Oakes (1994) and Genest et al. (1995) for

estimating the dependence parameter and the joint distribution of the error terms of the

multivariate linear regression model. We showed that this estimator is asymptotically nor-

mal. It turns out that the form of the asymptotic variance is very similar to that obtained
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by Genest et al. (1995) for the case when the observations are independent and identically

distributed. This helped us to use his results and construct consistent estimates for the as-

ymptotic variance and confidence interval for the dependence parameter. Simulation results

showed that our semiparametric estimator performs better than the parametric ones when

true error distribution deviates from that assumed by the parametric methods, maximum

likelihood and inference function for margins. Further, the semiparametric method is fully

efficient for the independent copula, which extends a result of Genest et al. (1995) for case

of independent and identically distributed observations. Since the form of the expression for

the asymptotic variance of the semiparametric estimator is very similar to that when the ob-

servations are independent and identically distributed, we would expect that the conditions

in Genest and Werker (2002) for the semiparametric estimator to be efficient are also likely

to be applicable in the regression case as well.
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Appendix: Proofs

Here we shall indicate the main steps in the proof of Theorem 1. A more detailed proof

is provided in an unpublished manuscript. As in the text, the index p refers to the pth

component, p = 1, 2; for simplicity we shall avoid writing ‘for every p’ or ‘p = 1, 2’, as far as

possible. Let H(θ, u1, u2) denote a derivative of l(θ, u1, u2) up to third order in θ and second

order in (u1, u2), and let (U1, U2) denote a random variable with the same distribution as

(F1(ε1), F2(ε2)) so that (U1, U2) ∼ C(u1, u2; θ0). Now, let us introduce the regularity condi-

tions.

Condition C:

(C.1): The distribution function Fp has continuously differentiable density, denoted by fp

and it satisfies ‖fp‖∞ < ∞ and
∥∥f ′p

∥∥
∞ < ∞ where f ′p is the first derivative of fp.

(C.2): There exist a function G(u1, u2) such that |H(θ, u1, u2)| ≤ G(u1, u2) and E{G2(U1, U2) <

∞ in a small neighbourhood of θ0.

(C.3): Let Ψ(θ, u1, u2) denote H(θ, u1, u2) or G(u1, u2). Then, for any given θ, there exist

k(u1, u2; θ) and εθ > 0 such that E{k2(u1, u2; θ0)} < ∞ and satisfies

|Ψ(θ, u1 + d1, u2 + d2)− Ψ(θ, u1, u2)| ≤ k(u1, u2; θ)(|d1|+ |d2|), for any u1, u2, and |dj| ≤ εθ.

(C.4): The conditions of Proposition A.1 in Genest et al. (1995) are satisfied.

(C.5): The covariate xp is non-stochastic, n−1XT
p Xp converges to a positive definite matrix,

and n−1/2 maxi ‖xpi‖ → 0 as n →∞ for p = 1, 2.

(C.6): n1/2(β̃p − βp) = Op(1), p = 1, 2.

Remark: The proof given below assumes that ‖xpi‖, i = 1, 2, . . . , is bounded, but the results

hold under the weaker assumption, n−1/2 maxi ‖xpi‖ → 0, in (C.5).

Lemma 1. supi

∣∣∣[Fpn(ε̃pi)− Fpn(εpi)]−
[
Fp(ε̃pi)− Fp(εpi)

]∣∣∣ = op(n
− 1

2 ).

Proof. Let Z = Fp(εp) and Zi = Fp(εpi), i = 1, . . . , n. Then, Z1, . . . , Zn are independently
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and identically distributed taking values in [0,1]. Let W (t) = n−1/2
∑{I(Zi ≤ t)− t}. Then,

sup
i

∣∣∣Fpn(ε̃pi)− Fpn(εpi)−
[
Fp(ε̃pi)− Fp(εpi)

]∣∣∣ = n−1/2 sup
i

∣∣∣Wd{Fp(ε̃pi)} −Wd{Fp(εpi)}
∣∣∣

≤ n−1/2 sup
|t−s|<δ

|Wd(t)−Wd(s)|, with arbitrary large probability for any δ > 0.

Now, the proof follows from

lim
δ→0

lim sup
n

pr
(

sup
|t−s|<δ

|Wd(t)−Wd(s)| > ε
)

= 0

for any ε > 0, by Theorem 2.2.1 in Koul (2002).

Lemma 2. supi |F̃pn(ε̃pi)− Fpn(ε̃pi)− x̄T
p (β̃p − βp)fp(ε̃pi)| = op(n

−1/2).

Proof. Let S0
d(t, u) = n−1/2

∑n
j=1 I

{
εpj ≤ t + n−1/2xT

pju
}
. It follows from Theorem 2.3.1 in

Koul (2002) that for any b > 0,

sup
−∞<t<∞,‖u‖<b

∣∣∣n1/2
{

S0
d(t, u)− S0

d(t, 0)− uT x̄pfp(t)
}∣∣∣ = op(1). (13)

See page 192 in Shorack and Wellner (1986) for a similar result. Let ũ = n1/2(β̃ − β). Then,

S0
d(t, ũ) = F̃pn(t) and

sup
t
|F̃pn(t)− Fpn(t)− x̄T

p (β̃p − βp)fp(t)| = n−1/2 sup
t

∣∣∣n1/2
{

S0
d(t, ũ)− S0

d(t, 0)− x̄T
p ũfp(t)

}∣∣∣.

Now, the proof follows from (13) since ‖ũ‖ < b with arbitrarily large probability for suffi-

ciently large b > 0.

Let ϑpi = Fpn(ε̃pi) − Fpn(εpi), δpi = F̃pn(ε̃pi) − Fpn(εpi), δ∗pi = F̃pn(ε̃pi) − Fp(εpi), ηpi =

F̃pn(ε̃pi)− Fpn(ε̃pi), and ξpi = Fp(ε̃pi)− Fp(εpi). Then, we have

Lemma 3. supi |ξpi|, supi |ϑpi|, supi |δpi|, supi |δ∗pi|, supi |ηpi| are all of order Op(n
−1/2).

Proof. The proof for supi |ϑpi| follows from Lemma 1. The proof for ηpi follows from Lemma

2. The proof for δpi follows from supi |δpi| ≤ supi |ηpi| + supi |ϑpi| and the previous parts.

The proof for δ∗pi follows from supi |δ∗pi| ≤ supi |δpi| + supi |Fpn(εpi) − Fp(εpi)|, the last term

being Op(n
−1/2) since it is the empirical process for independent and identically distributed

random variables.
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Lemma 4. Let Ψ(θ, u1, u2) and G(u1, u2) be the functions defined in Condition (C.3). Also

let {dn
pi} be a sequence of random variables such that supi |dn

pi| = Op(n
−1/2). Then, for any

given θ in a small neighbourhood of θ0, we have that

n−1/2Σn
i=1|Ψ{θ, F1(ε1i) + dn

1i, F2(ε2i) + dn
2i} − Ψ{θ, F1(ε1i), F2(ε2i)}| = Op(1),

n−1/2Σn
i=1|Ψ{θ, F1n(ε1i) + dn

1i, F2n(ε2i) + dn
2i} − Ψ{θ, F1n(ε1i), F2n(ε2i)}| = Op(1),

n−1/2Σn
i=1|G{F1(ε1i) + dn

1i, F2(ε2i) + dn
2i} −G{F1(ε1i), F2(ε2i)}| = Op(1).

Proof. To prove the first part, note that,

n−1Σn
i=1|Ψ{θ, F1(ε1i) + dn

1i, F2(ε2i) + dn
2i} − Ψ{θ, F1(ε1i), F2(ε2i)}|

≤ n−1Σn
i=1k{F1(ε1i), F2(ε2i); θ}(|dn

1i|+ |dn
2i|)

≤ (sup
i
|dn

1i|+ sup
i
|dn

2i|) n−1Σn
i=1k{F1(ε1i), F2(ε2i); θ} = Op(n

− 1
2 )Op(1) = Op(n

− 1
2 ).

The other two parts follow through repeated application similar arguments and the triangle

inequality.

Lemma 5. n−2Σn
j=1Σ

n
i=1[I{ε̃pi ≤ ε̃pj} − I{εpi ≤ εpj}]2 = op(1), for p = 1, 2.

Proof. Let δnij = (xpi−xpj)
T (β̃p−βp) and δ be a given positive number. Then pr{maxij |δnij| <

δ} → 1. Now,

n−2ΣiΣj |I(ε̃pj ≤ ε̃pi)− I(εpj ≤ εpi)| = n−2ΣiΣj |I(εpj ≤ εpi + δnij)− I(εpj ≤ εpi)|,

≤ n−2ΣiΣj I(|εpj − εpi| ≤ |δnij|) ≤ n−2ΣiΣj I(|εpj − εpi| ≤ δ), with probability approaching 1

Since the last expression is essentially a U -statistic, it converges in probability to h(δ) where

h(δ) = 2E[I(|εp1 − εp2| < δ)]. The proof follows since, as is easily seen, h(δ) is continuous at

δ = 0 and h(0) = 0.
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Let

Ŵp(t, θ) = n−1Σn
j=1I

(
t ≤ εpj}lθ,p{θ, F1(ε1j), F2(ε2j)}, (14)

W̃p(t, θ) = n−1Σn
j=1I{t ≤ ε̃pj}lθ,p{θ, F̃1n(ε̃1j), F̃2n(ε̃2j)}, (15)

and Ti(θ) = lθ{θ, F1(ε1i), F2(ε2i)}+ Ŵ1(ε1i, θ) + Ŵ2(ε2i, θ). (16)

Lemma 6. |n−1Σn
i=1{T̃i(θ0)− Ti(θ0)}| = op(1).

Proof. |n−1Σn
i=1{T̃i(θ0)− Ti(θ0)}| ≤ Σ3

j=1T
n
j , where

T n
1 = |n−1Σn

i=1{lθ{θ0, F̃1n(ε̃1i), F̃2n(ε̃2i)} − lθ{θ0, F1(ε1i), F2(ε2i)}}|,

T n
2 = |n−1Σn

i=1{W̃1(ε̃1i, θ0)− Ŵ1(ε1i, θ0)}|,

T n
3 = |n−1Σn

i=1{W̃2(ε̃2i, θ0)− Ŵ2(ε2i, θ0)}|.
We will show that, T n

j = op(1) for i, j = 1, 2, 3. First, it may be seen that T n
1 = Op(n

−1/2)

by Lemma 4. To show that T n
2 = op(1), note that

T n
2 = |n−1Σn

i=1{W̃1(ε̃1i, θ0)− Ŵ1(ε1i, θ0)}|

≤ n−2Σn
i=1Σ

n
j=1|I{ε̃1i ≤ ε̃1j}| |{lθ,1{θ0, F̃1n(ε̃1j), F̃2n(ε̃2j)} − lθ,1{θ0, F1(ε1j), F2(ε2j)}}|

+ |n−2Σn
i=1Σ

n
j=1{I{ε̃1i ≤ ε̃1j} − I{ε1i ≤ ε1j}}lθ,1{θ0, F1(ε1j), F2(ε2j)}|.

It may be verified that the first term is op(1) using Lemma 4. Now, consider the second

term: ∣∣∣n−2Σn
i=1Σ

n
j=1

{
I
(
ε̃1i ≤ ε̃1j

)− I
(
ε1i ≤ ε1j

)}
lθ,1{θ0, F1(ε1j), F2(ε2j)}

∣∣∣

≤ sup
j

∣∣∣n−1Σn
i=1

{
I
(
ε̃1i ≤ ε̃1j

)− I
(
ε1i ≤ ε1j

)}∣∣∣ n−1Σn
j=1

∣∣∣lθ,1{θ0, F1(ε1j), F2(ε2j)}
∣∣∣

= sup
j
|δ1i| n−1Σn

j=1

∣∣∣lθ,1{θ0, F1(ε1j), F2(ε2j)}
∣∣∣ = op(1).

by Lemma 3. Hence, T n
2 = op(1). Similarly, T n

3 = op(1).

We need another Lemma to show that σ̃2 is a consistent estimator of σ2.

Lemma 7. Let T̃i(θ) and Ti(θ) be defined as in (10) and (16). Then, there exists an open

neighbourhood N of θ0 such that supθ∈N(θ0) n−1Σn
i=1Gin(θ) = Op(1), where Gin(θ) is any one

of the following four expressions: {T̃i(θ)}2, {(∂/∂θ)T̃i(θ)}2, {Ti(θ)}2, {(∂/∂θ)Ti(θ)}2.
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Proof. First, recall that T̃i(θ) = T̃i1(θ)+T̃i2(θ)+T̃i3(θ), where T̃i1(θ) = lθ{θ, F̃1n(ε̃1i), F̃2n(ε̃2i)},
T̃i2(θ) = W̃1(ε̃1i, θ), T̃i3(θ) = W̃2(ε̃2i, θ). Now, by Cauchy-Schwartz inequality, to prove the

first part, it suffices to establish that the lemma holds with Gni replaced by T̃ij, j = 1, 2, 3.

Now consider T̃i1(θ) :

sup
θ∈N(θ0)

n−1Σn
i=1{T̃i1(θ)}2 = sup

θ∈N(θ0)

n−1Σn
i=1[lθ{θ, F̃1n(ε̃1i), F̃2n(ε̃2i)}]2

≤ n−1Σn
i=1[G{F1(ε1i) + δ∗1i, F2(ε2i) + δ∗2i}]2

≤ n−1Σn
i=1[G{F1(ε1i), F2(ε2i)}]2

+ 2{sup
i
|δ∗1i|+ sup

i
|δ∗2i|}n−1Σn

i=1k
∗{F1(ε1i), F2(ε2i)}G{F1(ε1i), F2(ε2i)}

+ {sup
i
|δ∗1i|+ sup

i
|δ∗2i|}2n−1Σn

i=1(k
∗{F1(ε1i), F2(ε2i)})2 = Op(1).

(17)

The claims about the other terms can also be established by applying similar arguments,

although the complete proof is long.

Lemma 8. n−1
∑n

i=1{T̃i(θ0)− Ti(θ0)}2 = op(1).

Proof. The summand can be expressed as {T n
i1 +T n

i2 +T n
i3}2, and hence it suffices to establish

that n−1
∑n

i=1{T n
ij(θ0)}2 = op(1), for j = 1, 2, 3, where T n

i1 = {lθ{θ0, F̃1n(ε̃1i), F̃2n(ε̃2i)} −
lθ{θ0, F1(ε1i), F2(ε2i)}}, T n

i2 = {(W̃1(ε̃1i, θ0) − Ŵ1(ε1i, θ0)}, T n
i3 = {W̃2(ε̃2i, θ0) − Ŵ2(ε2i, θ0)}.

We shall indicate the proof for one term; the rest of the claims can be established by similar

arguments and appealing to the earlier lemmas. To show that n−1
∑n

i=1{T n
i2}2 = op(1), let

T n
i21 = n−1Σn

j=1I(ε̃1i ≤ ε̃1j) [lθ,1{θ0, F̃1n(ε̃1j), F̃2n(ε̃2j)} − lθ,1{θ0, F1(ε1j), F2(ε2j)}],

T n
i22 = n−1Σn

j=1[I(ε̃1i ≤ ε̃1j)− I(ε1i ≤ ε1j)] lθ,1{θ0, F1(ε1j), F2(ε2j)}.
By Cauchy-Schwartz inequality, it suffices to establish that n−1Σn

i=1{T n
i2j}2 = op(1), for

j = 1, 2. The proof involves breaking the terms into separate parts and applying Cauchy-

Schwartz inequality and the previous lemmas. For example, n−1Σn
i=1(T

n
i22)

2 is less than or

equal to

{n−2Σn
j=1Σ

n
i=1[I{ε̃1i ≤ ε̃1j} − I{ε1i ≤ ε1j}]2} n−1Σn

j=1{lθ,1{θ0, F1(ε1j), F2(ε2j)}2, (18)
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which is of order op(1). Similarly, the other terms can also be shown to be of order op(1),

which completes the proof.

Now, the proof of the consistency of the estimator follows essentially the same arguments

as in section 6.4 of Lehmann (1983), in particular Theorem 4.1. The intermediate arguments

required for this are contained in the Lemmas established thus far. The main approach is

that (F̃pn, ε̃pi) can be replaced by (Fpn, εpi) for p = 1, 2 and i = 1, . . . , n in the derivatives of

n−1Σn
i=1lθ{θ0, F1n(ε1i), F2n(ε2i)}, because the remainder terms can be shown to be negligible.

Proof of the asymptotic normality of n1/2(θ̃ − θ0) :

We shall prove that the numerator in (1) converges to a normal distribution and that the

denominator converges to the constant γ in probability. The main approach to obtaining

the asymptotic distribution of the numerator is to avoid expanding it about the true value of

the unknown parameters but to ensure that the first term is the rank order statistic in terms

of the errors {εpi}. Thus, we express the numerator An in (1) as An =
∑6

k=1 Ank, where

An1 = n−1/2Σn
i=1lθ{θ0, F1n(ε1i), F2n(ε2i)} (19)

An2 = n−1/2Σn
i=1δ1i lθ,1{θ0, F1n(ε1i), F2n(ε2i)} (20)

An3 = n−1/2Σn
i=1δ2i lθ,2{θ0, F1n(ε1i), F2n(ε2i)} (21)

An4 = n−1/2Σn
i=1δ1i δ2i lθ,1,2{θ0, F1n(ε1i) + c1δ1i, F2n(ε2i) + c2δ2i} (22)

An5 = n−1/2Σn
i=12

−1(δ1i)
2 lθ,1,1{θ0, F1n(ε1i) + c1δ1i, F2n(ε2i) + c2δ2i} (23)

An6 = n−1/2Σn
i=12

−1(δ2i)
2 lθ,2,2{θ0, F1n(ε1i) + c1δ1i, F2n(ε2i) + c2δ2i}, (24)

for some 0 < c1, c2 < 1. The next two lemmas show that Anj = op(1), for j = 2, . . . , 6.

Lemma 9. |Anj| = op(1), for j = 2, 3.

Proof. Let A∗
n2i = (x̄1 − x1i)

T (β̃1 − β1)f1(ε1i)lθ,1{θ0, F1(ε1i), F2(ε2i)}. We will show that
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n−1/2Σn
i=1A

∗
n2i = op(1) and An2 − n−1/2Σn

i=1A
∗
n2i = op(1). First note that

|n−1/2Σn
i=1A

∗
n2i| ≤ |n−1Σn

i=1

(
x̄1 − x1i

)T
f1(ε1i)lθ,1{θ0, F1(ε1i), F2(ε2i)}| ‖

√
n(β̃1 − β1)‖ = op(1).

(25)

Now, let us write An2 − n−1/2Σn
i=1A

∗
n2i = B1 + n1/2(β̃ − β)T B2 where

B1 = n−1/2Σn
i=1[{δ1i − (x̄1 − x1i)

T (β̃1 − β1)f1(ε1i)}lθ,1{θ0, F1n(ε1i), F2n(ε2i)}]

and B2 = n−1Σn
i=1(x̄1 − x1i)

T f1(ε1i)[lθ,1{θ0, F1n(ε1i), F2n(ε2i)} − lθ,1{θ0, F1(ε1i), F2(ε2i)}].

Let us write δ1i = {Fpn(ε̃pi) − Fpn(εpi)} + F̃pn(ε̃pi) − Fpn(ε̃pi). Now, using Lemmas 1 and 2

to approximate δ1i, and separating terms to apply the triangle inequality several times, we

have B1 = op(1). The presence of the term (x̄1 − x1i) in the summand of B2 ensures that

B2 = op(1). The proof follows by combining these results.

Lemma 10. For j ∈ {4, 5, 6}, |Anj| = op(1).

Proof. Let, for p = {1, 2}, let dnpi = Fpn(εpi)− Fp(εpi) + cpδpi, where cpδpi is defined in (19).

Then, supi

∣∣∣dnpi

∣∣∣ ≤ supi

∣∣∣Fpn(εpi)− Fp(εpi)
∣∣∣ + supi |cpδpi| = Op(n

−1/2). Therefore, we have

|An4| =
∣∣n1/2[n−1Σn

i=1δ1i δ2ilθ,1,2{θ0, F1n(ε1i) + c1δ1i, F2n(ε2i) + c2δ2i}]
∣∣

≤ n1/2 sup
i
|δ1i| sup

i
|δ2i| n−1Σn

i=1

∣∣∣lθ,1,2{θ0, F1(ε1i) + dn1i, F2(ε2i) + dn2i}
∣∣∣

= n1/2 sup
i
|δ1i| sup

i
|δ2i|

(
n−1Σn

i=1

∣∣∣lθ,1,2{θ0, F1(ε1i), F2(ε2i)}
∣∣∣ + Op(n

−1/2)
)

≤ n1/2 sup
i
|δ1i| sup

i
|δ2i|

(
n−1Σn

i=1G{F1(ε1i), F2(ε2i)}+ Op(n
−1/2)

)
= op(1).

By similar arguments, we also have An5 and An6 are also of order op(1).

It follows from the foregoing two Lemmas that An = An1 + op(1) and hence An and

An1 have the same asymptotic distributions. The asymptotic distribution of the rank order

statistic An1 was obtained in Genest et al. (1995). It follows from the results therein that

An1 converges in distribution to N(0, σ2) where

σ2 = var[lθ{θ0, F1(ε1), F1(ε1)}+ W1(ε1) + W2(ε2)],

and Wp(εp) =

∫ ∫
I
(
Fp(εp) ≤ up

)
lθ,p{θ0, u1, u2}c(u1, u2; θ)du1du2.
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To complete the proof, we shall show that Cn = op(1) and |Bn − γ| = op(1).

|Cn| =
∣∣(2n)−1Σn

i=1(θ̃ − θ0)lθ,θ,θ{θ∗, F̃1n(ε̃1i), F̃2n(ε̃2i)}
∣∣

≤ (1/2)‖θ̃ − θ0‖n−1Σn
i=1G{F̃1n(ε̃1i), F̃2n(ε̃2i)}, with probability close to 1, for large n

= (1/2)‖θ̃ − θ0‖[n−1Σn
i=1G{F1(ε1i), F2(ε2i)}+ Op(n

−1/2)] = op(1).

Now, to prove the convergence of Bn, note that

|Bn − γ| ≤
∣∣− n−1Σn

i=1lθ,θ{θ0, F̃1n(ε̃1i), F̃2n(ε̃2i)}+ n−1Σn
i=1lθ,θ{θ0, F1(ε1i), F2(ε2i)}

∣∣

+
∣∣− n−1Σn

i=1lθ,θ{θ0, F1(ε1i), F2(ε2i)} − γ
∣∣.

The first term on the right hand side converges to zero in probability by Lemma 4 and the

second term also converges to zero in probability by the Weak Law of Large Numbers. This

completes the proof of the asymptotic normality of n1/2(θ̃ − θ0).

The proof of the consistency of ν̃ is established by showing that σ̃ = σ + op(1) and

γ̃ = γ + op(1). These proofs use the lemmas established thus far as the building blocks.

The proof of γ̃ = γ + op(1) follows by applying a Law of Large Numbers for independent

random variables, U -statistics and rank order statistics. The proof of σ̃ = σ + op(1) is long

but follows arguments similar those used in the previous parts. All of these are given in Kim

et al. (2005).
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Table 1: Efficiencies (%) of the Semiparametric estimator relative to the inference function

for margin estimator in terms of mean square error.

100 observations 500 observations

θ (N-N) (T-T) (T-ST) (T-C) (N-N) (T-T) (T-ST) (T-C)

Ali-Mikhail-Haq faimly of Copulas

-0.7 100 107 112 118 100 221 152 112

-0.3 97 176 168 136 99 377 273 143

0.1 97 181 199 194 99 334 551 257

0.5 93 124 182 195 100 468 1100 1260

Frank Copula

-2.0 93 307 357 190 98 2010 1610 565

-0.5 96 322 382 235 101 690 990 318

3.5 94 353 291 182 96 2180 1850 501

5.0 92 277 285 147 95 1970 1740 408

Gumbel Copula

1.5 88 276 300 192 93 18400 831 548

3.0 98 211 318 466 98 410 824 2260

4.5 93 203 649 1020 101 378 2330 3800

6.0 94 227 883 990 95 385 4210 3900

Joe Copula

1.5 80 178 224 150 82 320 802 870

3.0 93 254 344 332 90 326 1020 1680

4.5 85 170 581 923 85 288 1480 3270

6.0 87 152 965 935 93 359 2350 4570

Plackett Copula

0.5 97 168 213 125 98 555 754 330

2.0 93 636 512 229 97 2730 2780 800

3.5 91 339 432 201 99 3230 2650 618

5.0 90 302 401 165 97 2180 1940 470
Note: The error distributions are (1) N-N: normal and normal, (2) T-T: t3 and t3, (3)

T-ST: t3 and skew-t3, and (4) T-C: t3 and χ2
2. The number of repeated samples is 250.
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Table 2: Estimated means and standard deviations when the marginal distributions are t3
and χ2(2) but the inference function for margin method assumes that they are normal.

100 observations 500 observations

IFM Semi IFM Semi

θ mean std mean std mean std mean std

Ali-Mikhail-Haq faimly of Copulas

-0.7 -0.75 0.31 -0.74 0.28 -0.74 0.17 -0.69 0.17

-0.3 -0.33 0.40 -0.31 0.34 -0.35 0.18 -0.31 0.16

0.1 0.14 0.47 0.08 0.33 0.13 0.20 0.09 0.12

0.5 0.63 0.29 0.47 0.22 0.77 0.14 0.51 0.09

Frank Copula

-2.0 -2.41 0.89 -2.00 0.71 -2.53 0.41 -1.99 0.28

-0.5 -0.81 0.72 -0.61 0.50 -0.70 0.40 -0.49 0.25

3.5 3.96 0.88 3.52 0.73 4.16 0.45 3.52 0.33

5.0 5.31 0.85 4.95 0.75 5.58 0.44 4.97 0.36

Gumbel Copula

1.5 1.36 0.16 1.53 0.15 1.36 0.08 1.51 0.07

3.0 2.36 0.34 3.00 0.33 2.36 0.17 2.98 0.14

4.5 2.93 0.46 4.29 0.47 2.91 0.32 4.37 0.23

6.0 3.28 0.57 5.42 0.67 3.22 0.57 5.70 0.34

Joe Copula

1.5 1.29 0.15 1.58 0.20 1.25 0.07 1.51 0.09

3.0 2.30 0.38 3.06 0.43 2.23 0.20 3.01 0.19

4.5 2.92 0.53 4.37 0.53 2.95 0.38 4.49 0.28

6.0 3.54 0.78 5.81 0.82 3.37 0.52 5.89 0.38

Plackett Copula

0.5 0.45 0.18 0.51 0.17 0.41 0.07 0.50 0.07

2.0 2.44 0.83 2.10 0.61 2.56 0.54 2.03 0.27

3.5 4.17 1.27 3.57 1.01 4.38 0.67 3.52 0.44

5.0 5.82 1.78 5.18 1.51 6.06 0.82 4.98 0.62
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Table 3: The estimated coverage rates (in %) of a 95% large sample confidence interval of

the copula parameter.

Sample sizes

40 100 500

θ N-N T-C T-ST T-T N-N T-C T-ST T-T N-N T-C T-ST T-T

AMH copula

-0.70 94 91 94 94 96 96 95 95 93 96 93 96

-0.30 91 90 93 94 94 96 96 93 94 95 91 95

0.10 93 91 89 93 91 93 92 92 94 91 97 95

0.50 88 89 87 90 92 93 95 94 96 94 95 92

Frank copula

-0.50 98 96 96 96 96 97 96 96 97 98 98 98

-2.00 95 95 95 97 94 95 96 94 93 94 95 96

3.50 97 94 98 95 97 95 95 96 95 97 95 98

5.00 98 95 94 96 95 95 96 97 97 92 95 93

Gumbel copula

1.50 95 97 96 97 96 96 95 97 97 98 95 95

3.00 95 97 97 97 96 95 96 95 94 95 94 96

4.50 94 93 96 94 96 90 94 95 94 91 94 94

6.00 96 79 93 93 92 82 93 96 95 86 96 93

Joe copula

1.50 94 96 96 95 99 96 95 94 96 97 96 95

3.00 95 97 99 96 95 98 94 96 94 95 96 95

4.50 95 97 96 92 94 95 95 95 94 93 95 94

6.00 96 94 91 92 93 92 94 92 95 97 92 93

Plackett copula

0.50 89 90 91 91 94 94 95 94 96 97 95 96

2.00 89 92 91 94 96 92 94 94 96 98 97 96

3.50 94 92 92 93 95 97 97 97 97 99 99 99

5.00 96 96 96 93 97 96 98 96 99 99 99 99
Note: The error distributions are (1) N-N: normal and normal, (2) T-T: t3 and t3, (3)

T-ST: t3 and skew-t3, and (4) T-C: t3 and χ2
2. The number of repeated samples is 250.
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Table 4: Value at Risk corresponding to α = 5%.

z Percentage invested on Bank shares

10 25 50 75 90

-8 -16.2 -14.9 -14.0 -14.7 -15.6

-6 -14.2 -13.0 -12.2 -13.0 -13.9

-4 -12.3 -11.1 -10.4 -11.2 -12.2

-2 -10.3 -9.2 -8.5 -9.5 -10.5

0 -8.4 -7.3 -6.7 -7.7 -8.8

2 -6.41 -5.39 -4.88 -5.95 -7.07

4 -4.45 -3.49 -3.05 -4.20 -5.35

6 -2.50 -1.58 -1.21 -2.44 -3.64
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