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Abstract

We study the joint determination of the lag length, the dimension of the cointegrating space and
the rank of the matrix of short-run parameters of a vector autoregressive (VAR) model using model
selection criteria. We consider model selection criteria which have data-dependent penalties for a
lack of parsimony, as well as the traditional ones. We suggest a new procedure which is a hybrid
of traditional criteria and criteria with data-dependant penalties. In order to compute the fit of
each model, we propose an iterative procedure to compute the maximum likelihood estimates of
parameters of a VAR model with short-run and long-run restrictions. Our Monte Carlo simulations
measure the improvements in forecasting accuracy that can arise from the joint determination of
lag-length and rank, relative to the commonly used procedure of selecting the lag-length only and
then testing for cointegration.
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1 Introduction

There is a large body of literature on the effect of cointegration on forecasting. Engle and Yoo (1987)

compare the forecasts generated from an estimated VECM assuming that the lag order and the coin-

tegrating rank are known, with those from an estimated VAR in levels with the correct lag. They

find out that the VECM only produces forecasts with smaller mean squared forecast errors (MSFE)

in the long-run. Clements and Hendry (1995) note that Engle and Yoo’s conclusion is not robust if

the object of interest is differences rather than levels, and use this observation to motivate their alter-

native measures for comparing multivariate forecasts. Hoffman and Rasche (1996) confirm Clements

and Hendry’s observation using a real data set. Christoffersen and Diebold (1998) also use Engle and

Yoo’s setup, but argue against using a VAR in levels as a benchmark on the grounds that the VAR in

levels not only does not impose cointegration, it does not impose any unit roots either. Instead, they

compare the forecasts of a correctly specified VECM with forecasts from correctly specified univariate

models, and find no advantage in MSFE for the VECM. They use this result as a motivation to suggest

an alternative way of evaluating forecasts of a cointegrated system. Silverstovs et al. (2004) extend

Christoffersen and Diebold’s results to multicointegrated systems. Since the afore-mentioned papers

condition on the correct specification of the lag length and cointegrating rank, they cannot provide an

answer as to whether we should examine the cointegrating rank of a system in multivariate forecasting

if we do not have any a priori reason to assume a certain form of cointegration.

Lin and Tsay (1996) examine the effect on forecasting of the mis-specification of the cointegrating

rank. They determine the lag order using the AIC, and compare the forecasting performance of

estimated models under all possible numbers of cointegrating vectors (0 to 4) in a four-variable system.

They observe that, keeping the lag order constant, the model with the correct number of cointegrating

vectors achieves a lower MSFE for long-run forecasts, especially relative to a model that over-specifies

the cointegrating rank. Although Lin and Tsay do not assume the correct specification of the lag

length, their study also does not address the uncertainty surrounding the number of cointegrating

vectors in a way that can lead to a modelling strategy for forecasting possibly cointegrated variables.

Indeed, the results of their example with real data, in which they determine the cointegrating rank

using a sequence of hypothesis tests, do not accord with their simulation results.

At the same time, there is an increasing amount of evidence of the advantage of considering rank

restrictions for short-term forecasting in stationary VAR (and VARMA) models (see, for example, Ahn

and Reinsel, 1988; Vahid and Issler, 2002; Athanasopoulos and Vahid, 2008). One feature of these

papers is that they do not treat lag-length and rank uncertainty, differently. Their quest is to identify

the dimension of the most parsimonious state vector that can represent the dynamics of a system.
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Here, we add the cointegrating rank to the menu of unknowns and evaluate model selection criteria

that determine all of these unknowns simultaneously. Our goal is to determine a modelling strategy

that is useful for multivariate forecasting.

There are other papers in the literature that evaluate the performance of model selection criteria

for determining lag-length and cointegrating rank, but they do not evaluate the forecast performance

of the resulting models. Gonzalo and Pitarakis (1999) show that in large systems the usual model

selection procedures may severely underestimate the cointegrating rank. Chao and Phillips (1999)

show that the posterior information criterion (PIC) performs well in choosing the lag-length and the

cointegrating rank simultaneously.

In this paper we evaluate the performance of model selection criteria in the simultaneous choice

of the lag-length p, the rank of the cointegrating space q, and the rank of other parameter matrices r

in a vector error correction model. We suggest a hybrid model selection strategy that selects p and r

using a traditional model selection criterion, and then chooses q based on PIC. We then evaluate the

forecasting performance of models selected using these criteria.

Our simulations cover the three issues of model building, estimation, and forecasting. We examine

the performances of model selection criteria that choose p, r and q simultaneously (IC(p, r, q)), and

compare their performances with a procedure that chooses p using a standard model selection criterion

(IC(p)) and determines the cointegrating rank using a sequence of likelihood ratio tests proposed by

Johansen (1988). We provide a comparison of the forecasting accuracy of fitted VARs when only coin-

tegration restrictions are imposed, when cointegration and short-run restrictions are jointly imposed,

and when neither are imposed. These comparisons take into account the possibility of model misspec-

ification in choosing the lag length of the VAR, the number of cointegrating vectors, and the rank of

other parameter matrices. In order to estimate the parameters of a model with both long-run and

short-run restrictions, we propose a simple iterative procedure similar to the one proposed by Centoni

et al. (2007).

It is very difficult to claim that any result found in a Monte Carlo study is general, especially

in multivariate time series. There are examples in the VAR literature of Monte Carlo designs which

led to all model selection criteria overestimating the true lag in small samples, therefore leading to

the conclusion that the Schwarz criterion is the most accurate. The most important feature of these

designs is that they have a strong propagation mechanism.1 There are other designs with weak propa-

gation mechanisms that result in all selection criteria underestimating the true lag and leading to the

conclusion that AIC’s asymptotic bias in overestimating the true lag may actually be useful in finite
1Our measure of the strength of the propagation mechanism is proportional to the trace of the product of the variance

of first differences and the inverse of the variance of innovations.
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samples (see Vahid and Issler, 2002, for references). We pay particular attention to the design of the

Monte Carlo to make sure that we cover a wide range of data generating processes in terms of the

strength of their propagation mechanisms.

The outline of the paper is as follows. In Section 2 we study finite VARs with long-run and short-

run restrictions and motivate their empirical relevance. In Section 3, we outline an iterative procedure

for computing the maximum likelihood estimates of parameters of a VECM with short-run restrictions.

We provide an overview of model selection criteria in Section 4, and in particular we discuss model

selection criteria with data dependent penalty functions. Section 5 describes our Monte Carlo design.

Section 6 presents the simulation results and Section 8 concludes.

2 VAR models with long-run and short-run common factors

We start from the triangular representation of a cointegrated system used extensively in the cointe-

gration literature (some early examples are Phillips and Hansen, 1990; Phillips and Loretan, 1991;

Saikkonen, 1992). We assume that the K-dimensional time series

yt =
(
y1t

y2t

)
, t = 1, ..., T

where y1t is q × 1 (implying that y2t is (K − q)× 1) is generated from:

y1t = βy2t + u1t (1)

∆y2t = u2t

where β is a q × (K − q) matrix of parameters, and

ut =
(
u1t

u2t

)
is a strictly stationary process with mean zero and positive definite covariance matrix. This is a DGP

of a system of K cointegrated I(1) variables with q cointegrating vectors, also referred to as a system of

K I(1) variables with K − q common stochastic trends (some researchers also refer to this as a system

of K variables with K − q unit roots, which can be ambiguous if used out of context, and we therefore

do not use it here).2 The extra feature that we add to this fairly general DGP is that ut is generated

from a VAR of finite order p and rank r (< K).

In empirical applications, the finite VAR(p) assumption is routine. This is in contrast to the

theoretical literature on testing for cointegration, in which ut is assumed to be an infinite VAR, and a
2While in theory every linear system of K cointegrated I(1) variables with q cointegrating vectors can be represented

in this way, in practice the decision on how to partition K-variables into y1t and y2t is not trivial, because y1t are variables
which must definitely have a non-zero coefficient in the cointegrating relationships.
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finite VAR(p) is used as an approximation (e.g. Saikkonen, 1992). Here, our emphasis is on building

multivariate forecasting models rather than hypothesis testing. The finite VAR assumption is also

routine when the objective is studying the maximum likelihood estimator of the cointegrating vectors,

as in Johansen (1988).

The reduced rank assumption is considered for the following reasons. Firstly, this assumption

means that all serial dependence in the K-dimensional vector time series ut can be characterised by

only r < K serially dependent indices. This is a feature of most macroeconomic models, in which

the short-run dynamics of the variables around their steady states are generated by a small number

of serially correlated demand or supply shifters. Secondly, this assumption implies that there are

K − r linear combinations of ut that are white noise. Gourieroux and Peaucelle (1992) call such time

series “codependent,” and interpret the white noise combinations as equilibrium combinations among

stationary variables. This is justified on the grounds that, although each variable has some persistence,

the white noise combinations have no persistence at all. For instance, if an optimal control problem

implies that the policy instrument should react to the current values of the target variables, then it is

likely that there will be such a linear relationship between the observed variables up to a measurement

noise. Finally, many papers in multivariate time series literature provide evidence of the usefulness

of reduced rank VARs for forecasting (see, for example, Velu et al., 1986; Ahn and Reinsel, 1988).

Recently, Vahid and Issler (2002) have shown that failing to allow for the possibility of reduced rank

structure can lead to developing seriously misspecified vector autoregressive models that produce bad

forecasts.

The dynamic equation for ut is therefore given by (all intercepts are suppressed to simplify the

notation)

ut = B1ut−1 +B2ut−2 + · · ·+Bput−p + εt (2)

where B1, B2, ..., Bp are K×K matrices with rank
[
B1 B2 ... Bp

]
= r, and εt is an i.i.d. sequence

with mean zero and positive definite variance-covariance matrix and finite fourth moments. Note that

the rank condition implies that each Bi has rank at most r, and the intersection of the null-spaces

of all Bi is a subspace of dimension K − r. The following lemma derives the vector error correction

representation of this data generating process.

Lemma 1 The data generating process given by equations (1) and (2) has a reduced rank vector error

correction representation of the type

∆ yt = γ
(
Iq −β

)
yt−1 + Γ1∆ yt−1 + Γ2∆ yt−2 + · · ·+ Γp∆ yt−p + ηt, (3)

in which rank
[

Γ1 Γ2 ... Γp
]
≤ r.
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Proof: See Appendix A.

This lemma shows that the triangular DGP (1) under the assumption that the dynamics of its

stationary component (i.e. ut) can be characterised by a small number of common factors, is equivalent

to a VECM in which the coefficient matrices of lagged differences have reduced rank and their left null-

spaces overlap. Hecq et al. (2006) call such a structure a VECM with weak serial correlation common

features (WSCCF). It is instructive here to compare this structure with a DGP that embodies a stricter

form of co-movement, namely one that implies that the dynamics of the deviations of yt from their

Beveridge-Nelson (BN) trends can be characterised by a small number of cyclical terms.

Starting from the Wold representation for ∆ yt

∆ yt = Θ(L)ηt,

where Θ(L) is an infinite moving average matrix polynomial with Θ0 = IK and absolutely summable

coefficients and ηt are innovations in ∆ yt, then, using the matrix identity used in the proof of the

lemma above, we get

yt = Θ(1)
∞∑
i=0

ηt−i + Θ∗(L)ηt,

where Θ∗j = −
∑∞

i=j+1 Θi. The first term is the vector of BN trends. These are random walks, and are

simply the limit of the long-run forecast yt+h|t as h→∞. Cointegration implies that Θ(1) has reduced

rank, and hence the K random walk trends can be written in terms of a smaller number of common

BN trends. Specifically, q cointegrating vectors are equivalent to K−q common BN trends. Deviations

from the BN trends, i.e. Θ∗(L)ηt, are usually called the BN “cycles”. The question is whether the

reduced rank structure assumed for ut in the triangular system above implies that the BN cycles can

be characterised as linear combinations of r common factors. And the answer is negative. Vahid and

Engle (1993) analyse the restrictions that common trends and common cycles impose on a VECM.

They show that, in addition to a rank restriction similar to the one derived above on the coefficients

of lagged differences, the left null-space of the coefficient of the lag level must also overlap with that of

all other coefficient matrices. That is, the DGP with common BN cycles is a special case of the above

under some additional restrictions.

One may question why we do not restrict our attention to models with common BN cycles, given

that the above reasons in support of the triangular structure, and in particular the fact that most macro

models imply that deviations from the steady state depend on a small number of common factors, more

compellingly support a model with common BN cycles. However, Hecq et al. (2006) show that the

uncertainty in determining the rank of the cointegrating space can adversely affect inference on common

cycles, and they conclude that testing for weak common serial correlation features is a more accurate
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means of uncovering short-run restrictions in vector error correction models. Therefore, as a systematic

approach to allow for more parsimonious models than the unrestricted VECMs, it seems imprudent to

consider only the strong form of serial correlation common features.

Our objective is to come up with a model development methodology that allows for cointegration

and weak serial correlation common features. For stationary time series, Vahid and Issler (2002) show

that allowing for reduced rank models is beneficial for forecasting. For partially non-stationary time

series, there is an added dimension of cointegration. Here, we examine the joint benefits of cointegration

and short-run rank restrictions for forecasting partially non-stationary time series.

3 Estimation of VARs with short-run and long-run restrictions

The maximum likelihood estimation of the parameters of a VAR written in error-correction form

∆ yt = Π yt−1 + Γ1∆ yt−1 + Γ2∆ yt−2 + · · ·+ Γp∆ yt−p + ηt (4)

under the long-run restriction that the rank of Π is q, the short-run restriction that rank of[
Γ1 Γ2 ... Γp

]
is r and the assumption of normality, is possible via a simple iterative proce-

dure that uses the general principle of the estimation of reduced rank regression models (Anderson,

1951). Noting that the above model can be written as

∆ yt = γ α′yt−1 + C [D1∆ yt−1 +D2∆ yt−2 + · · ·+Dp∆ yt−p] + ηt, (5)

where α is a K×q matrix of rank q and C is a K×r matrix of rank r, one realises that if α was known,

C and Di, i = 1, . . . , p, could be estimated using a reduced rank regression of ∆ yt on ∆ yt−1, · · · ,∆ yt−p

after partialling out α′yt−1. Also, if Di, i = 1, . . . , p, were known, then γ and α could be estimated

using a reduced rank regression of ∆ yt on yt−1 after controlling for
∑p

i=1Di∆ yt−i. This points to an

easy iterative procedure for computing maximum likelihood estimates for all parameters.

Step 0. Estimate [D̂1, D̂2, . . . , D̂p] from a reduced rank regression of ∆ yt on (∆yt−1, ...,∆yt−p) control-

ling for yt−1. Recall that these estimates are simply coefficients of the canonical variates cor-

responding to the r largest squared partial canonical correlations (PCCs) between ∆ yt and

(∆yt−1, ...,∆yt−p), controlling for yt−1.

Step 1. Compute the PCCs between ∆ yt and yt−1 conditional on

[D̂1∆ yt−1 + D̂2∆ yt−2 + · · · + D̂p∆ yt−p]. Take the q canonical variates α̂′yt−1 corresponding

to the q largest squared PCCs as estimates of cointegrating relationships. Regress ∆ yt on α̂′yt−1

and [D̂1∆ yt−1+D̂2∆ yt−2+· · ·+D̂p∆ yt−p], and compute ln |Ω̂|, the logarithm of the determinant

of the residual variance matrix.
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Step 2. Compute the PCCs between ∆ yt and (∆yt−1, ...,∆yt−p) conditional on α̂′yt−1. Take the r canoni-

cal variates [D̂1∆ yt−1 + D̂2∆ yt−2 + · · · + D̂p∆ yt−p] corresponding to the largest r

PCCs as estimates of [D1∆ yt−1 + D2∆ yt−2 + · · · + Dp∆ yt−p]. Regress ∆ yt on α̂′yt−1 and

[D̂1∆ yt−1 + D̂2∆ yt−2 + · · ·+ D̂p∆ yt−p], and compute ln |Ω̂|, the logarithm of the determinant of

the residual variance matrix. If this is different from the corresponding value computed in Step

1, go back to Step 1. Otherwise, stop.

The value of ln |Ω̂| becomes smaller at each stage until it achieves its minimum, which we denote

by ln |Ω̂p,r,q|. The values of α̂ and [D̂1, D̂2, . . . , D̂p] in the final stage will be the maximum likeli-

hood estimators of α and [D1, D2, . . . , Dp]. The maximum likelihood estimates of other parameters

are simply the coefficient estimates of the final regression. Note that although γ and α, and also C

and [D1, D2, . . . , Dp], are only identified up to appropriate normalisations, the maximum likelihood

estimates of Π and [Γ1,Γ2, . . . ,Γp] are invariant to the choice of normalisation. Therefore, the normal-

isation of the canonical correlation analysis is absolutely innocuous, and the “raw” estimates produced

from this procedure can be linearly combined to produce any desired alternative normalisation. Also,

the set of variables that are partialled out at each stage should include constants and other deterministic

terms if needed.

4 Model selection

The modal strategy in applied work for modelling a vector of I(1) variables is to use a model selection

criterion for choosing the lag length of the VAR, then test for cointegration conditional on the lag-order,

and finally estimate the VECM. There are hardly ever any further steps taken to simplify the model,

and if any test of the adequacy of the model is performed, it is usually a system test. For example, to

test the adequacy of the dynamic specification, additional lags of all variables are added to all equations,

and a test of joint significance for K2 parameters is used. For stationary time series, Vahid and Issler

(2002) show that model selection criteria severely underestimate the lag order in weak systems, i.e. in

systems where the propagation mechanism is weak. They also show that using model selection criteria

to choose the lag order and rank simultaneously can significantly remedy this shortcoming. In modelling

cointegrated I(1) variables, the underestimation of the lag order may have worse consequences because

it also affects the quality of cointegration tests and estimates of cointegrating vectors.

Johansen (2002) analyzes the finite sample performance of tests for the rank of the cointegrating

space and suggests correction factors for improving the finite sample performance of such tests. The

correction factor depends on the coefficients of lagged differences in the VECM (i.e. Γ1,Γ2, . . . ,Γp

in (3)), which makes the lag length p and the estimates of Γ1,Γ2, . . . ,Γp critical for the practical
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implementation of this correction factor. It is conceivable that, if allowing for reduced rank VARs

improves lag order selection, and therefore improves the quality of the estimates of Γ1,Γ2, . . . ,Γp,

then the quality of finite sample inference on the rank of the cointegrating space will also improve.

Hence, one could choose p and the rank of Γ1,Γ2, . . . ,Γp using the model selection criteria suggested

by Lütkepohl (1993, p. 202) and studied by Vahid and Issler (2002). These are the analogues of the

Akaike information criterion (AIC), the Hannan and Quinn criterion (HQ) and the Schwarz criterion

(SC), and are defined as

AIC(p, r) = T

K∑
i=K−r+1

ln (1− λi (p)) + 2(r(K − r) + rKp) (6)

HQ (p, r) = T
K∑

i=K−r+1

ln (1− λi (p)) + 2(r(K − r) + rKp) ln lnT (7)

SC (p, r) = T
K∑

i=K−r+1

ln (1− λi (p)) + (r(K − r) + rKp) lnT, (8)

where K is the dimension of (number of series in) the system, r is the rank of

[ Γ1 Γ2 ... Γp ], p is the number of lagged differences in the VECM, T is the number of obser-

vations, and λi(p) are the sample squared partial canonical correlations (PCCs) between ∆yt and the

set of regressors (∆yt−1, ...,∆yt−p) after the linear influence of yt−1 (and deterministic terms such as a

constant term and seasonal dummies if necessary) is taken away from them, sorted from the smallest to

the largest. Traditional model selection criteria are special cases of the above when the rank is assumed

to be full, i.e. when r is equal to K. Here, the question of the rank of Π, the coefficient of yt−1 in

the VECM, is set aside, and taking the linear influence of yt−1 away from the dependent variable and

the lagged dependent variables concentrates the likelihood on [ Γ1 Γ2 ... Γp ]. Then, conditional

on the values of p and r that minimise one of these criteria, one can use a sequence of likelihood ratio

tests to determine q. Here, however, we study model selection criteria which simultaneously choose p,

r and q.

We consider two classes of model selection criteria. First, we consider direct extensions of the AIC,

HQ and SC to the case where the rank of the cointegrating space, which is the same as the rank of Π,

is also a parameter to be selected by the criteria. Specifically, we consider

AIC(p, r, q) = T ln |Ω̂p,r,q|+ 2(q(K − q) +Kq + r(K − r) + rKp) (9)

HQ(p, r, q) = T ln |Ω̂p,r,q|+ 2(q(K − q) +Kq + r(K − r) + rKp) ln lnT (10)

SC(p, r, q) = T ln |Ω̂p,r,q|+ (q(K − q) +Kq + r(K − r) + rKp) lnT, (11)

where ln |Ω̂p,r,q| (the minimised value of the logarithm of the determinant of the variance of the residuals

of the VECM of order p, with Π having rank q and [ Γ1 Γ2 ... Γp ] having rank r) is computed by
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the iterative algorithm described above in Section 3. Obviously, when q = 0 or q = K, we are back

in the straightforward reduced rank regression framework, where one set of eigenvalue calculations for

each p provides the value of the log-likelihood function for r = 1, ...,K. Similarly, when r = K, we are

back in the usual VECM estimation, and no iterations are needed.

We also consider a model selection criterion with a data dependent penalty function. Such model

selection criteria date back to at least Poskitt (1987), Rissanen (1987) and Wallace and Freeman (1987).

The model selection criterion that we consider in this paper is closer to those inspired by the “minimum

description length (MDL)” criterion of Rissanen (1987) and the “minimum message length (MML)”

criterion of Wallace and Freeman (1987). Both of these criteria measure the complexity of a model

by the minimum length of the uniquely decipherable code that can describe the data using the model.

Rissanen (1987) establishes that the closest that the length of the code of any emprical model can

possibly get to the length of the code of the true DGP Pθ is at least as large as 1
2 ln |Eθ(FIMM (θ̂))|, where

FIMM (θ̂) is the Fisher information matrix of model M (i.e., [−∂2lnlM/∂θ∂θ
′], the second derivative

of the log-likelihood function of the model M) evaluated at θ̂, and Eθ is the mathematical expectation

under Pθ. Rissanen uses this bound as a penalty term to formulate the ‘minimum description length

(MDL)’ as a model selection criterion:

MDL = − ln lM (θ̂) +
1
2

ln |FIMM (θ̂)|.

Wallace and Freeman’s ‘minimum message length (MML)’ is also based on coding and information

theory, but is derived from a Bayesian perspective. The MML criterion is basically the same as the

MDL but with an additional term that is the prior density of the parameters evaluated at θ̂ (see

Wallace, 2005, for more details and a summary of recent advances in this line of research). While the

influence of this term is dominated by the other two terms as the sample size increases, it has the

important role of making the criterion invariant to arbitrary linear transformations of the regressors

in a regression context.

With stationary data, the Eθ(FIMM (θ̂)) is a d× d positive definite matrix (where d is the number

of free parameters in the model) whose elements grow at the same order as T , and hence its eigenvalues

grow at the same rate. In that case, its determinant grows at the same rate as T d, and the logarithm

of its determinant therefore grows at the same rate as d lnT, which is the same as the penalty term in

the Schwarz criterion. Because of this, Rissanen (1987) recommends using the Schwarz criterion as an

easy to use and an asymptotically valid version of the MDL. Recently, Ploberger and Phillips (2003)

have generalised Rissanen’s result to show that even for trending time series, the distance between

any empirical model and the Pθ is larger than or equal to 1
2 ln |Eθ(FIMM )| almost everywhere on the
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parameter space.3 In fact they show that this is true even when Pθ is the “pseudo-true” DGP, i.e.

the closest to the true DGP in a parametric class. This leads to the Phillips (1996) and Phillips

and Ploberger (1996) posterior information criterion (PIC), which is similar to the MML and MDL

criteria. The contribution of these recent papers has been to show the particular importance of this in

application to partially nonstationary time series. With stationary series, all eigenvalues of Eθ(FIMM )

grow at the same rate as T. However, if in model M, one of the parameters is the coefficient of a

variable with a deterministic linear trend, then the corresponding eigenvalues of Eθ(FIMM ) grows at

the rate T 3, implying that the penalty for that parameter must be 3 times as much as a parameter for

a stationary variable. Similarly, an I(1) variable would warrant a penalty twice as large as a stationary

variable. This theory confirms that it is harder to get closer to the DGP when variables are trending.

It also foreshadows that the direct generalisations of AIC, HQ and SC in equations (9)–(11) cannot

determine the cointegrating rank accurately.

Chao and Phillips (1999) use the PIC for the simultaneous selection of the lag length and coin-

tegration rank in VARs. They reformulate the PIC into a form that is convenient for their proof of

consistency. They show that in a K-variable vector error correction (VEC) model with p lagged differ-

ences and q cointegrating vectors, the PIC penalty grows at the rate (K2p+ 2q(K − q) +Kq) lnT in

contrast to the SC penalty, which is (K2p+ q (K − q) +Kq) lnT. However, unlike the stationary case,

one cannot use (K2p + 2q (K − q) + Kq) lnT as a simple penalty term approximating MDL because

the order of magnitude of ln |Eθ(FIMM (θ̂))| depends on the unknown nature of trends in the DGP Pθ

(note that (K2p+2q(K−q)+Kq) lnT is not even a monotonically increasing function of q). However,

for all models, the data-dependent penalty ln |FIMM (θ̂)| is calculated based on the observed data and

as a result it reflects the true order of magnitude of the data. The details of the Fisher information

matrix for a reduced rank VECM are given in the appendix.

There are practical difficulties in working with the PIC that motivates us to simplify this criterion.

One difficulty is that FIMM (θ̂) must be derived and coded for all models considered. A more important

one is the large dimension of FIMM (θ̂). For example, if we want to choose the best VECM allowing

for up to four lags in a six variable system, we have to compute the determinants of square matrices

of dimensions as large as 180. These calculations are likely to push the boundaries of the numerical

accuracy of computers, in particular when these matrices are ill-conditioned.4 This, and the favourable

results of the HQ criterion in selecting the lag p and the rank of the stationary dynamics r, lead us to

consider a two step procedure that uses HQ to determine p and r, and uses PIC to select q. We explain
3Ploberger and Phillips (2003) use the outer-product formulation of the information matrix, which has the same

expected value as the negative of the second derivative under Pθ.
4In our simulations, we came across one case where the determinant was returned as a small negative number even

though the matrix was symmetric positive definite. This happened using both GAUSS and MATLAB.
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this modified procedure more fully when discussing the simulation results.

5 Monte-Carlo design

One of the critical issues in any Monte-Carlo study is that of the diversity of Data Generating Processes

(DGPs), which allows the sampling a large subset of the parameter space, including sufficiently distinct

members. One of the challenges in our context is that we want the design to include VECMs with

short-term restrictions, and to satisfy conditions for stationarity. To make the Monte-Carlo simulation

manageable, we use a three-dimensional VAR. Both the simple real business cycle models and the

simplest closed economy dynamic stochastic general equilibrium models are three-dimensional. We

consider VARs in levels with lag lengths of 2 and 3, which translates to 1 and 2 lagged differences in

the VECM. This choice allows us to study the consequences of both under- and over-parameterisation

of the estimated VAR.

For each choice of the cointegration rank q and short-run rank r, we use 100 DGPs. From each DGP,

we generate 1,000 samples of 100, 200 and 400 observations (the actual generated samples were longer,

but the initial part of each generated sample is discarded to reduce the effect of initial conditions). In

summary, our results are based on 1,000 samples of 100 different DGPs — a total of 100,000 different

samples — for each of T = 100, 200 or 400 observations.

As discussed by Vahid and Issler (2002), it is worth sorting results by a measure of the strength

of the propagation mechanism of the DGP, i.e., a signal-to-noise ratio or a system R2 measure. Here,

we select two different sets of parameters with the following characteristics: the first, labelled “weak”,

has a range of the system R2 of 0.3 to 0.65, with a median between 0.4 and 0.5. The second, labelled

“strong”, has a range between 0.65 and 0.9, with a median between 0.7 and 0.8. For every design

setting of 100 DGPs, approximately 50% of them are “weak” and 50% of them are “strong”. In the

sections that follow we present the results for all 100 DGPs together, unless we consider something to

be of particular interest, and we then present results separately for “weak” and “strong” DGPs.

The Monte-Carlo procedure can be summarized as follows. Using each of the 100 DGPs, we

generate 1,000 samples (with 100, 200 and 400 observations). We record the lag length chosen by tra-

ditional (full-rank) information criteria, labelled IC(p) for IC={AIC, HQ, SC}, and the corresponding

lag length chosen by alternative information criteria, labeled IC(p, r, q) for IC={AIC, HQ, SC, PIC,

HQ-PIC, SC-PIC} where the last two are hybrid procedures which we explain later in the paper (see

Section 6.1.1).

For choices made using the traditional IC(p) criteria, we use Johansen’s (1988, 1991) trace test at

the 5% level of significance to select q, and then estimate a VECM with no short-run restrictions. For
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each case we record the out-of-sample forecasting accuracy measures for up to 16 periods ahead. For

choices made using IC(p, r, q), we use the proposed algorithm of Section 3 to obtain the triplet (p, r, q),

and then estimate the resulting VECM with SCCF restrictions. For each case we record the out-of-

sample forecasting accuracy measures for up to 16 periods ahead. We then compare the out-of-sample

forecasting accuracy measures for these two types of VAR estimates.

5.1 Measuring forecast accuracy

We measure the accuracy of forecasts using the traditional trace of the mean-squared forecast error

matrix (TMSFE) and the determinant of the mean-squared forecast error matrix |MSFE| at different

horizons. We also compute Clements and Hendry’s (1993) generalized forecast error second moment

(GFESM). GFESM is the determinant of the expected value of the outer product of the vector of

stacked forecast errors of all future times up to the horizon of interest. For example, if forecasts up to

h quarters ahead are of interest, this measure will be:

GFESM =

∣∣∣∣∣∣∣∣∣E


ε̃t+1

ε̃t+2
...

ε̃t+h




ε̃t+1

ε̃t+2
...

ε̃t+h


′∣∣∣∣∣∣∣∣∣ ,

where ε̃t+h is the n-dimensional forecast error of our n-variable model at horizon h. This measure is

invariant to elementary operations that involve different variables (TMSFE is not invariant to such

transformations), and also to elementary operations that involve the same variable at different horizons

(neither TMSFE nor |MSFE| is invariant to such transformations). In our Monte-Carlo, the above

expectation is evaluated for every model, by averaging over replications.

There is one complication associated with simulating 100 different DGPs. Simple averaging across

different DGPs is not appropriate, because the forecast errors of different DGPs do not have identical

variance-covariance matrices. Lütkepohl (1985) normalizes the forecast errors by their true variance-

covariance matrix in each case before aggregating. Unfortunately, this would be a very time consuming

procedure for a measure like GFESM, which involves stacked errors over many horizons. Instead, for

each information criterion, we calculate the percentage gain in forecasting measures, comparing the

full-rank models selected by IC(p), with the reduced-rank models chosen by IC(p, r, q). The percentage

gain is computed using natural logs of ratios of respective loss functions, since this implies symmetry

of results for gains and losses. This procedure is done at every iteration and for every DGP, and the

final results are then averaged.
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6 Monte-Carlo simulation results

6.1 Selection of lag, rank, and the number of cointegrating vectors

Simulation results are reported in “three-dimensional” frequency tables. The columns correspond to

the percentage of times the selected models had cointegrating rank smaller than the true rank (q < q∗),

equal to the true rank (q = q∗) and larger than the true rank (q > q∗). The rows correspond to similar

information about the rank of short-run dynamics r. Information about the lag-length is provided

within each cell, where the entry is disaggregated on the basis of p. The three numbers provided in

each cell, from left to right, correspond to percentages with lag lengths smaller than the true lag, equal

to the true lag and larger than true lag. The ‘Total’ column on the right margin of each table provides

information about marginal frequencies of p and r only. The row titled ‘Total’ on the bottom margin

of each table provides information about the marginal frequencies of p and q only. Finally, the bottom

right cell provides marginal information about the lag-length choice only.

We report results of two sets of 100 DGPs. Table 1 summarises the model selection results for 100

DGPs that have one lag in differences with a short-run rank of one and cointegrating rank of two, i.e.,

(p∗, r∗, q∗) = (1, 1, 2). Table 2 summarises the model selection results for 100 DGPs that have two lags

in differences with a short-run rank of one and cointegrating rank of one (p∗, r∗, q∗) = (2, 1, 1). These

two groups of DGPs are contrasting in the sense that the second group of DGPs have more severe

restrictions in comparison to the first one.

The first three panels of the tables correspond to all model selection based on the traditional model

selection criteria. The additional bottom row for each of these three panels provides information about

the lag-length and the cointegrating rank, when the lag-length is chosen using the simple version of

that model selection criterion and the cointegrating rank is chosen using the Johansen procedure,

and in particular the sequential trace test with 5% critical values that are adjusted for sample size.

Comparing the rows labelled ‘AIC+J’, ‘HQ+J’ and ‘SC+J’, we conclude that the inference about q

is not sensitive to whether the selected lag is correct or not. In Table 1 all three criteria choose the

correct q approximately 54%, 59% and 59% of the time for sample sizes 100, 200 and 400, respectively.

In Table 2 all three criteria choose the correct q approximately 70%, 82% and 82% of the time for

sample sizes 100, 200 and 400, respectively.

From the first three panels of Table 1 we can clearly see that traditional model selection criteria

are not appropriate for choosing p, q and r jointly, as expected from theory. The percentages of times

the correct model is chosen are only 22%, 26% and 29% with the AIC, 39%, 52% and 62% with HQ,

and 42%, 63% and 79% with SC, for sample sizes of 100, 200 and 400, respectively. Note that when

we compare the marginal frequencies of (p, r), HQ is the most successful for choosing both p and r, a

14



conclusion that is consistent with results in Vahid and Issler (2002).

The main reason for not being able to determine the triplet (p, r, q) correctly is the failure of these

criteria to choose the correct q. Ploberger and Phillips (2003) show that the correct penalty for free

parameters in the long-run parameter matrix is larger than the penalty considered by traditional model

selection criteria. According to this theory, all three criteria are expected to over-estimate q, and of

them SC is likely to appear relatively most successful because it assigns a larger penalty to all free

parameters, even though the penalty is still less than it should be for this design. This is exactly what

the simulations reveal.

The fourth panel of Table 1 includes results for the PIC. The percentages of times the correct model

is chosen increase to 52%, 77% and 92% for sample sizes of 100, 200 and 400, respectively. Comparing

the margins, it becomes clear that this increased success relative to HQ and SC is almost entirely due

to improved precision in the selection of q. The PIC chooses q correctly 76%, 91% and 97% of the

time for sample sizes 100, 200 and 400, respectively. Furthermore, for the selection of p and r only,

PIC does not improve upon HQ, a fact that we will exploit to propose a two-step procedure for model

selection with partially non-stationary time series.

Similar conclusions can be reached from the results for the (2, 1, 1) DGPs presented in Table 2.

We note that in this case, even though the PIC improves on HQ and SC in choosing the number of

cointegrating vectors, it does not improve on HQ or SC in choosing the exact model, because it severely

underestimates p. This echoes the findings of Vahid and Issler (2002) in the stationary case that the

Schwarz criterion (recall that the PIC penalty is of the same order as the Schwarz penalty in the

stationary case) severely underestimates the lag length in small samples in reduced rank VARs. They

re-visit some of the early studies that documented evidence in favour of the SC and conclude that the

results of those studies are artifacts of a very short lag length and a strong propagation mechanism in

the true DGP. The results of our (2, 1, 1) design and our other experiments with DGPs with longer lags

(not reported here) confirm that the only advantage of PIC is in the determination of the cointegrating

rank.

6.1.1 A two-step procedure for model selection

Our Monte-Carlo results show that the advantage of PIC over HQ and SC is in the determination of

the cointegrating rank. Indeed, HQ seems to have an advantage over PIC in selecting the correct p

and r in small samples. In addition, the calculation of PIC for the set of all reduced rank VECMs up

to a predetermined maximum lag length requires the coding and calculation of many high dimensional

matrices. Even after normalising the elements of the FIM, it is possible, as happened in our simula-

tions, that this matrix is so ill-conditioned that the calculation of the determinant becomes completely
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unreliable. These facts motivated us to consider a two-step alternative to improve the model selection

task.

In the first step, the linear influence of yt−1 is removed from ∆yt and (∆yt−1, ...,∆yt−p), then

HQ(p, r), as defined in (7), is used to determine p and r. Then PIC is calculated for the chosen values

of p and r, for all q from 0 to K. This reduces the task to K + 1 determinant calculations only.

The final panels in Tables 1 and 2 summarise the performance of this two-step procedure for the

two sets of DGPs we consider. In both tables we can see that the hybrid HQ-PIC procedure improves

on all other criteria in selecting the exact model. The improvement is a consequence of the advantage

of HQ in selecting p and r better, and PIC in selecting q better.

Table 3 provides this information for the hybrid HQ-PIC and SC-PIC for a (1, 1, 2) design and a

“weak” (as defined in Section 5) (1, 1, 2) design. The results highlight the advantage of HQ over SC in

the proposed two-stage model selection procedure, as the SC tends to under-parameterise the model.

Note that when the propagation mechanism is weak, the advantage of HQ-PIC over SC-PIC is further

accentuated. We found similar results for the (2, 1, 1) DGPs. Vahid and Issler (2002) show that this

tendency of the SC results in very poor forecasting performance in “weak” designs. In this setting we

also find that the advantage of the HQ-PIC over the SC-PIC in model selection translates to better

forecasting. We do not present these results here; however, they are available upon request.

Finally, the hybrid procedure results in over-parameterised models more often than PIC (see Tables

1 and 2). We examined whether this trade-off has any significant consequences for forecasting and found

that it does not. In all simulation settings, models selected by the hybrid procedure with HQ-PIC as

the model selection criteria forecast better than models selected by PIC. Again, we do not present

these results here, but they are also available upon request.

6.2 Forecasts

Recall that the forecasting results are expressed as the percentage improvement in forecast accuracy

measures of possibly rank reduced models over the unrestricted VAR model in levels selected by SC.

Also, note that the object of interest in this forecasting exercise is assumed to be the first difference of

variables.

We label the models chosen by the hybrid procedure proposed in the previous section and estimated

by the iterative process of Section 3 as VECM(HQ-PIC). We label the models estimated by the usual

Johansen method with AIC as the model section criterion for the lag order as VECM(AIC+J).

Table 4 presents the forecast accuracy improvements in a (1, 1, 2) setting. In terms of the trace

and determinant of the MSFE matrix, there is some improvement in forecasts over unrestricted VAR

models at all horizons, although these improvements are not substantial for horizons other than 1.
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With only 100 observations, GFESM worsens for horizons 8 and longer. This means that if the object

of interest was some combination of differences across different horizons (for example, the levels of all

variables or the levels of some variables and first differences of others), there may not have been any

improvement in the MSFE matrix. With 200 or more observations, all forecast accuracy measures show

some improvement, with the more substantial improvements being for the one-step-ahead forecasts.

Also note that the forecasts of the models selected by the hybrid procedure are almost always better

than those produced by the model chosen by the AIC plus Johansen method, which only pays attention

to lag-order and long-run restrictions.

Table 5 presents the forecast accuracy improvements in a (2, 1, 1) setting. This set of DGPs have

more severe rank reductions than the (1, 1, 2) DGPs, and, as a result, the models selected by the

hybrid procedure show more substantial improvements in forecasting accuracy over the VAR in levels,

in particular for smaller sample sizes. Forecasts produced by the hybrid procedure are also substantially

better than forecasts produced by the AIC+Johansen method, which does not incorporate short-run

rank restrictions. Note that although the AIC+Johansen forecasts are not as good as the HQ-PIC

forecasts, they are substantially better than the forecasts from unrestricted VARs at short horizons.

This is interesting in itself, and deserves further investigation because it is somewhat different from the

results of Engle and Yoo (1987), who report no gains for one-step-ahead forecasts. This difference may

be due to differences in the Monte Carlo design. Engle and Yoo’s results are based on a two variable

DGP with one cointegrating vector (only one restriction in the long-run parameter matrix) and no lag

differences, and the true lag length and the fact that there is no intercept in the DGP are assumed

known. We are currently investigating this.

7 Empirical example

The techniques discussed in this paper are applied to forecast Brazilian inflation, as measured by three

different types of consumer-price indices. The first is the consumer price index of the Brazilian Inflation-

Targeting Program. It is computed by IBGE, the official statistics bureau of the Brazilian government.

We label this index CPI-IBGE. The second is the consumer price index computed by Getulio Vargas

Foundation, a traditional private institution which has been computing several Brazilian price indices

since 1947. We label this index CPI-FGV. The third is the consumer price index computed by FIPE,

an institute of the Department of Economics of the University of São Paulo, labelled here as CPI-FIPE.

These three indices capture different aspects of Brazilian consumer-price inflation. First, they differ

in terms of geographical coverage. CPI-FGV collects prices in 12 different metropolitan areas in Brazil,

11 of which are also covered by CPI-IBGE (there are no metropolitan areas covered by CPI-IBGE that
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are not covered by CPI-FGV). Therefore, CPI-FGV and CPI-IBGE have a very similar coverage. On

the other hand, CPI-FIPE only collects prices in São Paulo – the largest city in Brazil – also covered

by the other two indices. Tracked consumption bundles are also different across indices. CPI-FGV

focuses on bundles of the representative consumer with income between 1 and 33 times minimum

wages. CPI-IBGE focuses on bundles of consumers with income between 1 and 40 times minimum

wages, while CPI-FIPE focuses on consumers with income between 1 and 20 times minimum wages.

Although all three indices measure consumer-price inflation in Brazil, Granger Causality tests

confirm the usefulness of conditioning on alternative indices to forecast any given index in the models

estimated here. We present this evidence below. Despite the existence of these forecasting gains,

one should expect a similar pattern for impulse-response functions across models, reflecting a similar

response of different price indices to shocks to the dynamic system. This last feature is simply a

reflection of the reduced-rank nature of the stationary models entertained here.

Data on CPI-FGV, CPI-IBGE, and CPI-FIPE are available on a monthly basis from 1994:9 to

2008:11, with a span of more than 14 years (171 observations). It was extracted from IPEADATA

– a public database with downloadable Brazilian data (http://www.ipeadata.gov.br/). We start our

analysis in 1994:9 because inflation levels prior to 1994:6 reached hyper-inflation proportions, something

that changed completely after a successful stabilization plan implemented in 1994:65.

In what follows we compare the forecasting performance of (i) the VAR in (log) levels, with

lag length chosen by the standard Schwarz criterion; (ii) the reduced rank model using standard

AIC for choosing the lag length and Johansen’s test for choosing the cointegrating rank, labelled

VECM(AIC+J); and (iii) the reduced rank model with rank and lag length chosen simultaneously

using the Hannan-Quinn criterion and cointegrating rank chosen using PIC, estimated by the iterative

process of Section 3, labelled VECM(HQ-PIC).

For all three models, the applicable choices of p, r, and q use data from 1994:9 through 2004:12.

These choices are kept fixed for the forecasting exercise. For all three models, we compute their

h = 1, . . . , 16−step ahead forecasts, comprising a total of 32 balanced forecasts, which are then con-

fronted with their respective realizations. This is performed from 2005:1 through 2008:11 – the forecast-

ing period, with 47 observations. All models are recursively re-estimated in the forecasting period. All

forecasts comparisons are made in first differences of the logs of CPI-FGV, CPI-IBGE, and CPI-FIPE.

The choice of the lag length of the VAR in (log) levels for CPI-FGV, CPI-IBGE, and CPI-FIPE,

using the Schwarz criterion, was 2 lags, i.e., p = 1. All other standard criteria chose the same lag

length in this case. For the VECM(AIC+J), AIC chose p = 1, while Johansen’s test chose q = 1 at 5%
5Prior to 1994:6, monthly inflation was higher than 80% in some months and higher than 10% for the vast majority

of months.
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significance, regardless of whether one uses the trace or the λmax statistic. For the estimation sample

period from 1995:1 through 2004:12, the cointegrating vector found was:

log(CPI-FGVt) + 0.83× log(CPI-FIPEt)− 1.70× log(CPI-IBGEt).

For the VECM(HQ-PIC), the iterative procedure described in Section 3 chose a reduced rank model

with p = 1, r = 2, and q = 0. This choice is consistent with direct testing for reduced-rank restrictions.

For example, taking the estimation sample period from 1995:1 through 2004:12, the common-cycle test

yields a smallest squared canonical correlation of 0.01, which is not significantly different from zero –

a p-value of 0.19191. This shows the existence of one co-feature vector (r = 2):

∆ log(CPI-FIPEt)− 1.64×∆ log(CPI-IBGEt) + 0.50×∆ log(CPI-FGVt). (12)

The correlogram of this combination resembles that of a white-noise process.

In all stationary models considered here, it is clear that conditioning on information from other price

indices helps predict any given index. For example, all three cointegrating vectors are significant at the

1% level in all three VECM equations. For the reduced-rank model, ∆ log(CPI-IBGEt−1) is significant

in ∆ log(CPI-FGVt)’s equation, which helps predicting all the variables in the system through the

pseudo-structural relationship in (12).

Table 6 presents the percentage improvement in forecast accuracy measures for the reduced rank

models over the unrestricted VAR model in (log) levels. We focus on the TMSFE and |MSFE|.6 When

we consider the one-step ahead forecasts of the VECM(HQ-PIC) model, there is a percentage gain of

15.4% and 34.8% in the TMSFE and |MSFE| respectively over the VAR, whereas the performance of

the VECM(AIC+J) is worse than VAR by 0.6% and 0.7% respectively. This makes the VECM(HQ-

PIC) model better than the VECM(AIC+J) forecasting one-step ahead by 16% and 35.5% respectively.

Results for 4-steps ahead are similar, although gains are not as much.

For horizons higher or equal to 8-steps ahead, VECM(HQ-PIC) and VECM(AIC+J) models both

forecast better than the unrestricted VAR, but VECM(AIC+J) produces substantially better forecasts

than the VECM(HQ-PIC). Given that p = 1 in both models, this has to be the consequence of AIC+J

choosing q = 1 and HQ-PIC choosing q = 0 in this example. With q = 1, long horizon forecasts of the

log-levels will be close to collinear, something the VECM(AIC+J) imposes but the VECM(HQ-PIC)

model does not. Collinearity of long-run forecasts of log-levels in this example is appealing because

these variables are consumer price indices with a large overlap in their construction. However, imposing

q = 1 has detrimental consequences for one month ahead and one quarter ahead forecasts of inflation,
6The GFESM for a 3 variable system and horizon h is a 3h× 3h matrix. To get a non-singular estimate of GFESM,

one needs 3h observations at least, and one needs many more observations to get a reliable estimate. We only have 32
out of sample forecasts here.

19



which are objects of considerable importance. This trade-off between short and long run forecasts

motivates the possibility of using different models to forecast Brazilian inflation at different horizons,

which is an old but important topic in the forecasting literature but is beyond the scope of the present

paper.

8 Conclusion

Motivated by the results of Vahid and Issler (2002) on the success of the Hannan-Quinn criterion in

selecting the lag length and rank in stationary VARs, and the results of Ploberger and Phillips (2003)

and Chao and Phillips (1999) on the generalisation of Rissanen’s theorem to trending time series

and the success of PIC in selecting the cointegrating rank in VARs, we propose a combined HQ-PIC

procedure for the simultaneous choice of the lag-length and the ranks of the short-run and long-run

parameter matrices in a VECM. Our simulations show that this procedure is capable of selecting the

correct model more often than other alternatives such as pure PIC or SC.

In this paper we also present forecasting results that show that models selected using this hybrid

procedure produce better forecasts than unrestricted VARs selected by the Schwarz criterion and

cointegrated VAR models whose lag length is chosen by the AIC and whose cointegrating rank is

determined by the Johansen procedure. We have chosen these two alternatives for forecast comparisons

because we believe that these are the model selection strategies that are most often used in the empirical

literature. However, we have considered several other alternative model selection strategies and the

results are qualitatively the same: the hybrid HQ-PIC procedure leads to models that generally forecast

better than models selected using other procedures.

A conclusion we would like to highlight is the importance of short-run restrictions for forecasting.

We believe that there has been much emphasis in the literature on the effect of long-run cointegrating

restrictions on forecasting. Given that long-run restrictions involve the rank of only one of the param-

eter matrices of a VECM, and that inference on this matrix is difficult because it involves inference

about stochastic trends in variables, it is puzzling that the forecasting literature has paid so much

attention to cointegrating restrictions and relatively little attention to lag-order and short-run restric-

tions in a VECM. The present paper fills this gap and highlights the fact that the lag-order and the

rank of short-run parameter matrices are as important for forecasting as cointegrating restrictions. Our

hybrid model selection procedure and the accompanying simple iterative procedure for the estimation

of a VECM with long-run and short-run restrictions provide a reliable methodology for developing

multivariate autoregressive models that are useful for forecasting.

How often restrictions of the type considered in this paper are present in VAR approximations to
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real life data generating processes is an empirical question. Macroeconomic models in which trends

and cycles in all variables are generated by a small number of dynamic factors fit in this category. Also,

empirical papers that study either regions of the same country or similar countries in the same region

often find these kinds of long-run and short-run restrictions. In the empirical example in this paper,

we look at jointly forecasting three different measures of consumer price inflation in Brazil, and we

find that reduced rank models chosen by the methods considered in this paper produce better forecasts

than unrestricted VARs. We also observe that there is some scope for using different reduced rank

models for forecasting Brazilian inflation at different horizons, a possibility that is not directly related

to the scope of the current paper but can be quite important for users of these forecasts and deserves

further research.
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A Proof of Lemma 1

Subtracting yt−1 from both sides of the first equation in (1) and adding an subtracting βy2t−1 from

the right side of the same equation leads to

∆y1t = − (y1t−1 − βy2t−1) + β∆y2t + u1t

∆y2t = u2t,

23



which, after substituting u2t for ∆y2t on the first line, can be written as

∆ yt = −
(
Iq −β
0 0

)
yt−1 + vt (13)

where

vt =
(
Iq β
0 IK−q

)
ut.

Since vt is a full rank linear transformation of vector ut, it will also be a VAR of order p and rank less

than or equal to r, i.e.,

vt = F1vt−1 + F2vt−2 + · · ·+ Fpvt−p + ηt,

where Fi =
(
Iq β
0 IK−q

)
Bi

(
Iq β
0 IK−q

)−1

for i = 1, ..., p, and ηt =
(
Iq β
0 IK−q

)
εt. The matrix[

F1 F2 ... Fp
]

has rank less than or equal to r because it is the product of
[
B1 B2 ... Bp

]
and full rank matrices. Consider the characteristic polynomial of the vector autoregression that char-

acterises the dynamics of vt :

G (L) = IK − F1L− F2L
2 − · · · − FpLp.

Using the identity G (L) = G (1) +G∗ (L) (IK − L) , we can write this polynomial as:

G (L) = IK − F1 − F2 − · · · − Fp + p∑
i=1

Fi +
p∑
i=2

FiL+ · · ·+
p∑

i=p−1

FiL
p−2 + FpL

p−1

 (IK − L) .

Pre-multiplying both sides of (13) by G (L), using the G (1) + G∗ (L) (IK − L) formulation of G (L)

only when we apply it to the yt−1 term, and noting that G (L) vt = ηt, we obtain

G (L) ∆ yt = − (IK − F1 − F2 − · · · − Fp)
(
Iq −β
0 0

)
yt−1

−

 p∑
i=1

Fi +
p∑
i=2

FiL+ · · ·+
p∑

i=p−1

FiL
p−2 + FpL

p−1

( Iq −β
0 0

)
∆yt−1 + ηt.

Expanding the left side of the equation, taking all lagged terms to the right, and denoting the first q

columns of − (IK − F1 − F2 − · · · − Fp) by γ, we obtain

∆ yt = γ
(
Iq −β

)
yt−1 +

p∑
j=1

Fj − p∑
i=j

Fi

(
Iq −β
0 0

)∆yt−j + ηt.

Defining

Γj = Fj −
p∑
i=j

Fi

(
Iq −β
0 0

)
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for j = 1, ..., p, we note that each Γj is the result of elementary column operations

on the matrix F =
[
F1 F2 ... Fp

]
, and therefore they cannot have rank larger than the rank of

F. Moreover, all vectors in the null-space of F would also lie in the null-space of
[

Γ1 Γ2 ... Γp
]
.

Therefore, rank
[

Γ1 Γ2 ... Γp
]
≤ rank (F) ≤ r.

B The Fisher information matrix of the reduced rank VECM

Assuming that the first observation in the sample is labelled observation −p+ 1 and that the sample

contains T + p observations, we write the K-variable reduced rank VECM

∆yt = γ′
(
Iq β′

)
yt−1 +

(
Ir
C ′

)
[D1∆yt−1 +D2∆yt−2 + · · ·+Dp∆yt−p] + µ+ et,

or in stacked form

∆Y = Y−1

(
Iq
β

)
γ +WD

(
Ir C

)
+ ιTµ

′ + E,

where

∆Y
T×K

=

 ∆y′1
...

∆y′T

 , Y−1
T×K

=

 y′0
...

y′T−1

 , E
T×K

=

 e′1
...
e′T


W

T×Kp
=

(
∆Y−1 · · · ∆Y−p

)
=

 ∆y′0 · · · ∆y′−p+1
...

...
...

∆y′T−1 · · · ∆y′T−p


D

Kp×r
=

 D′1
...
D′p

 ,

and ιT is a T × 1 vector of ones. When et are N (0,Ω) and serially uncorrelated, the log-likelihood

function, conditional on the first p observations being known, is:

ln l (θ, ω) = −KT
2

ln (2π)− T

2
ln |Ω| − 1

2

T∑
t=1

e′tΩ
−1et

= −KT
2

ln (2π)− T

2
ln |Ω| − 1

2
tr
(
EΩ−1E′

)
,

where

θ =


vec (β)
vec (γ)
vec (D)
vec (C)
µ
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is a (K − q) q+Kq+Kpr+r (K − r)+K matrix of mean parameters, and ω = vech (Ω) is aK (K + 1) /2

vector of unique elements of the variance matrix. The differential of the log-likelihood is (see Magnus

and Neudecker, 1988)

d ln l (θ, ω) = −T
2
trΩ−1dΩ +

1
2
tr
(
Ω−1dΩΩ−1E′E

)
− 1

2
tr
(
Ω−1E′dE

)
− 1

2
tr
(
Ω−1dE′E

)
=

1
2
tr
(
Ω−1

(
E′E − TΩ

)
Ω−1dΩ

)
− tr

(
Ω−1E′dE

)
,

and the second differential is:

d2 ln l (θ, ω) = tr
(
dΩ−1

(
E′E − TΩ

)
Ω−1dΩ

)
+

1
2
tr
(
Ω−1

(
2E′dE − TdΩ

)
Ω−1dΩ

)
−tr

(
dΩ−1E′dE

)
− tr

(
Ω−1dE′dE

)
.

Since we eventually want to evaluate the Fisher information matrix at the maximum likelihood esti-

mator, and at the maximum likelihood estimator Ê′Ê − T Ω̂ = 0, and also Ω̂−1Ê′dE/dθ = 0 (these are

apparent from the first differentials), we can delete these terms from the second differential, and use

tr (AB) = vec (A′)′ vec (B) to obtain

d2 ln l (θ, ω) = −T
2
tr
(
Ω−1dΩΩ−1dΩ

)
− tr

(
Ω−1dE′dE

)
= −T

2
(dω)′D′K

(
Ω−1 ⊗ Ω−1

)
DKdω − (vec (dE))′

(
Ω−1 ⊗ IT

)
vec (dE) ,

where DK is the “duplication matrix”. From the model, we can see that

dE = −Y−1

(
0
dβ

)
γ − Y−1

(
Iq
β

)
dγ −WdD

(
Ir C

)
−WD

(
0 dC

)
− ιTdµ′,

and therefore

vec (dE) = −
[
γ′ ⊗ Y (2)

−1 IK ⊗ Y−1

(
Iq
β

) (
Ir
C ′

)
⊗W

(
0

IK−r

)
⊗WD IK ⊗ ιT

]
dθ.
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Hence, the elements of the Fisher information matrix are:

FIM11 = γΩ−1γ′ ⊗ Y (2)′
−1 Y

(2)
−1 , F IM12 = γΩ−1 ⊗ Y (2)′

−1 Y−1

(
Iq
β

)
,

F IM13 = γΩ−1

(
Ir
C ′

)
⊗ Y (2)′

−1 W, FIM14 = γΩ−1

(
0

IK−r

)
⊗ Y (2)′

−1 WD

FIM15 = γΩ−1 ⊗ Y (2)′
−1 ιT

FIM22 = Ω−1 ⊗
(
Iq β′

)
Y ′−1Y−1

(
Iq
β

)
, F IM23 = Ω−1

(
Ir
C ′

)
⊗
(
Iq β′

)
Y ′−1W

FIM24 = Ω−1

(
0

IK−r

)
⊗
(
Iq β′

)
Y ′−1WD, FIM25 = Ω−1 ⊗

(
Iq β′

)
Y ′−1ιT

FIM33 =
(
Ir C

)
Ω−1

(
Ir
C ′

)
⊗W ′W, FIM34 =

(
Ir C

)
Ω−1

(
0

IK−r

)
⊗W ′WD

FIM35 =
(
Ir C

)
Ω−1 ⊗W ′ιT

FIM44 =
(

0 IK−r
)

Ω−1

(
0

IK−r

)
⊗D′W ′WD, FIM45 =

(
0 IK−r

)
Ω−1 ⊗D′W ′ιT

FIM55 = Ω−1 ⊗ ι′T ιT = Ω−1 × T

C Tables
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Table 4: Percentage improvement in forecast accuracy measures for possibly reduced rank models over
unrestricted VARs in a (1,1,2) setting.

Horizon T=100 T=200 T=400
(h) TMSFE |MSFE| GFESM TMSFE |MSFE| GFESM TMSFE |MSFE| GFESM

VECM(HQ-PIC) for all DGPs

1 1.4 3.8 3.8 1.4 4.0 4.0 0.9 2.7 2.7
4 0.7 1.6 3.7 0.7 2.4 10.2 0.3 1.1 6.3
8 0.7 1.8 -7.2 0.1 0.1 8.0 0.1 0.5 6.8
12 0.2 0.5 -19.4 0.4 0.9 7.8 0.1 0.2 6.6
16 0.2 0.6 -31.3 0.4 1.0 3.7 0.1 0.2 7.2

VECM(AIC+J) for all DGPs

1 0.9 2.3 2.3 0.8 2.3 2.3 0.4 1.0 1.0
4 0.4 0.6 2.0 0.2 0.8 5.5 0.1 0.4 2.2
8 0.5 1.4 -5.5 0.0 -0.2 4.2 0.1 0.2 1.9
12 0.1 0.4 -12.5 0.2 0.5 4.1 0.0 -0.1 1.4
16 0.1 0.4 -20.4 0.3 0.7 1.5 0.0 0.0 1.8

VECM(HQ-PIC) are models selected by the model selection process proposed in Section 6.1.1 and estimated by
the algorithm proposed in Section 3. VECM(AIC+J) are estimated by the usual Johansen procedure with AIC
as the model selection criterion for the lag length.

Table 5: Percentage improvement in forecast accuracy measures for possibly reduced rank models over
unrestricted VARs in a (2,1,1) setting.

Horizon T=100 T=200 T=400
(h) TMSFE |MSFE| GFESM TMSFE |MSFE| GFESM TMSFE |MSFE| GFESM

VECM(HQ-PIC) for all DGPs

1 7.8 21.8 21.8 4.5 12.9 12.9 2.5 7.5 7.5
4 2.2 8.1 37.8 2.0 5.2 30.6 0.9 2.3 17.5
8 1.0 2.7 38.5 0.6 2.3 34.1 0.6 2.2 25.7
12 0.4 0.8 29.8 0.8 2.4 36.8 0.9 2.9 29.5
16 0.8 1.8 25.5 0.3 0.3 32.8 0.7 2.4 32.7

VECM(AIC+J) for all DGPs

1 5.4 14.1 14.1 3.2 8.7 8.7 1.4 4.1 4.1
4 1.3 4.8 21.6 1.2 3.0 21.3 0.6 1.8 10.7
8 0.7 1.9 21.5 0.6 2.3 26.1 0.4 1.7 16.8
12 0.5 0.9 14.5 0.6 1.9 29.6 0.7 2.4 19.2
16 0.6 1.4 11.0 0.2 0.3 27.4 0.6 2.2 22.0

VECM(HQ-PIC) are models selected by the model selection process proposed in Section 6.1.1 and
estimated by the algorithm proposed in Section 3. VECM(AIC+J) are estimated by the usual
Johansen procedure with AIC as the model selection criterion for the lag length.
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Table 6: Percentage improvement in forecast accuracy measures for reduced ranked models over unre-
stricted VARs for Brazilian inflation.

Horizon VECM(HQ-PIC) VECM(AIC+J)
(h) TMSFE |MSFE| TMSFE |MSFE|
1 15.4 34.8 -0.7 -0.6
4 11.7 13.9 6.2 4.0
8 2.0 12.2 20.2 9.3
12 11.7 19.5 28.3 20.6
16 2.4 9.8 28.9 23.9

VECM(HQ-PIC) is the model selected by the model selection process proposed in Section 6.1.1 and
estimated by the algorithm proposed in Section 3. VECM(AIC+J) is the model estimated by the usual
Johansen procedure with AIC as the model selection criterion for the lag length. See Section 7 for
further details.
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