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Local linear multivariate regression

with variable bandwidth in the

presence of heteroscedasticity

Abstract: We present a local linear estimator with variable bandwidth for multivariate non-

parametric regression. We prove its consistency and asymptotic normality in the interior of the

observed data and obtain its rates of convergence. This result is used to obtain practical direct

plug-in bandwidth selectors for heteroscedastic regression in one and two dimensions. We show

that the local linear estimator with variable bandwidth has better goodness-of-fit properties than

the local linear estimator with constant bandwidth, in the presence of heteroscedasticity.

Keywords: heteroscedasticity; kernel smoothing; local linear regression; plug-in bandwidth,

variable bandwidth.
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1 Introduction

We are interested in the problem of heteroscedasticity in nonparametric regression, especially

when applied to economic data. Heteroscedasticity is very common in economics, and het-

eroscedasticity in linear regression is covered in almost every econometrics textbook. Applica-

tions of nonparametric regression in economics are growing, and Yatchew (1998) argued that it

will become an indispensable tool for every economist because it typically assumes little about

the shape of the regression function. Consequently, we believe that heteroscedasticity in non-

parametric regression is an important problem that has received limited attention to date. We

seek to develop new estimators that have better goodness of fit than the common estimators in

nonparametric econometric models. In particular, we are interested in using heteroscedasticity

to improve nonparametric regression estimation.

There have been a few papers on related topics. Testing for heteroscedasticity in nonparamet-

ric regression has been discussed by Eubank and Thomas (1993) and Dette and Munk (1998).

Ruppert and Wand (1994) discussed multivariate locally weighted least squares regression

when the variances of the disturbances are not constant. Ruppert et al. (1997) presented the

local polynomial estimator of the conditional variance function in a heteroscedastic, nonpara-

metric regression model using linear smoothing of squared residuals. Sharp-optimal and adap-

tive estimators for heteroscedastic nonparametric regression using the classical trigonometric

Fourier basis are given by Efromovich and Pinsker (1996).

Our approach is to exploit the heteroscedasticity by using variable bandwidths in local linear

regression. Müller and Stadtmüller (1987) discussed variable bandwidth kernel estimators of

regression curves. Fan and Gijbels (1992, 1995, 1996) discussed the local linear estimator with

variable bandwidth for nonparametric regression models with a single covariate. In this paper,

we extend these papers by presenting a local linear estimator with variable bandwidth for

nonparametric multiple regression models.

We demonstrate that the local linear estimator has optimal conditional mean squared error

when its variable bandwidth is a function of the density of the explanatory variables and condi-

tional variances. Numerical simulation shows that the local linear estimator with this variable
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bandwidth has better goodness of fit than the local linear estimator with constant bandwidth

for the heteroscedastic models.

2 Local linear regression with a variable bandwidth

Suppose we have a univariate response variable Y and a d-dimensional set of covariates X,

and we observe the random vectors (X1, Y1), . . . , (Xn, Yn) which are independent and identically

distributed. It is assumed that each variable inX has been scaled so they have similar measures

of spread.

Our aim is to estimate the regression function m(x) = E(Y |X = x). We can regard the data as

being generated from the model

Y = m(X) + u,

where E(u |X) = 0, Var(u |X = x) = σ2(x) and the marginal density of X is denoted by f (x).

We assume the second-order derivatives of m(x) are continuous, f (x) is bounded above 0 and

σ2(x) is continuous and bounded.

Let K be a d-variate kernel which is symmetric, nonnegative, compactly supported,
∫

K(u) du=

1 and
∫

uuT K(u) du= µ2(K)I where µ2(K) 6= 0 and I is the d × d identity matrix. In addition,

all odd-order moments of K vanish, that is,
∫

u
l1
1

. . . u
ld
d

K(u) du = 0 for all nonnegative integers

l1, . . . , ld such that their sum is odd. Let Kh(u) = K(u/h).

Then the local linear estimator of m(x) with variable bandwidth is

m̂n(x,hn,α) = eT
1 (X

T
xWx,αXx)

−1XT
xWx,αY , (1)

where hn = cn−1/(d+4), c is a constant that depends only on K , α(x) is the variable band-

width function, eT
1 = (1,0, . . . , 0), Xx = (Xx,1, . . . ,Xx,n)

T , Xx,i = (1, (Xi − x))T and Wx,α =

diag
�

Khnα(X1)
(X1−x), . . . , Khnα(Xn)

(Xn−x)
�

. We assume α(x) is continuously differentiable.

We now state our main result. A proof is given in the Appendix.
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Theorem 1 Let x be a fixed point in the interior of {x | f (x)> 0}, Hm(x) =

�

∂ 2m(x)

∂ xi∂ x j

�

d×d
and

let s(Hm(x)) be the sum of the elements of Hm(x). Then

1 E [m̂n(x,hn,α) |X1, . . . ,Xn]−m(x) = 0.5h2
nµ2(K)α

2(x)s(Hm(x)) + op(h
2
n);

2 Var [m̂n(x,hn,α) |X1, . . . ,Xn] = n−1h−d
n R(K)α−d(x)σ2(x) f −1(x)+ op(n

−1h−d
n ),

where R(K) =
∫

K2(u)du; and

3 n2/(d+4) [m̂n(x,hn,α)−m(x)]
d−→

N
�

0.5c2µ2(K)α
2(x)s(Hm(x)) , c−dR(K)α−d(x)σ2(x) f −1(x)

�

.

When α(x) = 1, results 1 and 2 coincide with Theorem 2.1 of Ruppert and Wand (1994). By

result 2 and the law of large numbers, we find that m̂n(x,hn,α) is consistent. From result 3 we

know that the rate of convergence of m̂n(x,hn,α) in interior points is O(n−2/(d+4)) which, ac-

cording to Stone (1980, 1982), is the optimal rate of convergence for nonparametric estimation

of a smooth function m(x).

3 Using heteroscedasticity to improve local linear regression

Although Fan and Gijbels (1992) and Ruppert and Wand (1994) discuss the local linear estima-

tor of m(x), nobody has previously developed an improved estimator using the information of

heteroscedasticity. We now show how this can be achieved.

Using Theorem 1, we can give an expression for the conditional mean squared error of the local

linear estimator with variable bandwidth.

MSE= E
¦

[m̂n(x,hn,α)−m(x)]2 |X1, . . . ,Xn

©

= 1

4
[hnα(x)]

4µ2
2(K)s

2(Hm(x))+
R(K)σ2(x)

n[hnα(x)]
d f (x)

+ op(h
2
n) + op(n

−1h−d
n ) .

Minimizing MSE, ignoring the higher order terms, we obtain the optimal variable bandwidth

αopt(x) = c−1

�

dR(K)σ2(x)

µ2
2
(K) f (x)s2(Hm(x))

�1/(d+4)

.
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Note that the constant c will cancel out in the bandwidth expression hnαopt(x). Therefore,

without loss of generality, we can set c =
�

dR(K)µ−2
2
(K)
	1/(d+4)

which simplifies the above

expression to

αopt(x) =

�

σ2(x)

f (x)s2(Hm(x))

�1/(d+4)

.

To apply this new estimator, we need to replace f (x), Hm(x) and σ
2(x) with estimators. There

are several potential ways to do this, depending on the dimension d . Some proposals for d = 1

and d = 2, are outlined below.

3.1 Univariate regression

When d = 1, we first use the direct plug-in methodology of Sheather and Jones (1991) to select

the bandwidth of a kernel density estimate for f (x). Second, we estimate σ2(x) = E(u2 |X =

x) using local linear regression with the model û2
i = σ

2(Xi) + vi where ûi = Yi − m̂n(Xi, ĥn, 1),

vi are iid with zero mean and ĥn is chosen by the direct plug-in methodology of Ruppert et al.

(1995). Third, we estimate m̈(x) by fitting the quartic m(x) = α1 + α2 x + α3 x2+ α4 x3 +α5 x4,

using ordinary least squares regression and so obtain the estimate ˆ̈m(x) = 2α̂3+6α̂4 x+12α̂5 x2.

Then, our direct plug-in bandwidth for univariate regression (d = 1) is

ĥ(x) =

�

σ̂2(x)

2n
p
π f̂ (x) ˆ̈m2(x)

�1/5

.

3.2 Bivariate regression

When d = 2, we use a bivariate kernel density estimator (Scott, 1992) of f (x), with the di-

rect plug-in methodology of Wand and Jones (1995) for the bandwidth. To estimate σ2(x), we

first calculate ûi = Yi − Ŷi, where Ŷi = m̂n(Xi, ĥn, 1), ĥn = min(ĥ1, ĥ2), and ĥ1 and ĥ2 are

chosen by the direct plug-in methodology of Ruppert et al. (1995) for Y = m1(X1) + u1 and

Y = m2(X2) + u2 respectively. Then we estimate σ2(x1) using local linear regression with the

model û2
i
= σ2(X1i)+vi, where vi are iid with zero mean. Again, the direct plug-in methodology

of Ruppert et al. (1995) is used for bandwidth selection.
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To estimate the second derivative of m(x1, x2), we fit the model

m(x1, x2) = α1 +α2 x1+α3 x2+α4 x2
1 +α5 x1 x2+α6 x2

2 +α7 x3
1 +α8 x2

1 x2 +α9 x1 x2
2

+α10 x3
2 +α11 x4

1 +α12 x3
1 x2 +α13 x2

1 x2
2 +α14 x1 x3

2 +α15 x4
2 ,

using ordinary least squares, and so obtain estimates of α. Hence, estimators for the second

derivatives of m(x1, x2) are obtained using

∂ 2m(x)

∂ x2
1

= 2α4+ 6α7 x1+ 2α8 x2 + 12α11 x2
1 + 6α12 x1 x2+ 2α13 x2

2,

∂ 2m(x)

∂ x1∂ x2

= α5 + 2α8 x1+ 2α9 x2+ 3α12 x2
1 + 4α13 x1 x2+ 3α14 x2

2

and
∂ 2m(x)

∂ x2
2

= 2α6+ 2α9 x1+ 6α10 x2+ 2α13 x2
1 + 6α14 x1 x2+ 12α15 x2

2 .

Then, our direct plug-in bandwidth for bivariate regression (d = 2) is

ĥ(x) =

�

σ̂2(x)

nπ f̂ (x)s2(Ĥm(x))

�1/6

.

4 Numerical studies with univariate regression

This section examines the performance of the proposed variable bandwidth selection method via

several data sets of univariate regression, generated from known functions. For comparison, we

also compare the performance of the constant bandwidth method, based on the direct plug-in

methodology described by Ruppert et al. (1995).

As the true regression function is known in each case, the performances of the bandwidth

methods are measured and compared using the root mean squared error,

RMSE=

 

n−1

n
∑

i=1

[m̂n(Xi,hn,α)−m(Xi)]
2

!1/2

.

We simulate data from the following five models, each with Y = m(X )+σ(X )u where u ∼ N(0,1)
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and the covariate X has a Uniform (−2,2) distribution.

Model A: mA(x) = x2+ x

σ2
A(x) = 32x2+ 0.04

Model B: mB(x) = (1+ x) sin(1.5x)

σ2
B(x) = 3.2x2+ 0.04

Model C: mC (x) = x + 2 exp(−2x2)

σ2
C (x) = 16(x2− 0.01)I(x2>0.01) + 0.04

Model D: mD(x) = sin(2x)+ 2 exp(−2x2)

σ2
D(x) = 16(x2− 0.01)I(x2>0.01) + 0.04

Model E: mE(x) = exp(−(x + 1)2) + 2 exp(−2x2)

σ2
E(x) = 32(x2− 0.01)I(x2>0.01) + 0.04

We draw 1000 random samples of size 200 from each model. Table 1 presents a summary of

the results and shows that the variable bandwidth method has smaller RMSE than the constant

bandwidth method in each case. For each model, the variable bandwidth method has smaller

RMSE than the constant bandwidth method, and is better for more than 50% of samples.

We plot the true regression functions (the solid line) and four typical estimated curves in Fig-

ure 1. These correspond to the 10th, 30th, 70th and 90th percentiles. For each percentile,

the variable bandwidth method (dotted line) is closer to the true regression function than the

constant bandwidth method (dashed line). Therefore, we conclude that for heteroscedastic

models, the local linear estimator with variable bandwidth has better goodness-of-fit than the

local linear estimator with constant bandwidth.
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5 Numerical studies with bivariate regression

We now examine the performance of the proposed variable bandwidth selection method via

several data sets of bivariate regression, generated from known functions. For comparison, we

also compare the performance of a constant bandwidth method given by

ĥ=

�

σ̂2

π
∑n

i=1 s2(Ĥm(Xi))

�1/6

where

σ̂2 = n−1

n
∑

i=1

û2
i ,

and ui and Ĥm are the same as for the variable bandwidth selector.

We simulate data from four models, each with Y = m(X1, X2) + σ(X1)u where u ∼ N(0,1) and

the covariates X1 and X2 are independent and have a Uniform (−2,2) distribution.

Model F: mA(x1, x2) = x1 x2

σ2
A(x1, x2) = (x

2
1 − 0.04)I(x2

1
>0.04) + 0.01

Model G: mB(x1, x2) = x1 exp(−2x2
2)

σ2
B(x1, x2) = 2.5(x2

1 − 0.04)I(x2
1
>0.04) + 0.025

Model H: mC(x1, x2) = x1+ 2 sin(1.5x2)

σ2
C(x1, x2) = (x

2
1 − 0.04)I(x2

1
>0.04) + 0.01

Model I: mD(x1, x2) = sin(x1 + x2) + 2 exp(−2x2
2)

σ2
D(x1, x2) = 3(x2

1 − 0.04)I(x2
1
>0.04) + 0.03

We draw 200 random samples of size 400 from each model.

Table 2 presents a summary of the results and shows that the variable bandwidth method has

smaller RMSE than the constant bandwidth method. For each model, the variable bandwidth

method has lower RMSE than the constant bandwidth method and is better for more than 50%

of samples.
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We plot the true regression functions with one fixed variable (solid line) and four typical esti-

mated curves in Figures 2–5. These correspond to the 10th, 30th, 70th and 90th percentiles.

For each percentile, the variable bandwidth method (dotted line) is closer to the true regression

function than the constant bandwidth method (dashed line). Therefore, we conclude that for

heteroscedastic models, the local linear estimator with variable bandwidth has better goodness-

of-fit than the local linear estimator with constant bandwidth.

6 Summary

We have presented a local linear nonparametric estimator with variable bandwidth for multi-

variate regression models. We have shown that the estimator is consistent and asymptotically

normal in the interior of the sample space. We have also shown that its convergence rate is

optimal for nonparametric regression (Stone, 1980, 1982).

By minimizing the conditional mean squared error of the estimator, we have derived the optimal

variable bandwidth as a function of the density of the explanatory variables and the conditional

variance. We have also provided a plug-in algorithm for computing the estimator when d = 1 or

d = 2. Numerical simulation shows that our local linear estimator with variable bandwidth has

better goodness-of-fit than the local linear estimator with constant bandwidth for heteroscedas-

tic models.
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Appendix: Proof of Theorem 1

Before we state a lemma that will be used in the proof, note that

n−1XT
xWx,αXx =

n−1







∑n
i=1 Khnα(Xi)

(Xi −x)
∑n

i=1 Khnα(Xi)
(Xi −x)(Xi −x)T

∑n
i=1 Khnα(Xi)

(Xi −x)(Xi −x)
∑n

i=1 Khnα(Xi)
(Xi −x)(Xi −x)(Xi −x)T







and eT
1 (X

T
xWx,αXx)

−1XT
xWx,αXx







m(x)

Dm(x)






= eT

1







m(x)

Dm(x)






= m(x),

where Dm(x) =
h

∂m(x)

∂ x1
, . . . ,

∂m(x)

∂ xd

iT

. Therefore,

m̂n(x,hn,α)−m(x) = eT
1 (X

T
xWx,αXx)

−1XT
xWx,α [0.5Qm(x)+U] ,

where Qm(x) =
�

Qm,1(x), . . . ,Qm,n(x)
�T

, Qm,i(x) = (Xi − x)THm(zi(x,Xi))(Xi − x),

Hm(x) =

�

∂ 2m(x)

∂ xi∂ x j

�

d×d
, ‖zi(x,Xi)−x‖ ≤ ‖Xi−x‖ and U = (u1, . . . ,un)

T . We can deduce that

{zi(x,Xi)}ni=1 are independent because {Xi}ni=1 are independent.

Now we state a lemma using the notation of (1) and Theorem 1.

Lemma 1 Let

G(α, f ,x) = f (x)

∫

supp(K)

uDT
α (x)uuTDK(u)du+µ2(K)

h

d f (x)Dα(x)+α
−1(x)D f (x)

i

,

B(x,α) = −µ2(K)
−1 f (x)−2α(x)G(α, f ,x)T

and 1 be a generic matrix having each entry equal to 1, the dimensions of which will be clear

from the context. Then

n−1

n
∑

i=1

Khnα(Xi)
(Xi −x) = f (x)+ op(1) (2)

n−1

n
∑

i=1

Khnα(Xi)
(Xi −x)(Xi −x) = h2

nα
3(x)G(α, f ,x) + op(h

2
n1) (3)
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n−1

n
∑

i=1

Khnα(Xi)
(Xi −x)(Xi −x)(Xi −x)T = µ2(K)h

2
nα

2(x) f (x)I + op(h
2
n1) (4)

(XT
xWx,αXx)

−1 =







f (x)−1 + op(1) B(x,α) + op(1)

BT (x,α) + op(1) µ2(K)
−1h−2

n α
−2(x) f (x)−1I + op(h

−2
n 1)






(5)

n−1XT
xWx,αQm(x) = h2

n







f (x)µ2(K)α
2(x)s(Hm(x))

0






+ op(h

2
n1) (6)

and (nhd
n)

1/2(n−1XT
xWx,αu)

d−→







N
�

0 , R(K)α−d(x)σ2(x) f (x)
�

0






(7)

We only prove results (3), (6) and (7) as the other results can be proved similarly.

Proof of (3)

It is easy to show that

n−1

n
∑

i=1

Khnα(Xi)
(Xi −x)(Xi −x) = E

�

Khnα(X1)
(X1 −x)(X1−x)

�

+Op(

p

n−1Ψ) , (8)

where Ψ =
�

Var(Khnα(X1)
(X1 −x)(X11− x1)), . . . ,Var(Khnα(X1)

(X1 −x)(Xd1− xd))
�T

.

Because x is a fixed point in the interior of supp( f ) = {x | f (x) 6= 0}, we have

supp(K)⊂ {z : (x+ hnα(x)z) ∈ supp( f )} ,

provided the bandwidth hn is small enough.

Due to the continuity of f , K and α, we have

E
�

Khnα(X1)
(X1 −x)(X1−x)

�

=

∫

supp( f )

h−d
n α
−d(x)K(h−1

n (α(X1))
−1(X1 −x))(X1 −x) f (X1)dX1
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=

∫

Ωn

(α(x+ hnQ))
−d K(Q(α(x+ hnQ))

−1) f (x+ hnQ)hnQdQ

= h2
nα(x)

3G(α, f ,x) + o(h2
n1), (9)

where Ωn = {Q : x+ hnQ ∈ supp( f )}.

It is easy to see

Var
�

Khnα(X1)
(X1 −x)(X1−x)

�

= E

n
�

Khnα(X1)
(X1−x)(X1 −x)

��

Khnα(X1)
(X1−x)(X1 −x)

�T
o

−
¦

E
�

Khnα(X1)
(X1 −x)(X1−x)

�©¦

E
�

Khnα(X1)
(X1 −x)(X1−x)

�©T
. (10)

Again by the continuity of f , K and α, we have

E

n
�

Khnα(X1)
(X1 −x)(X1−x)

��

Khnα(X1)
(X1 −x)(X1−x)

�T
o

= E
�

Khnα(X1)
(X1 −x)2(X1 −x)(X1−x)T

�

=

∫

supp( f )

�

h−d
n (α(x))

−dK(h−1
n (α(X1))

−1(X1 −x))
�2
(X1−x)(X1 −x)T f (X1)dX1

= h−d+2
n

∫

Ωn

(α(x+ hnQ))
−dK(Q(α(x+ hnQ))

−1)2 f (x+ hnQ)QQT dQ

= h−d+2
n

∫

Ωn

(α(x))−dK(Q(α(x))−1)2 f (x)QQT dQ+O(h−d+2
n 1) = O(h−d+2

n 1). (11)

Therefore we have

Op(

p

n−1Ψ) = op(h
2
n1). (12)

Then (3) follows from (8)–(12).

Proof of (6)

It is straightforward to show that

n−1XT
xWx,αQm(x)

14



Local linear multivariate regression with variable bandwidth in the presence of heteroscedasticity

=







n−1
∑n

i=1 Khnα(Xi)
(Xi −x)(Xi −x)THm(zi(x,Xi))(Xi −x)

n−1
∑n

i=1 Khnα(Xi)
(Xi −x)(Xi −x)THm(zi(x,Xi))(Xi −x)(Xi −x)






,

n−1

n
∑

i=1

Khnα(Xi)
(Xi −x)(Xi −x)THm(zi(x,Xi))(Xi −x)

= h2
n f (x)µ2(K)(α(x))

2s(Hm(x)) + op(h
2
n1),

and n−1

n
∑

i=1

Khnα(Xi)
(Xi −x)(Xi −x)THm(zi(x,Xi))(Xi −x)(Xi −x) = Op(h

3
n1).

Therefore (6) holds.

Proof of (7)

It is obvious that

E
�

n−1XT
xWx,αu

�

= E
�

n−1XT
xWx,αu | x

�

= 0,

and n−1XT
xWx,αu=







n−1
∑n

i=1 Khnα(Xi)
(Xi −x)ui

n−1
∑n

i=1 Khnα(Xi)
(Xi −x)(Xi −x)ui






.

By the continuity of f , K , σ2 and α, we have

Var



n−1

n
∑

i=1

Khnα(Xi)
(Xi −x)ui



 = n−1Var
�

Khnα(X1)
(X1−x)u1

�

= n−1

∫

supp( f )

�

h−d
n (α(x))

−dK(h−1
n (α(X1))

−1(X1 −x))
�2
σ2(X1) f (X1)dX1

= n−1h−d
n

∫

Ωn

((α(x+ hnQ))
−dK(Q(α(x+ hnQ))

−1))2σ2(x+ hnQ) f (x+ hnQ)dQ

= n−1h−d
n

∫

Ωn

((α(x))−dK(Q(α(x))−1))2σ2(x) f (x)dQ+ o(n−1h−d
n )

= n−1h−d
n R(K)(α(x))−dσ2(x) f (x) + o(n−1h−d

n ),

and Var



n−1

n
∑

i=1

Khnα(Xi)
(Xi −x)(Xi −x)ui



= o(n−1h−d+2
n 1).

Then (7) holds.

15
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Proof of Theorem 1

By (5) and (6), we have

E [m̂n(x,hn,α) |X1, . . . ,Xn]−m(x) = 0.5eT
1 (X

T
xWx,αXx)

−1XT
xWx,αQm(x)

= 0.5h2
nµ2(K)(α(x))

2s(Hm(x))+ op(h
2
n).

Therefore Theorem 1(1) holds.

Let V = diag
�

σ2(X1), . . . ,σ2(Xn)
	

. Then

Var [m̂n(x,hn,α) |X1, . . . ,Xn] = eT
1 (X

T
xWx,αXx)

−1XT
xWx,αV Wx,αXx(X

T
xWx,αXx)

−1e1,

(13)

and

n−1XT
xWx,αV Wx,αXx =







a11(x,hn,α) (a21(x,hn,α))T

a21(x,hn,α) a22(x,hn,α)






,

where a11(x,hn,α) = n−1

n
∑

i=1

(Khnα(Xi)
(Xi −x))2σ2(Xi)

a21(x,hn,α) = n−1

n
∑

i=1

(Khnα(Xi)
(Xi −x))2(Xi −x)σ2(Xi)

and a22(x,hn,α) = n−1

n
∑

i=1

(Khnα(Xi)
(Xi −x))2(Xi −x)(Xi −x)Tσ2(Xi).

It is easy to prove that

n−1

n
∑

i=1

(Khnα(Xi)
(Xi −x))2σ2(Xi) = h−d

n R(K)(α(x))−dσ2(x) f (x)op(h
−d
n ),

n−1

n
∑

i=1

(Khnα(Xi)
(Xi −x))2(Xi −x)Tσ2(Xi) = Op(h

−d+1
n 1)

and n−1

n
∑

i=1

(Khnα(Xi)
(Xi −x))2(Xi −x)(Xi −x)Tσ2(Xi) = Op(h

−d+2
n 1). (14)

By (13)–(14) and (5), we have

Var [m̂n(x,hn,α) |X1, . . . ,Xn] = n−1h−d
n R(K)(α(x))−dσ2(x) f (x)−1+ op(n

−1h−d
n ).
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Therefore Theorem 1(2) holds.

By (6) and (7) and the central limit theorem, we have

n2/(d+4)n−1XT
xWx,α [0.5Qm(x) +u]

d−→






N(0.5c2µ2(K)(α(x))
2 f (x)s(Hm(x)), c−dR(K)(α(x))−dσ2(x) f (x))

0






.

Applying White (1984, Proposition 2.26) and (5), we can easily deduce Theorem 1(3).
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Tables

Table 1: The percentage of 1000 samples in which the variable bandwidth method is better

than the constant bandwidth method, and the RMSE of the two methods.

Model Percentage Root mean squared error

better Constant bandwidth Variable bandwidth

Model A 75.0 1.3581 1.1150

Model B 63.6 0.4991 0.4347

Model C 75.7 0.9739 0.7995

Model D 68.5 0.9737 0.8524

Model E 80.0 1.3641 1.1009

Table 2: The percentage of 200 samples in which the variable bandwidth method is better than

the constant bandwidth method, and the RMSE of the two methods.

Model Percentage Root mean squared error

better Constant bandwidth Variable bandwidth

Model F 54.6 0.0411 0.0397

Model G 54.0 0.0843 0.0816

Model H 53.0 0.0935 0.0814

Model I 52.0 0.0999 0.0907
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Figures

Figure 1: Results for the simulated univariate regression data of models A–E. The true regres-

sion functions (the solid line) and four typical estimated curves are presented. These corre-

spond to the 10th, the 30th, the 70th, the 90th percentile. The dashed line is for the constant

bandwidth method and the dotted line is for the variable bandwidth method.
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Figure 2: Results for the simulated bivariate data of model F. The true regression functions

(the solid line) and four typical estimated curves are presented. These correspond to the 10th,

the 30th, the 70th, the 90th percentile. The dashed line is for the constant bandwidth method

and the dotted line is for the variable bandwidth method.
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Figure 3: Results for the simulated bivariate data of model G. The true regression functions

(the solid line) and four typical estimated curves are presented. These correspond to the 10th,

the 30th, the 70th, the 90th percentile. The dashed line is for the constant bandwidth method

and the dotted line is for the variable bandwidth method.
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Figure 4: Results for the simulated bivariate data of model H. The true regression functions

(the solid line) and four typical estimated curves are presented. These correspond to the 10th,

the 30th, the 70th, the 90th percentile. The dashed line is for the constant bandwidth method

and the dotted line is for the variable bandwidth method.
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Figure 5: Results for the simulated bivariate data of model I. The true regression functions

(the solid line) and four typical estimated curves are presented. These correspond to the 10th,

the 30th, the 70th, the 90th percentile. The dashed line is for the constant bandwidth method

and the dotted line is for the variable bandwidth method.
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