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Abstract: Influence diagnostics have become an important tool for statistical analysis

since the seminal work by Cook (1986). In this paper we present a curvature-based diag-

nostic to assess local influence of minor perturbations on the modified likelihood displace-

ment in a regression model. Using the proposed diagnostic, we study the local influence

in the GARCH model under two perturbation schemes which involve, respectively, model

perturbation and data perturbation. We find that the curvature-based diagnostic often

provides more information on the local influence being examined than the slope-based di-

agnostic, especially when the GARCH model is under investigation. An empirical study

involving GARCH modeling of percentage daily returns of the NYSE composite index il-

lustrates the effectiveness of the proposed diagnostic and shows that the curvature-based

diagnostic may provide information that cannot be uncovered by the slope-based diag-

nostic. We find that the effect or influence of each observation is not invariant across

different perturbation schemes, thus it is advisable to study the local influence under

different perturbation schemes through curvature-based diagnostics.
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1 Introduction

Influence analysis studies how relevant perturbations affect specified key results. In a

recent paper, Critchley, Atkinson, Lu and Biazi (2002) indicated that the motivating

ideas behind influence analysis include the following aspects, namely the stability (minor

perturbations have small effects), the warning (minor perturbations have large effects),

and the robustness (large perturbations have small effects) of the estimated model. In-

fluence diagnostics have become an important tool for statistical analysis. An important

approach to influence analysis is the geometric approach proposed by Cook (1986), where

a perturbation scheme is introduced into the postulated model through a perturbation

vector with the same dimension as the vector of observations, and the influence is studied

via the graph of the likelihood displacement versus the perturbation vector. In influence

analysis, important questions are the choices of the perturbation scheme, the particular

aspect of an analysis to monitor, and the method of measurement. The possible answers

for these separate questions can lead to a variety of different diagnostics, such as the local

influence on the transformation parameter in a Box-Cox transformation model discussed

by Lawrance (1988), the influence of regression coefficients in generalized linear models

investigated by Thomas and Cook (1989), the influence on the smoothing parameter in

spline smoothing addressed by Thomas (1991), the generalization of Cook’s approach and

the influence on the maximum likelihood estimate (MLE) of any parameter in a regression

model presented by Wu and Luo (1993a), and the influence analysis in semiparametric

mixed models discussed by Fung, Zhu, Wei and He (2002) among many others.

The autoregressive conditional heteroscedasticity (ARCH) model of Engle (1982) and

the generalized ARCH (GARCH) model of Bollerslev (1986) have proven to be very suc-
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cessful in capturing the volatility of financial time series 2. These models enjoy great

success in studying the volatility evolution of financial time series. However, they are

unable to incorporate effects of outliers commonly occurring in observed time series, and

the standard estimation approaches typically are not very robust to such extreme obser-

vations (see for example Bera and Higgins (1993) for detailed comments). Consequently,

in empirical studies, researchers may find that a small number of observations often have

a strong influence on the results of statistical procedures. This phenomenon is undesirable

because it may imply that the inference reflects more the particularities of the specific

dataset under analysis rather than the relationship between the variates of interest. More-

over, influential observations may also result in a poor choice of model specification. On

the other hand, they can provide important clues for improving the model. Recently van

Dijk, Franses and Lucas (1999) investigated the properties of the Lagrange multiplier

(LM) test for ARCH and GARCH processes in the presence of additive outliers. They

showed that additive outliers, which might be interpreted as both a particular deviation

from conditional normality and a misspecification in the conditional mean equation, have

adverse effects on the size and power of the LM test if neglected. It seems important to

address the problem of assessing influence of minor perturbations on various aspects in

GARCH models.

To detect outliers in GARCH processes, Hotta and Tsay (1998) presented a sequential

procedure which involved adding an additional parameter to an observation at a time,

and then applying the Lagrange multiplier test to check the significance of the added

parameter. If the parameter is found be significant at a certain location, the corresponding

observation is regarded as an outlier. This simple sequential intervention analysis is easy

2See the recent surveys by Bollerslev, Chou and Kroner (1992) and Bera and Higgins (1993) for more
details on the GARCH family.
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to implement, and is effective in some applications. However, it is flawed by the “masking

phenomenon” which refers to the fact that several outliers or influential observations

may act together, and any individual’s effect might be “masked” by the other outliers or

influential observations nearby 3.

Influence analysis is different to sequential intervention analysis in that minor pertur-

bations are introduced to the postulated model through a perturbation vector with the

same dimension as the vector of observations, and the influence of the minor perturbations

associated with the observations can be examined simultaneously. Hence the influence-

analysis approach is immune to the masking phenomenon. One remarkable feature of the

GARCH process is the clustering of high/low frequencies, which make it possible that

influential observations and outliers might be acting together, rather than being isolated

far away. Thus, influence analysis seems more useful than sequential intervention analysis

in assessing influences in GARCH models.

The purpose of this paper is to assess the influence of minor perturbations under sev-

eral perturbation schemes in the GARCH model. The rest of this paper is organised as

follows. Section 2 presents a brief review of the geometric approaches to the assessment of

local influence in linear regression models. In Section 3 we derive the normal curvature on

the influence graph which is formed by the modified likelihood displacement and the per-

turbation vector, and calculate the normal curvature in a linear regression model. Using

the curvature-based diagnostic derived in Section 3, we examine the local influence under

the model and data perturbation schemes in the GARCH model in Section 4. Section

5 presents an empirical study to illustrate the effectiveness of the proposed diagnostic.

Concluding remarks are made in Section 6.

3The masking phenomenon has been well discussed in statistical literature, see Atkinson (1986, 1994),
Cook (1986), and Lawrance (1995) for more details.
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2 Geometric Approaches to Local Influence

2.1 Cook’s Normal Curvature

Given a postulated model and a data set with sample size n, we denote the log-likelihood

for the postulated model by L(θ), where θ is a p×1 vector of parameters. A perturbation
scheme is introduced into the model through the n × 1 vector ω which is restricted to a
certain open subset Ω (∈ Rn) representing the set of relevant perturbations (For instance,

ω might be used to induce minor perturbations to the observed response vector in a linear

regression model). Let L(θ|ω) be the log-likelihood corresponding to the perturbed model
for a given ω ∈ Ω, and assume that there is a point ω0 ∈ Ω such that L(θ|ω0) = L(θ) for
all θ. Assume that the lifted line passing through ω0 is represented by

ω = ω0 + a , (1)

where the scalar a measures the magnitude of the perturbation in the n × 1 direction
. Let θ̂ and θ̂ω represent the maximum likelihood estimators under L(θ) and L(θ|ω),
respectively. To assess the influence of varying ω throughout Ω, Cook (1986) defined the

likelihood displacement,

LD(ω) = 2[L(θ̂)− L(θ̂ω)], (2)

and showed that a graph of LD(ω) versus ω contains essential information on the influence

of the perturbation scheme in question. This influence graph is regarded as the geometric

surface spanned by

α(ω) = [ω1,ω2, · · · ,ωn, LD(ω)] , (3)

and the local influence of minor perturbations on LD(ω) can be examined through the

directions along which LD(ω) achieves large local changes at ω = ω0. Then the normal

curvature of LD(ω) at ω = ω0 on α(ω) was introduced to measure the influence, and the
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normal curvature is expressed as

C = 2| F̈ | = 2| ∆ L̈−1∆ |,

where = 1, F̈ = ∂2L(θ|ω)/∂ω∂ω , ∆ = ∂2L(θ|ω)/∂θ∂ω and −L̈ is the observed
information matrix. Cook (1986) concluded that the direction vector, associated with the

maximum normal curvature at ω = ω0 on α(ω), indicates how to perturb the postulated

model to obtain the greatest local change in LD(ω) and is the most important diagnostic

for assessing the influence of minor perturbations on the likelihood displacement.

2.2 Second-order Approach to Local Influence

When only a scalar parameter in a regression model is of interest, Wu and Luo (1993a)

evaluated the maximum curvature and the associated directional vector, called the second-

order approach, to examine the local influence. Assume that minor perturbations are

introduced to a postulated model through a perturbation vector denoted by ω which

has the same expression as (1). Let ξ denote the scalar parameter of interest, then the

maximum likelihood estimate (MLE) of ξ under L(θ|ω), denoted as ξω, can be regarded
as a surface with Euclidean coordinates,

α(ω) = [ω1,ω2, · · · ,ωn, ξω] , (4)

which has the same meaning as the influence graph defined by (3) and is referred to as

the influence graph. The normal curvature at ω = ω0 on the influence graph is

C =
ξ̈ω

1 + ξ̇ωξ̇ω
1/2

I + ξ̇ωξ̇ω

, (5)

where ξ̇ω = ∂ξω/∂ω, ξ̈ω = ∂2ξω/∂ω∂ω , and I is the n × n identity matrix. Large local
change occurs at ω = ω0 in the direction along which the normal curvature is maximised.
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Let A = ξ̈ω and B = (1+ ξ̇ω ξ̇ω)
1/2(I+ ξ̇ω ξ̇ω), then the maximum normal curvature and the

associated direction are, respectively, the largest eigenvalue and the associated eigenvector

of the characteristic equation |A−λB| = 0. The direction vector of the maximum curvature
is often referred to as the second-order diagnostic or the second-order approach to local

influence.

A special feature of this geometric approach is that the first derivative of ξω with

respect to ω is not zero and contains useful information on the local influence worthy

of examination. According to the arguments about influence in Lawrance (1988), the

MLE ξω is most sensitive to minor perturbations in the direction that makes the slope or

gradient, ξ̇ω, greatest at the null point. It is not the value of the slope, but the direction

of the maximum slope that is important and that forms the main diagnostic. Actually,

Cook’s curvature result is specific to a subset of parameters. When the subset contains

only one parameter, Wu and Luo (1993a) argued that the direction of maximum slope

on the influence graph (4) is the same as the direction of the maximum curvature on

Cook’s likelihood displacement surface. This argument has the same spirit to that of

Lawrance (1988), who pointed out that when just one parameter is being considered, the

direction of maximum slope is the basis of Cook’s presentation, and there is no need to

use a likelihood displacement measure. The directional vector of the maximum slope on

the influence graph (4) is often referred to as the first-order diagnostic or the first-order

approach to local influence.

In addition to the first-order diagnostic, the second-order approach provides a method

that is applicable for finding a number of directions of local maximum curvature on

the influence graph (4). The cosines of these selected directions help us to choose the

possibly influential observations in the postulated model. The second-order diagnostic
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is a useful extension of Cook’s normal curvature in influence diagnostics and has several

applications. Using the second-order approach, Wu and Luo (1993b) discussed the local

influence on the residual sum of squares and the multiple potential in regression models,

and Lee and Zhao (1996) assessed the local influence on Pearson’s goodness-of-fit statistic

in generalized linear models. Zhang and Tse (2001) applied the second-order approach to

the assessment of local influence on the bandwidth selection through cross validation in

kernel smoothing. Zhang (2002) investigated the local influence on the Lagrange multiplier

test for heteroskedasticity in GARCH models.

2.3 Modified Likelihood Displacement

As discussed above, the first derivative of LD(ω) with respect to ω is zero, and cannot

be used to examine the local influence. When the dimension of the perturbation vector

(or the vector of observations) increases, the computation of the normal curvature may

become increasingly costly. With this in mind, Billor and Loynes (1993) defined the

modified likelihood displacement,

LD∗(ω) = −2[L(θ̂)− L(θ̂ω|ω)], (6)

based on which the influence surface is defined as

α∗(ω) = [ω1,ω2, · · · ,ωn, LD∗(ω)] . (7)

The first derivative of LD∗(ω) with respect to ω is

∂LD∗(ω)
∂a

=
∂LD∗(ω)

∂ω
= 2

∂L(θ̂ω|ω)
∂ω

+
∂θ

∂ω

∂L(θ|ω)
∂θ

.

When evaluated at θ = θ̂ and ω = ω0, it becomes

∂LD∗(ω)
∂a

= 2
∂L(θ|ω)
∂ω

.
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Large local change of LD∗(ω) at the null point is associated with the maximum slope or

gradient which occurs in the direction of the unity vector

s =
∂L(θ|ω)/∂ω
∂L(θ|ω)/∂ω .

Hence the components of s indicate the influence of small perturbations on LD
∗(ω) at

the null point on α∗(ω).

Billor and Loynes (1993) employed the direction of maximum slope of LD∗(w) at

the null point on α∗(ω) to examine the local influence of a chosen perturbation scheme.

However, when influence graphs have considerable nonlinearity, influential components

may have a nearly zero local slope and would not be detected by the first-order diagnostic

(see, for example, Cadigan and Farrell, 2002). As argued by Wu and Luo (1993a), the

curvature-based diagnostic can provide the information that the first-order diagnostic fails

to provide. It presents a method that is applicable for finding a number of local maximum

curvature directions and is strongly recommended.

3 Normal Curvature under LD∗(ω)

3.1 Normal Curvature

We investigate the normal curvature on the influence graph formed by the modified likeli-

hood displacement and the perturbation vector. Let the perturbation vector be expressed

in the same way as (1), then we have the following theorem.

Theorem 1: The normal curvature of LD∗(ω) at the null point on the influence surface

α∗(ω) is

C =
F̈

1 + Ḟ Ḟ
1/2

I + Ḟ Ḟ
, (8)
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where Ḟ and F̈ are, respectively, defined by

Ḟ =
2 ∂L(θ|ω)

∂ω
, (9)

F̈ = 2

∂2L(θ|ω)∂ω∂ω
− ∂2L(θ|ω)

∂θ∂ω

∂2L(θ|ω)
∂θ∂θ

−1
∂2L(θ|ω)
∂θ∂ω

 , (10)

with all the derivatives evaluated at the MLE of θ and ω = ω0.

Proof: See the appendix.

Let A = ξ̈ω and B = (1 + ξ̇ωξ̇ω)
1/2(I + ξ̇ω ξ̇ω). According to the discussions on normal

curvature in Cook (1986) and Wu and Luo (1993a), the normal curvature is maximised

at the null point along the direction, denoted as c after normalization, which is the

eigenvector associated with the largest eigenvalue of the characteristic equation, |A −
λB| = 0. Hence the direction vector of maximum normal curvature, c, may indicate the

local influence of the perturbation vector in the postulated model. Scatter plots of the

components of c are often useful in locating the influential observations.

3.2 Normal Curvature in a Linear Regression Model

Let the postulated model be the linear regression

Y = Xβ + ε,

where Y is the n× 1 vector of responses, X is the n× p non-stochastic design matrix, β
is a p× 1 vector of parameters, and the errors ε ∼ N(0, σ2I). For simplicity, we assume
that σ2 is known.

3.2.1 Case-weight Perturbation

Assume that the perturbation vector, ω = (ω1,ω2, · · · ,ωn) , is introduced as case weights
in the log-likelihood function,

L(β|ω) = − 1

2σ2

n

t=1

ωt(yt − xtβ)2,
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where ωt and yt are, respectively, the t-th components of ω and Y , xt is the t-th row of

X, and the null point is the n× 1 vector of ones. Computing the normal curvature at the
null point on the influence graph (7), we have

Ḟ = − 1
σ2
e2, F̈ =

2

σ2
D(e)X(X X)−1X D(e),

where e = (e1, e2, · · · , en) is the vector of ordinary least squares residuals, e2 = (e21, e22, · · · , e2n) ,
andD(e) = diag(e1, e2, · · · , en). The direction diagnostic found by the first-order approach
is simply the squared residuals, which is indeed a diagnostic for checking model adequacy

in linear regression models (see Cook and Weisberg (1982) for more details).

When we study the normal curvature on Cook’s influence graph (3), we have

F̈ =
2

σ2
D(e)X(X X)−1X D(e),

while the first derivative of LD(ω) with respect to ω is zero.

3.2.2 Data Perturbation

Assume that the perturbation vector, ω = (ω1,ω2, · · · ,ωn) , is introduced to the response
Y = (y1, y2, · · · , yn) . The relevant part of the log-likelihood under this perturbation
scheme is

L(β|ω) = − 1

2σ2

n

t=1

(yt + ωt − xtβ)2,

where the null point is the n × 1 vector of zeros. When we study the normal curvature
on the influence graph (7), we have

Ḟ = − 2
σ2
e, F̈ = 2 In +

1

σ2
X(X X)−1X .

The direction vector found by the first-order approach is simply the vector of ordinary

least squares residuals, which is not a reasonable and effective diagnostic. Thus, the

second-order approach is of great importance under this perturbation scheme.
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When we study the normal curvature on Cook’s influence graph (3), we have

F̈ =
2

σ2
X(X X)−1X.

while the first derivative of LD(ω) with respect to ω is zero.

4 Local Influence in GARCH Processes

Assume that the postulated model is a GARCH(p, q) process expressed as

yt = εt, (11)

εt = ht ηt, ηt ∼ N(0, 1),

ht = a0 +
p

i=1

aiε
2
t−i +

q

j=1

bjht−j ,

where ht is the variance of εt conditional on the information available at time t. Let

θ denote the vector of all parameters in the GARCH model, then the logarithm of the

quasi-likelihood function is

L(θ) = −n
2
log(2π)− 1

2

n

t=1

log ht − 1
2

n

t=1

y2t
ht
, (12)

while the MLE of θ can be obtained through numerical computation. Assume that the

perturbation vector ω is expressed in the same way as (1), and let L(θ|ω) denote the
logarithm of the quasi-likelihood function when the perturbation vector is introduced to

the GARCH model. Then we investigate the normal curvature at the null point on the

influence graph defined in (7).

Billor and Loynes (1993) divided perturbation schemes into two main groups. One is

the model perturbation that means modifying assumptions underlying the model, while

the other is the data perturbation. The reason for considering data perturbation is that

there may exist measurement errors or outliers in the data. We follow this partition
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and consider two types of perturbation schemes, namely data perturbation and model

perturbation.

4.1 Data Perturbation

Assume that a minor perturbation is added to each of the observations,

zt = yt + ωt,

for t = 1, 2, · · · , n, where {zt} is the observed data, and ω = (ω1,ω2, · · · ,ωn) is the
perturbation vector with the null point ω0 being the n × 1 vector of zeroes. Under this
perturbation scheme, the log-likelihood is

L(θ|ω) = −n
2
log(2π)− 1

2

n

t=1

log ht(ω)− 1
2

n

t=1

z2t
ht(ω)

, (13)

where

ht(ω) = a0 +
p

i=1

ai(yt−i + ωt−i)2 +
q

j=1

bjht−j(ω).

The derivatives required for the calculation of Ḟ and F̈ in the normal curvature (8) are

∂2L(θ|w)
∂θ∂θ

=
n

t=1

1

2h2t
− z

2
t

h3t

∂ht
∂θ

∂ht
∂θ
,

∂L(θ|w)
∂w

=
n

t=1

z2t
2h2t
− 1

2ht

∂ht
∂w
−

n

t=1

zt
ht

∂zt
∂w
,

∂2L(θ|w)
∂θ∂w

=
n

t=1

z2t
2h2t
− 1

2ht

∂2ht
∂θ∂w

+
n

t=1

1

2h2t
− z

2
t

h3t

∂ht
∂θ

∂ht
∂w

+
n

t=1

zt
h2t

∂ht
∂θ

∂zt
∂w

,

∂2L(θ|w)
∂w∂w

=
n

t=1

1

2h2t
− z

2
t

h3t

∂ht
∂w

∂ht
∂w

+
n

t=1

z2t
2h2t
− 1

2ht

∂2ht
∂w∂w

+ 2
n

t=1

zt
h2t

∂zt
∂w

∂ht
∂w

−
n

t=1

1

ht

∂zt
∂w

∂zt
∂w

,

where all the derivatives are computed at the MLE of θ and ω = ω0. Both the slope-

and curvature-based diagnostics are much more complicated than those under the linear

regression model.
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4.2 Model Perturbation

The quasi-likelihood function given in (12) is based on the basic assumption that the

standardized error process, {ηt = εt/
√
ht}, is an iid standard Gaussian process. However,

the existence of influential observations may have a strong effect on the fitting of the

model.

4.2.1 Innovative Perturbation

We may introduce the perturbation vector ω to the postulated model through the case

weights in the quasi-likelihood function,

L(θ|ω) = −n
2
log(2π)− 1

2

n

t=1

log ht − 1
2

n

t=1

ωt
y2t
ht
, (14)

where the null point ω0 is the n× 1 vector of ones. This kind of perturbation is regarded
as an innovative perturbation, since the volatility of ηt is perturbed. The derivatives

required for the calculation of Ḟ and F̈ in the normal curvature (8) are

∂2L(θ|ω)
∂θ∂θ

=
n

t=1

1

2h2t
− z

2
t

h3t

∂ht
∂θ

∂ht
∂θ
,

∂L(θ|ω)
∂ω

= − y
2
1

2h1
,− y

2
2

2h2
, · · · ,− y

2
n

2hn
,

∂2L(θ|ω)
∂θ∂ω

=
y21
2h21

∂h1
∂θ
,
y22
2h22

∂h2
∂θ
, · · · , y

2
n

2h2n

∂hn
∂θ

,

∂2L(θ|w)
∂w∂w

= 0n,

where 0n is the n× n matrix with all elements zero, and all the derivatives are computed
at the MLE of θ and ω = ω0. We find that the first-order diagnostic is merely the vector

of squared standardized errors, which is a diagnostic only for quick and easy checking.
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4.2.2 Additive Perturbation

Assume that the perturbation vector is introduced to the postulated model by adding a

perturbation to the level of the standardized errors,

εt√
ht
+ ωt ∼ N(0, 1).

Under this perturbation scheme, the quasi-likelihood function becomes,

L(θ|ω) = −n
2
log(2π)− 1

2

n

t=1

log ht − 1
2

n

t=1

yt√
ht
+ ωt

2

, (15)

where the null point ω0 is an n vector of zeros. This kind of perturbation may be regarded

as an additive perturbation, since it has no effect on the volatility. The derivatives required

for the calculation of Ḟ and F̈ in the normal curvature (8) are

∂2L(θ|ω)
∂θ∂θ

=
n

t=1

1

2h2t
− z

2
t

h3t

∂ht
∂θ

∂ht
∂θ
,

∂L(θ|ω)
∂ω

= − y1√
h1
,− y2√

h2
, · · · ,− yn√

hn
,

∂2L(θ|ω)
∂θ∂ω

=
y1

2h
3/2
1

∂h1
∂θ
,
y2

2h
3/2
2

∂h2
∂θ
, · · · , yn

2h
3/2
n

∂hn
∂θ

,

∂2L(θ|w)
∂w∂w

= −I,

where all the derivatives are computed at the MLE of θ and ω = ω0. We find that the

first-order diagnostic is merely the vector of standardized errors, which is indeed a naive

diagnostic employed for quick checking only.

From the two schemes for model perturbation, we find that the first-order diagnostic or

the slope-based diagnostic cannot provide all the information on the local influence being

examined, and the second-order diagnostic or the curvature-based diagnostic is required

to understand the local influence uncovered by the underlying perturbation schemes.

In order to calculate the slope and curvature of LD∗(ω) at the null point on the in-

fluence graph, we need to compute the derivative of ht with respect to θ, which depends
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on the analytical form of ht. If the underlying return series is an ARCH(p) process, we

may obtain the analytical form of ∂ht/∂θ. However, if the return series is a GARCH(p, q)

process, a recursive procedure is needed to calculate ∂ht/∂θ. Given the GARCH(p, q)

model defined by (11), we define the following derivatives of ht with respect to the com-

ponents of θ,

dt =
∂ht
∂a0

, ei,t =
∂ht
∂ai
, fj,t =

∂ht
∂bj
,

where i = 1, · · · , p; j = 1, · · · , q and t = 1, 2, · · · , n. To calculate these derivatives, the
following recursive equations may be used,

dt = 1 +
q

k=1

bkdt−k, ei,t = ε2t−i +
q

k=1

bkei,t−k, fj,t = ht−j +
q

k=1

bkfj,t−k,

where the initial values are, respectively, d1−k = 1.0, ei,1−k = y20 and fj,1−k = h0 for

i = 1, · · · , p and j, k = 1, · · · , q, and all the derivatives are evaluated with bk (k = 1, · · · , q)
being replaced by their MLEs derived under L(θ).

5 An Application to the Percentage Daily Returns

on the NYSE Index

In this section we apply the influence diagnostics discussed in Section 4 to the percentage

daily returns on the NYSE composite index. The sample, denoted as {yt}, consists of
1255 observations from 2 January 1997 to 31 December 2001, and is plotted in Figure

1. First, we consider testing the null hypothesis that {yt} is an iid white noise process
against the alternative hypothesis of a GARCH(1,1) specification. The LM statistic is

1244.86 for q = 1 which favours the alternative hypothesis.

Second, we examine the local influence on the modified likelihood displacement LD∗(ω)

under the model perturbation and data perturbation schemes. A summary of the relevant

results is given in Table 1. Regarding the innovative model perturbation scheme, we plot
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the components of the direction vector of the slope-based diagnostic in Figure 2, and the

components of the vector of the curvature-based diagnostic in Figure 3. Under this per-

turbation scheme, the first-order diagnostic is merely the vector of squared standardized

errors, which shows that the 206th return (corresponding to 27 October 1997), the 416th

and 418th returns (corresponding to the 27th and 31st of August 1997, respectively), the

828th (corresponding to 14 April 2000) and the 1182nd (corresponding to 17 September

2001) returns have strong effects on LD∗(ω). The curvature-based diagnostic reconfirms

the strong effects of these points much more obviously than the slope-based diagnostic.

Moreover, the curvature-based diagnostic shows that the 207th (corresponding to 28 Oc-

tober 1997) and the 434th (corresponding to 17 September 1998) returns have strong

influence, which is not revealed by the slope-based diagnostic. The findings warn that the

assumption of a Gaussian distribution for the standardized error process is questionable.

As the perturbation vector is introduced to the GARCH(1,1) model through the variance

of the standardized errors, we have doubts about the homoskedasticity of the standardized

error process.

Under the additive model perturbation scheme, the components of the direction vector

of the slope-based diagnostic is plotted in Figure 4, which provides similar information

to that uncovered by the slope-based diagnostic under the innovative model perturbation

scheme, because these two slope-based diagnostics have the same meaning. However,

the vector of the curvature-based diagnostic, whose components are plotted in Figure 5,

shows that only the 418th and 434th observations have strong effects on LD∗(ω). All the

other influential points uncovered under the innovative model perturbation scheme have

no obvious effect when the perturbation is introduced to the mean of the standardized

errors.
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Regarding the two model perturbation schemes, we may conclude that the 206th,

207th, 416th, 418th, 434th, 828th and 1182nd observations are influential on LD∗(ω) un-

der the innovative perturbation, while only the 418th and 434th observation is influential

on LD∗(ω) under the additive perturbation. We notice that the effect of each observation

on the modified likelihood displacement is not invariant across perturbation schemes.

Table 1. Summary of the Slope- and Curvature-based Diagnostics

Model Perturbation
Date Serial Innovative Additive Data Perturbation

No. slope curvature slope curvature slope curvature

20/10/97 201 -0.0207 -0.0016 -0.0365 -0.0357 0.0217 0.1195
21/10/97 202 -0.0353 -0.0476 -0.0160 -0.0297 0.0405 0.1807
22/10/97 203 -0.0009 -0.0010 0.0075 0.0002 -0.0126 -0.0469
23/10/97 204 -0.0439 0.0231 0.0531 0.0130 -0.0907 -0.3145
24/10/97 205 -0.0056 -0.0074 0.0189 -0.0076 -0.0545 -0.1750
27/10/97 206 -0.4875 -0.4215 0.1771 -0.0534 0.1618 0.0086
28/10/97 207 -0.0343 -0.1274 -0.0470 0.0982 -0.0283 0.0449

26/08/98 415 -0.0123 0.0281 0.0198 -0.0075 -0.0260 -0.1260
27/08/98 416 -0.1845 0.2391 0.1089 -0.0278 0.0402 0.0443
28/08/98 417 -0.0080 -0.0080 0.0227 -0.0365 -0.0116 -0.0239
31/08/98 418 -0.2056 -0.3459 0.1150 -0.1841 0.0660 -0.0675

16/09/98 433 -0.0019 0.0042 -0.0110 0.0248 -0.0031 0.0127
17/09/98 434 -0.0554 0.1510 -0.0597 0.1279 -0.0339 0.0357

12/04/00 826 -0.0149 0.0362 0.0310 -0.0025 -0.0269 -0.1554
13/04/00 827 -0.0282 0.0505 0.0426 -0.0053 -0.0492 -0.2506
14/04/00 828 -0.3077 0.2184 0.1407 -0.0581 0.1326 0.0278

07/09/01 1180 -0.0422 -0.0406 0.0521 -0.0076 -0.0120 -0.1240
10/09/01 1181 -0.0010 -0.0015 -0.0080 0.0054 0.0066 0.0310
17/09/01 1182 -0.2169 -0.1939 0.1181 -0.0584 0.0963 -0.0139

Note: Large components of each diagnostic appear in bold. Their corresponding observations
have a strong effect on the influence graph.

We now assess the local influence under the data perturbation scheme. Figure 6

plots the components of the direction vector of the slope-based diagnostic and shows

that the 206th and 828th returns are influential on LD∗(ω). This finding is consistent

with what we have obtained under the innovative model perturbation scheme. However,
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the vector of the curvature-based diagnostic whose components are plotted in Figure 7

shows that these two observations have no strong influence on LD∗(ω). Moreover, the

curvature-based diagnostic shows that two patches of observations are influential on the

modified likelihood displacement. The first patch contains the 201st, 202nd, 204th and

205th observations (corresponding to the 20th, 21st, 23rd and 24th of October 1997),

while the second patch contains the 826th and 827th observations (corresponding to the

12th and 13th of April 2000, respectively). As the perturbation vector is introduced to the

underlying model by perturbing each observation, large values of the absolute components

of this diagnostic vector might mean “typing errors” or “outliers” at the corresponding

locations. Hence the evidence suggests that the influential observations uncovered under

the model perturbation schemes are not typing errors or outliers.

The influential observations indicated by the curvature-based diagnostic under the

data perturbation scheme might be interpreted as “abnormal noises” to the observed

return series. They exert a strong effect on the modified likelihood displacement, but no

obvious effect on the mean and variance of the standadized errors. From Table 1 and

Figure 1, we observe that the return series experienced one or two “jumps” just one day

after the influential observations indicated under the data perturbation scheme. Taking

the first patch of abnormal noises as an example, we would not be surprised to find out

some kind of linkage between the patch of abnormal noise and the jump thereafter through

some other analytical tools. It is quite natural to guess that the NYSE composite index

might have experienced a series of shocks during the period from the 16th to the 22nd of

October 1997 (this period is exactly one week). These shocks exerted strong effects on

LD∗(ω) when the the data perturbation scheme is under investigation, and they had no

effect on the mean and variance of the standardized errors during these days. However,
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these shocks did produce a strong effect on the variance of the standardized error for

23 October 1997, the day that immediately followed the shocks. Eraker, Johannes and

Polson (2002) referred to this phenomenon during the above-mentioned period as “market

stress” when they studied the stochastic volatility in the return series of S&P 500 index.

A similar situation occurred during the second patch of abnormal noises and the day

immediately following.

The influence analysis in this section warns that the specification of a GARCH(1,1)

model may not be appropriate for the percentage daily returns on the NYSE composite

index, because the model cannot incorporate the effects of the influential observations

which are found not to be outliers. In order to incorporate these influential observa-

tions, we add a dummy variable, denoted as dt, to the conditional mean equation of the

GARCH(1,1) model (11),

yt = δdt + ht ηt, (16)

ht = a0 + a1ε
2
t−1 + b1ht−1,

where ηt ∼ N(0, 1), δ is the parameter attached to the dummy, and dt takes values of one
at the locations associated with influential observations and zero elsewhere (as indicated

by the curvature-based diagnostic with the innovative perturbation scheme in Table 1).

The quasi-MLEs of the parameters are obtained through numerical calculation, and the

estimates of the parameters under both (11) and (16) are summarized in Table 2. The

estimated standardized errors are plotted in Figure 8 which provides a strong evidence on

the Gaussian assumption of the standardized error process. The estimated standardized

errors under the model (11) is actually the diagnostic vector whose components have been

sequentially plotted in Figure 4.

To compare the distributional property of the standardized errors obtained from each
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model, we calculated their skewness and kurtosis, which are, respectively,

µs =
µ3

µ
3/2
2

, µk =
µ4
µ22
,

where µi = E(R− µ)i for i = 2, 3, 4 with µ = E(R) and R representing the standardized
error. The skewness and kurtosis of the estimated standardized errors for both models are

summarized in Table 3. The skewness and kurtosis of the estimated standardized errors

obtained from model (11) are both far away from those of standard Gaussian errors.

However, when a dummy variable is added to the GARCH(1,1) model defined by (11),

the skewness and kurtosis of the estimated standardized errors are much nearer to those

of standard Gaussian errors than those of model (11). Given that there are only 7 non-

zero values of the dummy variable, the improvement in skewness and kurtosis is clearly

remarkable and demonstrates just how influential those 6 observations are. Model (16) is

plainly doing a much better job of modeling the data than model (11).

Table 2. The Estimates of the Parameters

model â0 â1 b̂1 δ̂

model (11) 0.0754 0.8293 0.1097 ––
model (16) 0.0623 0.8428 0.1039 -2.7401

Table 3. Basic Statistics of the Standardized Errors

model mean standard deviation skewness kurtosis

model (11) 0.0175 1.0002 -0.5569 5.2388
model (16) 0.0292 0.9856 -0.1748 3.6532

6 Conclusion

This paper investigates the problem of assessing local influence in a GARCH model based

on the modified likelihood displacement by using a curvature-based diagnostic. We find

that the curvature-based diagnostic often provides more accurate information on the local

influence being examined than the slope-based diagnostic does. The empirical study of
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the previous section clearly illustrates the effectiveness of the curvature-based diagnostic

which identified 7 influential observations in the set of 1255 data points. The standardized

errors from the GARCH(1,1) model with a dummy variable for these 7 observations are

much more Gaussian-like (as measured by skewness and kurtosis) than those from the

GARCH(1,1) model that ignores the importance of these 7 observations. The use of

curvature-based diagnostics to identify problem observations has plainly resulted in a

better model being fitted. Moreover, we find that the effect of each observation on the

modified likelihood displacement is not invariant across perturbation schemes. Thus, it

is advisable to study the local influence under different perturbation schemes through

curvature-based diagnostics.

Appendix:

Proof of the Theorem 1: The first derivative of LD∗(ω) with respect to a can be

expressed as

∂LD∗(ω)
∂a

=
∂LD∗(ω)

∂ω
= 2

∂L(θ|ω)
∂ω

,

which is denoted by Ḟ , and the second derivative of LD∗(ω) with respect to a can be

expressed as

∂2LD∗(ω)
∂a2

=
∂2LD∗(ω)
∂ω∂ω

,

which is denoted by F̈ . Then we have

F̈ = 2
∂2L(θ|ω)
∂ω∂ω

+
∂2L(θ|ω)
∂ω∂θ

∂θ

∂ω
+
∂2L(θ|ω)
∂ω∂θ

∂θ

∂ω
+

∂θ

∂ω

∂2L(θ|ω)
∂θ∂θ

∂θ

∂ω
+
∂L(θ|ω)

∂θ

∂2θ

∂ω∂ω

= 2
∂2L(θ|ω)
∂ω∂ω

+ 2
∂2L(θ|ω)
∂ω∂θ

∂θ

∂ω
+

∂θ

∂ω

∂2L(θ|ω)
∂θ∂θ

∂θ

∂ω
.
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When evaluated at the maximum likelihood estimate of θ, the first derivative of L(θ|ω)
with respect to θ is zero, that is,

∂L(θ|ω)
∂θ

= 0.

If we differentiate both sides of this equation with respect to ω, and we have

∂2L(θ|ω)
∂θ∂θ

∂θ

∂ω
+
∂2L(θ|ω)
∂θ∂ω

= 0,

based on which we obtain

∂θ

∂ω
= − ∂2L(θ|ω)

∂θ∂θ

−1
∂2L(θ|ω)
∂θ∂ω

.

Substitute this equation into F̈ , then we have

F̈ = 2

∂2L(θ|ω)∂ω∂ω
− ∂2L(θ|ω)

∂θ∂ω

∂2L(θ|ω)
∂θ∂θ

−1
∂2L(θ|ω)
∂θ∂ω

 .
We have obtained the analytical forms of Ḟ and F̈ . According to the discussions on the

geometric background of the normal curvature in Cook (1986), Wu and Luo (1993a), Poon

and Poon (1999) and Fung and Kwan (1997), we obtain the normal curvature expressed

in Theorem 1.
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