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                                                          Abstract 
 
The principle that the simplest model capable of describing observed phenomena should also 
correspond to the best description has long been a guiding rule of inference. In this paper a 
Bayesian approach to formally implementing this principle is employed to develop model 
selection criteria for detecting structural change in financial and economic time series. Model 
selection criteria which allow for multiple structural breaks and which seek the optimal model 
order and parameter choices within regimes are derived. Comparative simulations against 
other popular information based model selection criteria are performed. Application of the 
derived criteria are also made to example financial and economic time series. 
 
Keywords: Complexity theory, segmentation, break points, change points, model selection, 
model choice. 
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1. Introduction 
 
It is well known that models with constant coefficients provide poor descriptions of 
time series which contain structural change [Maddala & Kim 2000]. While structural 
changes in time series may be gradual, sudden shifts must also be encompassed as 
possible exogenous events. A failure to accommodate such structural breaks could 
result in misleading conclusions, particularly with respect to unit root tests [Perron 
1989]. In this paper we develop model selection criteria which test for multiple abrupt 
break points in time series. The number and location of the break points are, a priori, 
unknown. The order of models and the model parameters within each regime are 
also, a priori, unknown. 
 
The developed model selection criteria are based on a particular information principle 
with strong foundations in the fields of complexity theory and computability. Like 
other information based criteria, such as the Akaike Information Criterion (AIC) or the 
Bayesian Information Criterion (BIC), a balance is sought between the information 
cost of describing the model against that of describing the data relative to the model. 
The principle employed originates with Wallace and Freeman [1987] and is known as 
Minimum Message Length (MML) compact coding. This principle shares many 
similarities with Rissanen’s Minimum Description Length (MDL) approach [Rissanen 
1989] which is finding growing application within statistics [Hansen & Yu 2001]. 
Importantly, however, MML and MDL differ in key areas, chief amongst which is 
MML’s embrace of an explicitly Bayesian formulation. This provides MML with some 
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immediate advantages for model selection: focus can be directed to the selection of 
particular models rather than model classes and model selection criteria remain 
invariant under general parameter transformations. 
 
In this paper MML based model selection criteria are derived for segmented time 
series with regions described by (i) simple Gaussian models and (ii) Gaussian auto-
regressive models. The criteria allow for the simultaneous selection of the change 
points, the order of each auto-regressive model, and all other model parameters. 
 
As MML is relatively unknown amongst econometricians Sections 2 & 3 will outline 
the foundations of MML and its computational framework. In Section 4, model 
selection criteria for determining multiple structural breaks in a simple (uncorrelated) 
time series are developed. A small simulation study is presented in Section 5 to 
demonstrate the performance of the derived criteria. Comparisons with other 
information based model selection criteria suggest that the MML criteria developed 
here provide a good balance between over and under-fitting on the number of 
segment boundaries. In addition, the Gaussian multiple segmentation approach is 
demonstrated on Gold Bullion and Brent crude oil price series. These ideas are fully 
extended in the case of the autoregressive (AR) multiple segmentation problem, 
presented in Section 6. A demonstration of the approach on the application of finding 
a structural break in the quarterly US GDP is given. The paper concludes with a 
discussion in Section 7. 
 
2. Complexity, Information Theory and the Minimum Message Length 
 
Although largely developed within computer science, MML is suitable for application 
to econometrics as it rests on the assumption that probabilistic models provide a 
sufficient class from which descriptions of complicated data generating mechanisms 
can be drawn. Probabilistic models provide the basis for a pragmatic way of 
computing the complexity of a given time series and its generating mechanism. 
Complexity relates to how difficult it is to describe the time series. Basing time series 
on probabilistic models, and thus a random variable, introduces the assumption that 
the time series are intrinsically difficult to describe - each data point must be 
described individually as it cannot be deterministically related to other data points in 
the series. However, any probabilistic model introduces additional structure which 
may moderate this indeterminism. It is for this reason that the measure of complexity 
for a time series must incorporate how difficult it is to describe the data and the 
model.  
 
The pragmatic approach to calculating complexity is based on information theory. 
Utilising the framework of information theory, descriptions of time series can be 
couched in the language of minimising the length of messages; this is the origin of 
the Minimum Message Length principle. MML thus requires the construction of a 
message, the length of which determines an objective function called a message 
length. The idea is to envisage the sending of a ‘message’ relaying the precise 
values of an observed data series. A model is considered useful when sending both 
the parameter estimates and the residuals from the fitted model results in a message 
that is shorter than any other model from some class. The task of model selection 
then relates to finding the model which results in the shortest message. As the 
message length combines both a measure of complexity in the model with that in the 
data, the MML approach provides a method for simultaneously evaluating the trade 
off between the two. Adjustments are made to ensure that the methodology is robust 
against minor variations in how the message is constructed. In regular problems, 
MML point estimators have good properties, such as asymptotic consistency, and are 



closely related to both the Maximum Likelihood Estimators (MLE) and Bayesian 
posterior mode estimators [Wallace & Freeman 1987].  
 
As with AIC and BIC, MML information criteria or “Message Lengths” (MessLen) 
have the general form:  
 

                       + penalty term.               (1) �likelihoodMessLen log�� �
 
However, in contrast to AIC and BIC, the MML penalty term, for regular problems, is 
not a simple function of the number of parameters, d, and the sample size, n, but 
rather has the structure:  
 

                penalty term = � �� � )(detlog
2
1)log( dgFprior ��� � .                (2) 

 
Here refers to the logarithm of the prior density over the parameters, �, 

 is the determinant of the Fisher information matrix, and  is a model 
specific function of the number of parameters. Importantly, as the penalty term is a 
function of the unknown parameters, �, the MML information criteria are not typically 
evaluated at the MLE.  

)log(prior
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What can be gained by including a complicated penalty function of the form in 
Equation 2? Consider first the inclusion of the prior density function. This allows 
additional contextual information which may otherwise be abstracted out of the model 
selection criterion to be explicitly incorporated. The term involving the Fisher 
information matrix captures the fact that, for some models, certain regions of the 
parameter space are structurally more informative than others. That is, regardless of 
the observed data, some parameter value regions are more likely to maximise the 
likelihood function. Conversely, as the minimum message length is sought, regions 
that are relatively more informative are penalised within the MML approach. A 
tension is thus established between minimising the message length and providing 
sufficient support to describe the data. Without the Fisher information matrix term this 
structural information on candidate models would be ignored.  
 
When the problem contains non-regular components, such as when estimating 
unknown multiple structural breaks, the penalty term can become even more 
complicated. However, the additional complication in the criteria serve to balance the 
complexity in the models in much the same way.  
 
MML information criteria are explicitly Bayesian model selection criteria but are in 
contrast to the standard Bayesian approach which involves the use of the marginal 
probabilities of models, conditional on the observed data [Chibb 1995]. Standard 
Bayesian model selection will typically first chose the “best” model, and subsequently 
minimise a loss function to obtain a parameter estimate for the chosen model. Such 
procedures typically ignore the uncertainty in model choice when presenting the 
subsequent parameter estimates. A popular approach involves calculating posterior 
model probabilities which are then used to construct an “averaged model” that 
marginalises over the uncertainty in the model choice [Geweke 1999].  The model 
averaged approach is particularly relevant for prediction purposes.  For the problem 
of determining the number and occasions of structural breaks in a time series, 
however, it is worthwhile to explore the use of choosing a single model, or potentially 
best set of models, favouring differing structural change patterns.  MML offers the 
possibility of simultaneously evaluating the uncertainty in determining multiple 



structural breaks with that of estimating parameter values for the resulting individual 
models. 
 
Earlier attempts to derive MML based model selection criteria for application to the 
uni-variate segmentation problem, where each segment is defined by a simple 
Gaussian model [Oliver, Baxter & Wallace 1998] [Baxter & Oliver 1996], have failed 
to take full advantage of the discrete nature of the segmentation problem. This paper 
seeks to overcome this limitation and to derive robust MML based model selection 
criteria which: (1) Make full use of the information inherent in the data sets; (2) Are 
consistent with known constraints on devising descriptive messages; and (3) Are 
amenable to robust application under generalised computational search algorithms. 
 
3. The Minimum Message Length Computational Framework 
 
Wallace and Freeman [1987] demonstrate the principles of MML inductive inference. 
Under certain regularity conditions, the MML objective function is shown to take the 
generic form: 

        � � � � � �� � � �d
dFhLMessLen ���� log1
2

detlog
2
1log ����� .     (3) 

 
Here  is the density of the prior distribution for � and �  is the  dimensional 
quantising lattice constant [Conway & Sloane 1982] required for optimal encoding of 
the  dimensional �. Values of �  for dimensions one to eight can be found in 
Appendix 1. Parameter values which minimise the message length are inferred to be 
those which are the most suitable to describe the data from that class and order of 
model. We briefly outline the main derivation of Equation 3. 
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Consider a parametric statistical model for a set of data D, . The negative 
log-likelihood is then given by 

� �|Df �
� � � ��� |log DfL �� , which reflects the size of the 

message required to describe the data. The base of the logarithm corresponds to the 
number of symbols in the coding alphabet used to construct the message. For 
convenience natural logarithms are often used, so that messages are measured in 
‘nits’ rather than the usual base 2 ‘bits’. Strictly, the negative log-likelihood 
corresponds to the data message length only when the probability density is 
multiplied with the uncertainty in the data value, resulting in a probability function. 
The probability density is assumed to be sufficiently well behaved to allow for this 
approximation. The length of the message is thus made dependent on the accuracy 
of the data. However, as this is usually constant for all the data points this data 
uncertainty can be scaled out of the MessLen.  
 
For the vector of parameters, � , represents the Bayesian prior probability 
distribution over the parameters. From Shannon and Weaver’s work on information 
entropy [Shannon & Weaver 1959], it follows that the message length for the 
parameters will be given by .  corresponds to the parameter space 
uncertainty volume. As with the data, the Bayesian prior is assumed sufficiently well 
behaved such that Vh  approximates the local probability. Unlike with the data, the 
parameter space uncertainty volume need not be constant for all parameter values 
and thus cannot be scaled out.  

)(�h

� ��Vhlog� V

� ��

 
The introduction of parameter uncertainty partitions the parameter space into discrete 
values centred on the regions of uncertainty. However, this partitioning is not unique. 
To avoid variations in the message length from variations in how the parameter 



space is partitioned consideration is given to the expected message length. The 
message length for the data, averaged over the parameter space uncertainty volume 
is given by:   
 

                                          � � � �dvL
V

DMessLen
V
� �� ���

1|                                      (4) 

 
where � represents the vector of parameter deviations from the optimal vector of 
parameter values. Assuming that the distribution � ��|Df  is regular, the message 
length for the data can be Taylor expanded. Further assuming that the estimate of 
the parameter values is unbiased, so that the expectation of � is zero, the Taylor 
expanded message length of the parameters and data becomes:   
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To minimise Equation 5, the optimal parameter values and uncertainty volume need 
to be determined. The tricky part concerns the minimisation of the parameter 
uncertainty, represented by the volume V . Specifically, it turns out that the optimal 
value for V is a function of the integrand in Equation 5. As a consequence, the 
optimal value for V is a function of the data leading to a problem of circular 
dependence so that the transmitted message cannot be decoded. A solution to this 
problem is to integrate out the data dependence and approximate the integrand of 
Equation 5 with the expected Fisher information: 
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where  represents the vector of data values. Evaluating the integral and optimising 
Equation 5 with respect to the parameter space uncertainty volume yields a message 
length for both the data and the parameter values as given in Equation 3, which can 
be seen to have a penalty function of the form in Equation 2.  
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4. MML Model Selection Criteria for Simple Segmented Gaussian Models 
 
4.1   Notation 
 
To apply MML to the segmentation problem the same notation utilised in [Oliver, 
Baxter & Wallace 1998] is employed. Data consists of pairs  with the  evenly 
spaced over a region of size 

),( ii yx ix
R . The region is presumed known and can be cut into 

 pieces by  segment boundaries, or change points. The change points are 
denoted by { . It is assumed throughout that errors are Gaussian. The 
observations  in segment  are assumed to have constant mean and variance, c  

and � , respectively.   
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Since the  are evenly spaced, and particularly as they form a finite set, it will prove 
convenient to map them onto the set of integers Z corresponding to the sequence of 
the data points.  

ix



 
� �  corresponds to the set of parameters having continuous support. �  will thus not 
include the change point parameters. 

�

 
4.2   The case with one change point 
 
It will be shown that the MML information criterion for the simplest case of 
determining the location of a single change point is given by  
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where and are the negative log likelihood’s for segments 0 and 1,  
and is a discrete parameter reflecting the size of the uncertainty in the 
change point position. 
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To derive Equation 7, we note that, as with other model parameters, change points in 
an MML description must be accompanied by some non-zero uncertainty as to their 
location. Let  denote the difference in the location of the change point defined at 
the centre of the region of uncertainty, � , and the maximum likelihood value, � : 

�

ˆ
 
                                                           �                                                         (8) vv �� ˆ 

 
Denoting by  and  the number of data items in segments 0 and 1, as defined by 0n 1n
v , the number of data items, , can be represented with respect to �  as: n ˆ
 
 
      
                      =  n +

Number of data 
items in Segment 0 
as defined by v  ˆ

Number of data 
items in Segment 1 
as defined by  v̂ 

 
which can be expressed as: 
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where the operator int() returns the value of the operand truncated to its integer 
value. By definition . Note that by mapping the  onto Z and measuring 0n�)int(v ix R  

as the number of data points in its range the data density 
R
n

 will be unity. 

 
Given that a range of v  will lead to the same segmentation of the data, the issue 
arises as to what values v  should actually take. This can be ascertained by noting 
that the  are model parameters already endowed with a parameter accuracy. With ix



the mapped onto Z, as noted above, a parameter accuracy of one unit is implicit 
with the midpoint of the region centred on . Neither the sender nor receiver can 
have greater information than this. Change points are thus naturally defined as 
occurring mid-way between the  parameters and also endowed with an underlying 
parameter accuracy of one unit. Variations of the change point position within this 
range lead to the same segmentation. Should minimisation of the message length 
demand that the location of the change point parameter be described less accurately, 
the region of uncertainty for a change point must necessarily be in multiples of the 
underlying parameter accuracy. Put succinctly, the change point positions have only 
a discrete set of points for support, not the entire set of real numbers. Writing 

, and given the underlying discrete support of the change points, it 
follows that any additional uncertainty in the change point parameter value can only 

be expressed by one of 

ix

v

ix

ix

1�� sAcc

� 2,1 �,.....,0
2
�

s

� �......6,

 , as shown in Figure 1: 
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Figure 1. Two examples showing the relation between the discrete parameter s and the Accv: 
(1) a case where no additional parameter accuracy is needed and (2)  when the cut point 
parameter is to be transmitted with less accuracy, in this case with the next lowest accuracy. 

 s/2 = 1 

Coarser accuracy Acc�=3, s/2 = 1 

-s/2 = -1 

Default case Acc�=1, s = 0 

 Change Point 

 Change Point 

 
It follows that . As required,4,2,0�s  is a multiple factor on the underlying 
parameter accuracy, assumed known a priori by the receiver of the message. 
Indeed, as the are treated as data their accuracy of measurement must be 
presumed known. Note that minimisation of the message length may not require that 
the change point location be described with courser accuracy. In this case 

and 

ix

s  will not appear in the message length description. 
 
This formulation differs from [Oliver, Baxter & Wallace 1998] and [Baxter & Oliver 
1996] in that s  is precluded from taking arbitrary values and the change points occur 
only mid-way between the . It follows that now �  so that Equation 9 
becomes: 
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The message length description of the data with respect to the quantised estimate of 
the change point will be given by: 
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where  represents the model parameters. Writing h for the prior on the model 
parameters, the message length on the parameters and the data can be generically 
represented as [Wallace & Freeman 1987]: 
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where � corresponds to a parameter perturbation and V  is the five dimensional 
volume element made up from the four continuous and one change point parameter 
uncertainties. Since the Fisher information is not defined for change point like 
parameters the volume element pertaining to the change point uncertainty is 
presumed orthogonal to the parameter uncertainties which make up the remaining 
volume element. The message length description of Equation 12 can thus be written 
as: 
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where refers to the parameters other than the change point parameter. Note that 
the expansion now is defined with respect to the differentiable parameters only. As 
with the standard MML formulation the quantised estimates of the continuous 
parameters are presumed to be unbiased so that the linear term in the Taylor 
expansion of Equation 13 will vanish. 
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Determining the expected message length with respect to the change point 

parameter thus requires attention to be focussed on both the and )(�L
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terms. Only the first term was modified by the presence of change points in [Oliver, 
Baxter & Wallace 1998] and [Baxter & Oliver 1996]. For both terms the logarithmic 
contributions add nothing new to the message length in expectation. Non-trivial 
contributions to the message length description arise through the sums in Equation 
11. The expectations with respect to the change point parameter of these sums can 
be determined easily and are found to be: 
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and 
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The expectation over  with respect to the change point parameter can thus be 
expressed as: 
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where and are the negative log likelihood’s for segments 0 and 1 respectively. 
Note that the effect of the segmentation uncertainty is restricted to the data items 
actually within the region of uncertainty and not, as in [Oliver, Baxter & Wallace 1998] 
and [Oliver & Forbes 1997], dependent on all the data items. 
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term can be calculated similarly. To make the message decodeable, this 

term is approximated by its expectation over the data, i.e. the Fisher information. 
Expressing the Fisher information matrix as: 
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the non-vanishing contributions are found to be given by: 
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It is seen that the imprecision in the change point leads to some mixing of 
parameters from the two regions in the Fisher information matrix, as would be 
expected.  
 
Given the vanishing contributions, the determinant of the Fisher matrix can be 
expressed as: 
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Allowing for the case that the data is not segmented, there are R  possible positions 
for the change point. The Wallace-Freeman form for the message length [Wallace & 
Freeman 1987] for both the parameters and data is then given by (where the change 
point positions are presumed uniformly distributed): 
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where � is the four dimensional quantising lattice constant. 4

 
Isolating terms which are a function of s , it is clear that the optimal value of s  will be 
a function of the data. In order that the message be decodeable, parameter 
uncertainties must be expressed in a data independent way. The simplest way to 
achieve this is to extend the approximation used by Wallace and Freeman [1987] and 
approximate the data dependent term: 
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by its expectation. The Minimum Message Length description is then given by 
Equation 7. 
 
It is to be noted that expressing the minimal value for the change point precision in a 
data independent way has not be emphasised previously [Oliver, Baxter & Wallace 
1998] and [Oliver & Forbes 1997]. Note also that the additional terms to the Minimum 
Message Length arising from a coarser segmentation accuracy vanish if . 
These contributions also vanish if the means and variances of the two regions are 
equal. 

0�s

 
4.3   The MML approach to multiple change points 
 
The only additional complication introduced by considering multiple change points 
concerns accurately accounting for segments which are bordered by change points 
at both ends. Proceeding as before it is found that this aspect of the problem 
contributes new structure to the Fisher matrix in a regular way. Generalising from 
Equation 21, an expression for the message length with an arbitrary number of 
change points can be directly written down: 
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where 
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and the non-vanishing contributions to the Fisher matrix for each segment are given 
by: 
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As before, d is the dimension of the precision volume for the continuous parameters.  
 
 
5. Applications to Simple Gaussian Segmentation 
 
5.1 Small sample comparative study 
 
The MML approach to segmented data series advocated here is clearly more 
complex than other model selection criteria. It is thus necessary to test if the 
additional effort involved in deriving such a criterion is balanced by its utility. To 
investigate this, data series were generated which consisted of two segments. Each 
segment was assigned the same variance, 0.5, but different means. The difference in 
the means between the segments was systematically reduced to investigate the 
ability of the MML criterion to select the correct number of segments. 
 
To undertake this experiment a simulation program was constructed which employs 
the down-hill simplex algorithm of Nelder and Mead [Press, Teukolsky, Vetterling & 
Flannery 1993] to find the parameter values and uncertainties which minimise the 
message length. As with the simulations performed by Baxter and Oliver [1996], 
single change point solutions which yield local minima in the message length were 
determined first. Change point locations across the entire data range were tested and 
those yielding the deepest local minima retained. Multiple change point solutions 
based on the retained single change point locations, yielding up to three segments, 



were then investigated. Solutions comprising no, one or two change points were then 
compared and the optimal choice determined. For each separation of the two “true” 
segments, fifty data samples were recorded. Each data series consisted of fifty data 
points with the true segmentation at data point eighteen. 
 
This experiment was applied to the derived MML criterion as well as the Akaike 
Information Criterion (AIC) and the Minimum Description Length (MDL) criterion. 
Comparison is made with the AIC and MDL criteria defined by [Dom 1995] and 
[Liang, Jaszczak & Coleman 1992]: 
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Simple priors for the continuous parameters were chosen based on the population 
estimates: 
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The observed percentage chance of identifying one change point (that is one 
segment boundary) for different differences in the segment means is shown in Figure 
2: 
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Figure 2. Percentage chance of identifying one segment boundary for different differences in 
the segment means for the MML, AIC and MDL criteria. 
 
As can be seen from Figure 2, the MML criterion performs well across the range of 
mean distances, demonstrating greater sensitivity to the existence of change points 



than MDL. This is highlighted in Table 1 which logs the propensity for the different 
model selection criteria to overfit and underfit by giving the observed percentage 
chance of finding  three or one segments rather than two. Table 1 also records the 
quality of the segments chosen through use of a simple distance measure between 
the chosen and true segment: 
   

|                           PositionSegment  True -PositionSegment Found|AccuracyPositionPointChange �

 
The Change Point Position Accuracy results are averaged over the cases when a 
single change point was found for each model selection criterion.   
 

Delta 
Mean 

Average Change Point 
Position Accuracy 

% Chance of overfitting % Chance of underfitting 

 MML MDL AIC MML MDL AIC MML MDL AIC 
1.5 0.204 0.22 0.211 2 0 24 0 0 0 
1.4 0.28 0.28 0.267 0 0 10 0 0 0 
1.3 0.267 0.26 0.286 10 0 30 0 0 0 
1.2 0.313 0.34 0.289 4 0 24 0 0 0 
1.1 0.583 0.56 0.684 4 0 24 0 0 0 
1.0 0.5 0.56 0.475 4 0 20 0 0 0 
0.9 0.792 0.76 0.784 4 0 26 0 0 0 
0.8 0.938 1.1 1.0 4 0 30 0 0 0 
0.7 1.51 1.71 1.39 10 0 28 0 4 0 
0.6 1.91 2.36 2.35 8 0 26 2 10 0 
0.5 3.74 4.35 3.64 6 0 26 10 32 2 
0.4 4.76 4.59 4.12 12 0 20 22 56 14 
 0.3 7.1 6.71 8.52 10 0 26 50 72 20 
0.2 7.8 5.75 7.19 8 0 24 72 84 44 
0.1 15.13 15.67 12.22 8 0 18 76 94 46 

 
Table 1. The average Change Point Position Accuracy and percentage chance of over-fitting 
and underfitting for the different model selection criteria for different differences in the 
segment means. 
 
The percentage chance of over-fitting demonstrates the well known over-fitting 
properties of AIC. Conversely, MDL shows no propensity to overfit, all the incorrect 
choices for the number of segments coming from under-fitting.  MML presents less 
tendency to underfitting than the MDL criterion for small mean differences but retains 
a tendency to overfit at larger differences, emphasising its sensitivity to the existence 
of segment boundaries. The MML criterion thus demonstrates a better balance 
between over and under-fitting. Importantly, this implies that the MML criterion will be 
a preferred choice if seeking to detect segment boundaries in noisy data. 
 
Interestingly, the average Change Point Position Accuracy does not vary greatly 
between criteria, implying that if the correct number of change points can be found 
they will be located in the data sequence equally well.  
 
5.2 Behaviour of the MML criterion for increasing sample size 
 
Since the MML criterion is not optimised at the MLE and the change points are 
discrete parameters, it is difficult to formally demonstrate that the MessLen has the 
appropriate asymptotic properties [McQuarrie & Tsai 1998]. However, the trend 
behaviour of the MML criterion in detecting the correct number of segments for 
increasing sample size can be demonstrated empirically, as shown in Figure 3. In 
these simulations equal numbers of additional data points were added to each “true” 
region on either side of the change point. As shown in Figure 3, the percentage 



chance of identifying one change point (or segment boundary) shows the anticipated 
asymptotic behaviour.                                 
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Figure 3. Percentage chance of identifying one segment boundary using MML for different 
sample sizes and differences in the segment means. 
 
 
5.3  Application to economic time series 
 
Utilising the prior of Equation 26, the MML criterion was applied to two sets of 
economic time series. The time series correspond to the Brent crude oil price and 
Gold bullion price in the interval 8th September to 16th of November 1999. This time 
period was chosen as it appeared to offer the possibility of multiple segments in both 
time series. Pricing data were examined as they can demonstrate regions of 
relatively stable behaviour so that simple Gaussian distributions may be employed as 
reasonable models for the time series. This is to be contrasted with data such as 
national GDP which generally shows a monotonic rise. The segmentations found are 
shown in Figures 4 & 5: 
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Figure 4. Gold bullion price between 8th September to 16th November 1999, showing the 
derived MML segment boundaries. 



            Brent Crude Oil Prices from 8/9/99 to 16/11/99
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Figure 5. Brent crude oil price  between 8th September to 16th November 1999, showing the 
derived MML segment boundaries. 
 
The same algorithm used in section 5 was employed. The existence of up to three 
segments was tested. In both figures 3 and 4 the segment boundaries chosen by the 
MML criterion appear to accord with behavioural changes in the data sets.  
 
 
6. MML Model Selection Criteria for Segmented Gaussian Auto-regressive 
Models 
 
6.1 Background 
 
In this section extension is made to the segmentation of time series where different 
segments are described by auto-regressive, AR(p), models of, perhaps different, 
order p.  The AR(p) models are represented in the generic form: 
 

                                                                                               (27) t

p

i
itit cyy �� ����

�

�

1

 
Application of auto-regressive models is perhaps one of the most popular for time 
series data. By extending consideration to the segmentation of auto-regressive 
models the utility of applying MML to the analysis of structural change in a broader 
range of time series can be tested. The greatest difficulty in undertaking an analysis 
of the application of MML to the segmentation of auto-regressive time series comes 
from the computational difficulties which arise in dealing with the expectations which 
must be calculated. Such complications arise when seeking an MML description of 
auto-regressive models beyond first order and in the MML description of segmented 
auto-regressive models of any order. It is to be recalled that the need to calculate 
expectations was directly linked with the ability to determine the optimal uncertainty 
volume in a way which made the MML description viable.  
 
Rather than rely on expectations, an alternative approach is to add an additional 
preamble to the message which explicitly transmits the size of the uncertainty 
volume. The MML description is thus made more complex through this approach but 
such a prescription seems unavoidable if MML is to be applied to more realistic time 



series models [Wallace & Freeman 1987]. Consistent with the other parameters, 
including a preamble for the uncertainty volume requires that an uncertainty in the 
uncertainty volume also be considered. An infinite regress of uncertainties is avoided 
by demonstrating that this uncertainty in uncertainty is in fact a function of the original 
uncertainty volume, so that the message can be made intelligible. It was stated in 
[Wallace & Freeman 1987] that the uncertainty in the logarithm of the uncertainty 
volume in the case of a single parameter model has size 6 . In this section this 
result will be generalised to models consisting of d continuous parameters. Extension 
will then be made to segmented time series. 
 
As it is amenable to direct calculation, the standard MML description of first order 
auto-regressive models will be given in the Appendix 2. 
 
6.2  MML description of auto-regressive models 
 
Adding the third component describing the size of the parameter space uncertainty, 
Equation 4 generalises to: 
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where, to be consistent with the treatment in [Wallace & Freeman 1987], V  is the 

uncertainty in the logarithm of the parameter uncertainty and 
Vlog

� �Vh log2  is the prior 
probability of realising the logarithm of the uncertainty volume V . Consideration is 
given to logarithms as this preserves the general form of the message length.  
 
Similarly to the standard MML treatment, consideration is given to the message 
length averaged over the uncertainty in the logarithm of the parameter space 
uncertainty. To demonstrate that an infinite regress can be avoided the optimal value 
for  needs to be determined. To evaluate the integral an appropriate parameter 
space transformation is introduced which renders the volume V  into a d dimensional 
sphere of volume U [Oliver & Baxter 1995]. However, unlike in the standard MML 
approach, the approximation of integrating out the data dependence is not pursued. 
After introducing this transformation and evaluating the integral over V , Equation 28 
becomes: 
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where  is the transformed prior over parameter values. To evaluate the 
remaining integral the integrand must first be expanded around the optimal value for 

. Similarly, again, with the standard MML approach, assume that the 
expectation of over the volume V  is unbiased and that the second moment 
behaves as from a uniform distribution. Expanding the integrand in Equation 29 and 
utilising this assumption yields the message length: 
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Optimising Equation 30 with respect to V yields: Vlog
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Substituting the optimal value for V , Equation 31, and transforming yields: Vlog
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where  is the prior in the parameter space uncertainty. Equation 32 can be 
reduced further by noting that V . Equation 32 thus becomes:  
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Differentiating Equation 33 with respect to the parameter space uncertainty results in 
the following expression for the optimal parameter space uncertainty volume: 
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It follows from Equation 34 that the optimal parameter space uncertainty volume will 
be an explicit function of the parameter space uncertainty prior. This dependence can 
be overcome by restricting the prior to be uniform. This does not, in the first instance, 
seem unreasonable as we are attempting to introduce uncertainty into uncertainty, 
the form of which we will generally be ignorant. There are some interesting parallels 
in taking such a stance with the notion of hierarchical priors, where a second stage 
subjective prior is placed on a prior capturing structural knowledge. It is often the 
case that the second stage prior is chosen to be a suitable non-informative prior 
[Berger 1985]. Nevertheless, in the MML context, introducing this assumption runs 
contrary to the general philosophy of MML. 
 
With this constraint on the form of the parameter space uncertainty prior, the optimal 
parameter space uncertainty becomes: 
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which is equivalent to the standard MML result when . The optimal value for the 
uncertainty in the logarithm of the parameter space uncertainty is then given by: 

1�d

 

                                                      
12

6 2

log
�

�

d
d

VV                                                  (37) 

 
which recovers the result in Wallace and Freeman (1987) when . Making the 
relevant substitutions into Equation 33, the Message Length becomes: 
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6.3  MML description of segmented auto-regressive models 
 
Consideration is now given to applying this generalised formulation of the extended 
MML preamble to higher order segmented AR(p) models. Starting with the case of a 
model with a single change point dividing AR(l) and AR(m) descriptions of each 
segment, the negative log-likelihood is expressed as: 
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where the total number of data points, , can be expressed as before as 
, with  and  the number of data points in each segment, 

with respect to the change point position which minimises the MML description, and 
 is the discrete uncertainty in the position of the change point. Generalising the 

formulation of Section 4 and introducing the uncertainty in the change point position 
and the uncertainty in the uncertainty of the change point position, Equation 28 
generalises to: 
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where  is the uncertainty in the change point position uncertainty,  is the change 
point uncertainty which minimises the message length and  is the prior 
probability of realising a given uncertainty in the change point position uncertainty. 
Note that .  Expressing the negative log-likelihood averaged over change point 
uncertainties as: 
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Equation 40 can be expressed as: 
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With the addition of the terms involving  and , Equation 42 has the same form 
(once the generalised negative log-likelihood, Equation 41, is Taylor expanded) as 
Equation 28. The analysis leading to the optimal parameter uncertainty volume and 
optimal uncertainty in the uncertainty volume is thus the same with the substitution of 
the negative log-likelihood with Equation 41.  

0s ss

 
One element to the message length which has been overlooked thus far is the 
contribution from the conditional data values upon which the models of the data 
depend. For segmented auto-regressive models, conditional data points will be 
required for each segment, the number being equal to the order of the auto-
regressive model. Such conditional data points thus appear as parameters but are 
clearly different to the model parameters which are being sought through MML 
inference. The differences arise from the observation that: (1) The Accuracy of 
Measurement (AOM) of the data is presumed known so that there is no need to 
optimise against the uncertainty volume of these “parameters”; and (2) The 



quantisation of the data is presumed known so that there is no need to average over 
the AOM of the conditional data points. 
 
To transmit these conditional data points the segmented auto-regressive models 
cannot be used and we are forced to adopt a more crude approach. The simplest 
way to achieve this is to make use of the data range and transmit each conditional 

data point with a message of length 
RangeData

AOM
_

log� , where AOM is the accuracy 

to which the data is given, presumed known. Noting that the AOM is scaled out of the 
message length the message length for the segmented AR(l)-AR(m) model takes the 
form: 
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where now is the dimensionality of the continuous parameters from both segments. 
The message length in the non-segmented case, Equation 38, needs to be similarly 
modified to account for the conditional data points. It is straightforward to determine 
the non-vanishing terms to the determinant in Equation 43 from the definition of 

d

� �sss ,, 0�L  given in Equation 41. Similarly, by generalising Equations 39 and 42 to an 
arbitrary number of segments, and by adding the requisite number of prior 
probabilities, Equation 43 can be simply extended to the description of auto-
regressive models with an arbitrary number of change points. 
 
6.4 Application to US GDP data  
 
6.4.1 Background 
 
In testing the application of this MML approach to segmented auto-regressive 
models, it is clearly possible to undertake a general search over model classes which 
allow for auto-regressive models of arbitrary order in each segment. To simplify the 
analysis, consideration is here restricted to searching for a single change point in 
time series where each segment is described by an AR(1) model, so connecting 
analysis with the current literature on unit roots. We consider the US quarterly GDP 
between 1960:III and 1985:II, so encompassing the 1973 oil price shock. As in 
[Nelson & Plosser 1982] consideration is given to the data transformed to natural 
logs.  
 
Following the approach in Section 5, application is made of an optimisation model 
utilising the down-hill simplex method [Press et al] to search for parameter estimates 
which minimise the MML selection criterion. Several searches were performed with 
the boundary conditions on the prior probabilities implemented with increasing 



severity. In this way different local minima were sometimes revealed and the deepest 
one retained. 
 
 
6.4.2 Choice of priors 
 
The choice of priors will be guided by allowing for the possibility of both a unit root 
and a structural break. Following Marriot and Newbold [1998 & 2000] we employ a 
beta prior for the autoregressive parameter in each segment, so introducing 
increasing probability mass about the unit root. The prior(s) take the form: 
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Marriot and Newbold [1998] obtained attractive results when the hyper-parameters 
take the values 5��  and 5.0�� . These values will be employed here. 
 
Continuing with the prior belief that the different segments are described by a unit 
root, we assume that each segment is difference stationary and introduce a simple 
Gaussian prior for the mean values. This is based on population estimates of the 
mean and variance of the first differenced data: 
 
                                                    � � � �yyi cNch

��
�,~                                               (45)  

 
To allow for unbounded values of the standard deviation but with increasingly small 
probability as deviation is made from the sample value we employ a Gamma 
distribution: 
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with the hyper-parameters set to �  and �  as in [Oliver & Forbes 1997]. 1� y�� �

 
 
The prior belief in the uncertainty in the change point location uncertainty is taken to 

be the same as the usual prior over change point positions, i.e. 
R
1

, where R  is the 

number of data points. The prior for the uncertainty in the uncertainty volume for the 
continuous parameters is more subtle. Recalling that this prior must be uniform in the 
uncertainty volume, the simplest choice appears to be to simply utilise  Equation 35 
and set: 
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This choice is somewhat incestuous but has the benefit of: (1) Providing an objective 
prior for a parameter which is of no direct interest to the statistician interested in the 



problem of inferring the model parameters; and (2) Simplifying the message length 
description to a form originally envisaged in [Wallace & Freeman 1987]. 
 
The second point can be illustrated by considering the case when there are no 
change points. Utilising Equation 47, the MML description, Equation 38 with the 
conditional data point contribution, becomes: 
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for an auto-regressive model of order m, which is similar to the standard MML 
description with the addition of some terms which are a function of d . Indeed, it 
follows that when  the contribution from the extra preamble adds a small 
contribution “of order one or so” [Wallace & Freeman 1987].  

1�d

 
 
6.4.3 Results 
 
The minimum message lengths found when the change-point was located at different 
positions of the time series are shown in Figure 6: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6: The found minimum message length for US GDP data for different locations of the 
change point. 
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The minimum solution was found with a change point located at the transition from 
1970:III to 1970:IV with a message of length 204.8 nits, narrowly beating the solution 



when no change points are present, which yielded a message of length 209.0 nits. 
The optimal expected fit is shown in Figure 7: 
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Figure 7: US quarterly GDP with optimal MML fit, showing a change point at the 1970:III – 
1970:IV transition. 
 
The parameter values which minimise the MML criterion are: 
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It is worth noting that several minima were found which out-performed the no change 
point solution. 
 
As suggested by Perron [1989] we detect a change in the slope of the trend but 
slightly earlier than the supposed 1973:I date for the oil shock. We also find a small 
change in the intercept.  
 
 7. Conclusion 
 
The approach to segmentation advocated in this paper has sought to formulate a 
representation of the segmentation problem in a way which is consistent with the 
general prescriptions of MML and the information actually present in the, discrete, 
data. In doing so, the effects of segmentation appear as structure in the main body of 
the message length and in the Fisher information matrix. This additional structure in 
the Fisher information matrix has not been accommodated in previous MML 
segmentation criteria. 
 
There are several important advantages to formulating segmentation criteria in this 
way which are explicitly highlighted through MML: (1) The change point positions are 
treated discretely; (2) Only change point positions which yield different 
segmentations are utilised; (3) Only discrete numbers of change points are affected 
by change point uncertainties; (4) The pathological case of allowing a change point to 



lie on a data item is excluded; (5) The change point uncertainty can never be less 
than that originally given in the data; (6) Should the original change point uncertainty 
optimise the estimate, any additional structure in the estimator arising from change 
point uncertainties vanishes; and (7) Multiple change points are not independent. 
 
In the case of simple Gaussian models it has been demonstrated that the MML 
criteria developed here demonstrate good properties of discrimination when seeking 
segment boundaries. In the case of Gaussian auto-regressive models it has been 
demonstrated that MML criteria can be developed and applied to the segmentation 
problem by generalising an alternative prescription to overcome computational 
complexities, yielding interesting results.  
 
As with any optimisation problem, however, the greatest difficulty comes from 
discriminating global from local minima in a computational search. As suggested by 
Maddala & Kim [2000] it may be more profitable to concentrate the search for change 
points in a local area of the time series rather than broadly as implemented here. 
This would certainly allow computational efforts to be focussed more directly on the 
issue of finding global minima. 
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Appendix 1: Quantising Lattice Constants 
 
The quantising lattice constant is known exactly for the first eight dimensions. These 
values are given in Table 2: 
 

Dimension d  Lattice Constant  �  d
           1            0.083333 
           2            0.080188 
           3            0.078543 
           4            0.076603 
           5            0.075625 
           6            0.074244 
           7            0.073116 
           8            0.071682 

 
Table 2. The Quantising Lattice Constants for Dimensions One to Eight. 
 
For arbitrary dimensions the quantising lattice constant is unknown but is known to 
obey the bounds shown in Equation 50 [Conway & Sloane 1982]: 
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Both bounds approach 
e�2

1
as increases. d



Appendix 2: The Standard MML Description of AR(1) Models 
 
Consideration is directed to the standard MML description of non-segmented AR(1) 
models. The negative log likelihood function in the case that is given by: 1�p
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To determine the relevant expectations, it is convenient to first recursively solve for 

. This allows the data to be expressed as functions of the model parameters and 
Gaussian errors only.  The resulting expressions are found to be: 
ty
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which are conditional on y . Expressing the Fisher information matrix as 0
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LEI , the non-vanishing terms can be determined by 

utilising Equation 52 and noting that terms linear in the Gaussian errors will vanish. It 
is found that the non-vanishing terms are given by: 
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and 
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with 2
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nI � and 2
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0�c

. Note that Equation 55 reduces to the results found in 

[Phillips 1991] when .  
 
Noting that there are three parameters,  the message length for the AR(1) model can 
now be written down directly as: 
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where  represents the vector of model parameters and � � ��h  is the prior for those 
parameters. 
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