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1. Introduction

In 1989, George Tiao and Ruey Tsay presented their scalar component model (SCM )
methodology for developing vector autoregressive moving average (V ARMA) models to
the Royal Statistical Society. Following the presentation, commentators including Chatfield,
Hannan, Reinsel and Tunnicliffe-Wilson, acknowledged the importance of this methodology
for multivariate time series analysis, and at the same time pointed out some of its shortcom-
ings. Since then, with the exception of a small subsection in Tsay (1991) which addresses
some of these concerns, there have not been any other efforts to advance this methodology.
In this paper we extend the Tiao and Tsay (1989) (hereafter referred to as T&T) method-
ology to address the concerns of the commentators and we present a complete methodology
for identifying and estimating VARMA models.

The T&T methodology identifies scalar components embedded in a VARMA model
through a series of tests based on canonical correlations between judiciously chosen sets
of variables, and then estimates these scalar components. The methodology is based on
searching for linear combinations of variables that have simple dynamic structures and pro-
vides consistent but not efficient estimates of these linear combinations. The remaining
parameters of the identified structure are then estimated conditional on the estimates of
such linear combinations. Amongst other things, the commentators highlighted that more
attention should be paid on the identification and the estimation of these linear combina-
tions. One reason is that the accuracy of other parameter estimates, depends on how well
these linear combinations are estimated. Furthermore, the ultimate purpose is to invert
from these linear combinations back to the original variables under study. Hence, a mod-
elling strategy must be able to produce reliable prediction intervals for the original series
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rather than for these linear combinations. This is the general direction in which our paper
extends the T&T methodology.

In this paper we establish a set of rules which reveal identification restrictions that pro-
duce a uniquely identified VARMA model with a predetermined scalar component structure.
With these restrictions imposed, all parameters of the system are simultaneously estimated
using full information maximum likelihood (FIML). In sharp contrast to the T&T method-
ology, the usual consistency and asymptotic efficiency properties of maximum likelihood
estimators and prediction intervals do apply here. In the T&T methodology the parame-
ters of the model are estimated in two stages. The complexity of the sampling distribution
of the first stage estimators, makes the derivation of the correct standard errors for the
second step estimators prohibitive. The users of this methodology provide standard errors
for the second stage estimators, treating the first stage estimators as true parameters. This
makes these standard errors unreliable for inference.

The structure of the paper is as follows. In Section (2) we present a brief overview
of the T&T scalar component methodology. We define scalar component models, and
discuss specific identification issues that arise within the scalar component framework. In
Section (3) we propose an extension to the T&T procedure. We first present a summary
of the concerns of the commentators of the T&T paper and then propose an extension
which accounts for these concerns. This section concludes with an outline of all stages
of our VARMA modelling methodology. In Section (4) we apply our methodology to two
multivariate data sets. Section (5) concludes.

2. The scalar component methodology

The aim of exploring scalar component models (SCM s) is to examine whether there are
any simplifying underlying structures embedded in a V ARMA (p, q) process.

Definition 1. For a given K dimensional V ARMA(p, q) process

yt = Φ1yt−1 + . . . + Φpyt−p + ηt −Θ1ηt−1 − . . .−Θqηt−q, (1)

a non-zero linear combination zt = α′yt, follows an SCM(p1, q1) if α satisfies the following
properties:

α′Φp1 6= 0T where 0 ≤ p1 ≤ p, (2)
α′Φl = 0T for l = p1 + 1, . . . , p, (3)

α′Θq1 6= 0T where 0 ≤ q1 ≤ q, (4)
α′Θql

= 0T for l = q1 + 1, . . . , q. (5)

The scalar random variable zt, depends only on lags 1 to p1 of all variables and lags 1 to
q1 of all innovations in the system. Note that the univariate representation of this random
variable is an ARMA process, but of an order different from (p1, q1).

The T&T identification process begins from the most parsimonious possibility, i.e.,
SCM (0, 0), which is a system white noise. It then sequentially discovers K linearly inde-
pendent vectors (α1, . . . , αK) which would rotate the V ARMA(p, q) system into a simpler
dynamic structure with a significantly lower number of parameters. Hence, if we define ma-
trix A = (α1, . . . , αK)′, then the transformation of a V ARMA (p, q) system by this matrix
creates another V ARMA (p, q) system in terms of the transformed variables zt,

zt = Φ∗
1zt−1 + . . . + Φ∗

pzt−p + εt −Θ∗
1εt−1 − . . .−Θ∗

qεt−q, (6)
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where zt = Ayt, Φ∗
i = AΦiA−1, εt = Aηt and Θ∗

i = AΘiA−1. This transformed model
incorporates whole rows of zero restrictions in the AR and the MA parameter matrices.

Example 1. Consider a trivariate stationary process yt which has been identified by the
T&T methodology to have three scalar components: z1,t ∼ SCM(1, 1), z2,t ∼ SCM(1, 0)
and z3,t ∼ SCM(0, 0), i.e.,

zt =




φ
(1)
11 φ

(1)
12 φ

(1)
13

φ
(1)
21 φ

(1)
22 φ

(1)
23

0 0 0


 zt−1 + εt −




θ
(1)
11 θ

(1)
12 θ

(1)
13

0 0 0
0 0 0


 εt−1. (7)

Notice this system cannot yet be estimated as the parameters φ
(1)
13 and θ

(1)
13 are not identified.

Criterion 1. Generalised rule of elimination: Suppose that we have identified two
scalar components zr,t = SCM (pr, qr) and zs,t = SCM (ps, qs), where pr > ps and qr > qs.
This implies that lags of zs,t of order 1, . . . , min {pr − ps, qr − qs} on the right hand side
of the dynamic equation for zr,t, can be written in terms of other variables on the right
hand side of zr,t. Hence, the parameters of the right hand side of the zr,tequation are not
identified unless we set min {pr − ps, qr − qs} of them equal to zero. In fact, for each lag
i = 1, ..., min {pr − ps, qr − qs}, either φ

(i)
rs or θ

(i)
rs must be set to zero to obtain a uniquely

identified system.

For the system in equation (7) the rule of elimination implies that either one of φ
(1)
13 or

θ
(1)
13 must be set to zero. In the proposed extension to the T&T methodology presented in

Section (3) that follows, we require that the MA parameters are set to zero. Thus, we set
θ
(1)
13 = 0, and the system becomes

zt =




φ
(1)
11 φ

(1)
12 φ

(1)
13

φ
(1)
21 φ

(1)
22 φ

(1)
23

0 0 0


 zt−1 + εt −




θ
(1)
11 θ

(1)
12 0

0 0 0
0 0 0


 εt−1. (8)

The determination of embedded scalar component models is achieved through a series
of canonical correlation tests. A SCM (0, 0) is a linear combination that is unpredictable
from the past, and the analysis of canonical correlations between the present and the past
to find and estimate such combinations is a direct generalisation of Hotelling (1935) to
time series. If we denote the estimated squared canonical correlations between yt and
Yh,t−1 ≡

(
y′t−1, . . . ,y

′
t−1−h

)′ by λ̂1 < λ̂2 < . . . < λ̂K , then the likelihood ratio test statistic
for at least s SCM (0, 0), against the alternative of less than s unpredictable components,
is given by

C (s) = − (n− h)
s∑

i=1

ln
(
1− λ̂i

)
a∼ χ2

s×{(h−1)K+s}. (9)

The canonical covariates corresponding to insignificant canonical correlations will be
consistent estimates of the scalar components. As shown by Vahid and Engle (1997) and
Anderson and Vahid (1998) among others, a generalised method of moment (GMM) based
test for the same hypothesis is (n− h)

∑s
i=1 λ̂i, which is obviously asymptotically equivalent

to the above. SCM (m, 0) can be found by similar test statistic based on squared canonical
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correlations between Ym,t ≡
(
y′t, . . . ,y

′
t−m

)′ and Yh,t−1 ≡
(
y′t−1, . . . ,y

′
t−1−h

)′ where h ≥
m. SCM (m, j) however, are linear combinations of Ym,t that cannot be linearly predicted
from the history before t− j. Hence, the GMM test for this hypothesis estimates a linear
combination of Ym,t that is a moving average of order j and therefore is unpredictable from
Yh,t−1−j ≡ (y′t−1−j , . . . ,y

′
t−1−j−h)′. This imposes a structure on the GMM weighting

matrix. The test then is a test of overidentifying restrictions in this system. Alternatively,
T&T suggest the statistic

C (s) = − (n− h− j)
s∑

i=1

ln

{
1− λ̂i

di

}
a∼ χ2

s×{(h−m)K+s} (10)

based on the squared canonical correlations between Ym,t and Yh,t−1−j . di is a correc-
tion factor that accounts for the fact that the canonical variates in this case can be moving
averages of order j. Specifically,

di = 1 + 2
j∑

v=1

ρ̂v (r̂′iYm,t) ρ̂v (ĝ′iYh,t−1−j) (11)

where ρ̂v (.) is the v order autocorrelation of its argument and r̂′iYm,t and ĝ′iYh,t−1−j are
the canonical variates corresponding to the ith canonical correlation between Ym,t and
Yh,t−1−j .

Since an SCM (m, j) nests all scalar components of order (≤ m,≤ j), lower order SCM s
are also identified when testing for higher orders. T&T arrange these test results in a two
way tabulation and also provide a complete set of rules that determines the order of all
parsimonious SCM s embodied in a system (see the empirical examples in Section 4).

Furthermore, T&T deduce a consistent estimate of the transformation matrix A from the
estimated canonical coefficients. The eigenvectors corresponding to the statistically insignifi-
cant canonical correlations provide consistent estimators for each α in
A =(α1, . . . , αK)′. However, since lower order SCM s are also identified, there will be
several candidate estimators for the linear space spanned by αs. T&T suggest a procedure
to find a consistent estimator of A from the union of the eigenvectors corresponding to
zero eigenvalues in the above tests. Although this is a consistent estimator, its asymptotic
variance will be complicated. Using Â, they form zt = Âyt and then estimate Φ∗

1, . . . ,Φ
∗
p

and Θ∗
1, . . . ,Θ

∗
q . Since the estimates of these coefficient matrices are conditional on Â, their

asymptotic distribution will also be complex.

3. An extension to the Tiao and Tsay methodology

A major concern of the participants in the discussion of the T&T paper (see the discussion
that followed the paper), was the general treatment of the transformation matrix A. The
comments by Professors Chatfield, Hannan, Reinsel and Tunnicliffe-Wilson amongst others,
can be summarised in the following concerns about the T&T modelling procedure:

(a) The identified V ARMA(p, q) model is being stated in terms of the transformed series
zt and not in terms of the series of interest, the original series yt.

(b) The number of parameters to be estimated in the A matrix should be included in
the total number of parameters estimated for the model. This makes the reduction in
degrees of freedom for the estimation, smaller than what is claimed by T&T.
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(c) The T&T procedure calculates the transformation matrix A via the canonical cor-
relations analysis stated above. This calculation does not produce the most efficient
(although consistent) estimates for the parameters, in particular for the case of SCM s
with q > 0.

(d) Finally, the T&T procedure does not produce standard errors for the parameter esti-
mates in A.

We propose an extension to the T&T modelling procedure to address these concerns.
This extension develops identification conditions for the parameters of matrix A, so that
the entire system can be estimated efficiently. It should be mentioned that Tsay (1991)
discusses the issue of redundant parameters in A and provides a formula for counting the
free parameters in this matrix. Here we establish a set of rules for determining the free
parameters in A. Also, since unique identification of A requires normalising some of its
elements to one, we suggest a procedure for ensuring that parameters that are zero are
not normalised to one. Finally, we propose full information maximum likelihood estimation
for the parameters of the identified VARMA model, rather than relying on the estimated
canonical covariates.

Our extension to the T&T process begins after the orders of K scalar components
have been determined by the canonical correlations based procedure. T&T proceed by
obtaining an estimate of A, forming zt and its lags using Â, and then estimating the
restricted VARMA model given by (6) in which Φ∗

1, . . . ,Φ
∗
p and Θ∗

1, . . . ,Θ
∗
q have many zero

restrictions. We instead rewrite the system in terms of the original series yt, establish further
restrictions to identify A, and then estimate the system by full information maximum
likelihood.

In our procedure we require that, if the SCM orders are such that the general elimination
rule needs to be used, the zero restrictions must be applied to the MA coefficients. This
does not entail any loss of generality. As we discussed in Criterion (1) we are free to set
either one of the MA coefficient or the AR coefficient to zero. Choosing to set the MA
coefficient to zero implies that the only type of restrictions that the SCM orders place on
Φ∗

1, . . . ,Φ
∗
p, is that entire rows are zero. This means (as is shown in Lemma 1 below) that

we can replace zt−1, . . . , zt−p on the right hand side of equation (6) with yt−1, . . . ,yt−p

without changing the structure of the system.

Lemma 1. In equation (6) if we replace zt−1, . . . , zt−p by Ayt−1, . . . ,Ayt−p and obtain
the system

zt = Ψ1yt−1 + . . . + Ψpyt−p + εt −Θ∗
1εt−1 − . . .−Θ∗

qεt−q, (12)

then Ψ1, . . . ,Ψp will have the same zero restrictions as Φ∗
1, . . . ,Φ

∗
p.

Proof. Ψi = Φ∗
i A for i = 1, . . . , p, and since the only zero restriction in Φ∗

i is that
one or more rows are zero, the corresponding rows of Ψi will be zero.

Lemma (1) shows that we can think of the system as

Ayt = Ψ1yt−1 + . . . + Ψpyt−p + εt −Θ∗
1εt−1 − . . .−Θ∗

qεt−q, (13)

with Ψ1, . . . ,Ψp and Θ∗
1, . . . ,Θ

∗
q satisfying the same restrictions as the right hand side

parameter matrices of equation (6). However, the system of equation (13) is not yet identi-
fied because not all parameters in A are free. For example, each row of the system can be
multiplied by an arbitrary non-zero constant without changing the structure of the system.
Hence we need to restrict A in order for the system to be uniquely identified.
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Definition 2. A is identified if, and only if, the only matrix H such that

HAyt = HΨ1yt−1 + . . . + HΨpyt−p + Hεt −HΘ∗
1εt−1 − . . .−HΘ∗

qεt−q (14)

has the same restrictions as (13), is H = IK .

Let us assume that the ith row of the system is a SCM (pi, qi). The zero restrictions on
the right and side of the system imply that, the ith row of H can only be different from a
multiple of a row of an identity matrix, if there are other SCM (pj , qj) such that pi ≥ pj

and qi ≥ qj . Therefore, only in such situations we need to impose some restrictions on A
to eliminate this possibility. Other than this, normalisation of one element in the ith row
of A to one, ensures that the ith row of H will be a row of an identity matrix. The rules
for achieving unique identification of the system are therefore the following:

(a) Each row of A can be multiplied by a constant without changing the structure of the
model. Hence, we are free to normalise one parameter in each row to one. However,
as always in such situations, there is a danger of wrongly choosing a parameter whose
true value is zero for normalisation, i.e., a zero parameter might be normalised to one.
We ignore this possibility for the time being, but we will return to it later.

(b) Any linear combination of a SCM (p1, q1) and a SCM (p2, q2) is a
SCM (max {p1, p2} ,max {q1, q2}). In all cases where there are two embedded scalar
components with weakly nested orders, i.e., p1 ≥ p2 and q1 ≥ q2 arbitrary multiples
of SCM (p2, q2) can be added to the SCM (p1, q1) without changing the structure.
This means that the row of A corresponding to the SCM (p1, q1) is not identified in
this case. To achieve identification, if the parameter in the ith column of the row of
A corresponding to the SCM (p2, q2) is normalised to one, the parameter in the same
position in the row of A corresponding to SCM (p1, q1) should be restricted to zero.

Note that if p1 = p2 and q1 = q2 then rule (b) is applied twice because p1 ≥ p2 and
q1 ≥ q2 and at the same time p2 ≥ p1 and q2 ≥ q1. This creates an identity submatrix
in A. Also note that if there is a single SCM whose autoregressive order is the smallest
of all other SCMs in the system, the corresponding row of A is uniquely identified. This
is because any combination of other SCMs with this one produces a SCM with a longer
autoregressive order and changes the structure. By the same token, if there is a single SCM
with minimal moving average order, the row of A corresponding to it is uniquely identified.
The following example highlights the above points.

Example 2. Consider the trivariate process in equation (8). Lemma (1) shows that we
can replace zt−1 with yt−1 without changing the structure of the system, i.e.,




a11 a12 a13

a21 a22 a23

a31 a32 a33


yt =




ψ
(1)
11 ψ

(1)
12 ψ

(1)
13

ψ
(1)
21 ψ

(1)
22 ψ

(1)
23

0 0 0


yt−1 + εt −




θ
(1)
11 θ

(1)
12 0

0 0 0
0 0 0


 εt−1. (15)

Ignoring the A matrix, the parsimony of this model is exaggerated, in the sense that it
seems to have ten parameters less than a V ARMA (1, 1). However this is not the case, as
the commentators of the T&T paper have pointed out. The parameters in A have to be
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estimated. However, not all nine of them are free parameters. Firstly, one parameter per
row, say diagonal elements, can be normalised to one




1 a12 a13

a21 1 a23

a31 a32 1


yt =




ψ
(1)
11 ψ

(1)
12 ψ

(1)
13

ψ
(1)
21 ψ

(1)
22 ψ

(1)
23

0 0 0


yt−1 + εt −




θ
(1)
11 θ

(1)
12 0

0 0 0
0 0 0


 εt−1. (16)

The third equation is now uniquely identified, because no combination of the other two
equations can be added to it and still keep its SCM (0, 0) structure. However, since a
SCM (0, 0) is nested in a SCM (1, 0) and SCM (1, 1), the third rule above tells us that a13

and a23 can be set to zero without changing the structure of the system. This leads to




1 a12 0
a21 1 0
a31 a32 1


yt =




ψ
(1)
11 ψ

(1)
12 ψ

(1)
13

ψ
(1)
21 ψ

(1)
22 ψ

(1)
23

0 0 0


yt−1 + εt −




θ
(1)
11 θ

(1)
12 0

0 0 0
0 0 0


 εt−1. (17)

The same rule again applies and we can set a12 to zero. Thus, the final result is the canonical
SCM VARMA representation,




1 0 0
a21 1 0
a31 a32 1


yt =




ψ
(1)
11 ψ

(1)
12 ψ

(1)
13

ψ
(1)
21 ψ

(1)
22 ψ

(1)
23

0 0 0


yt−1 + εt −




θ
(1)
11 θ

(1)
12 0

0 0 0
0 0 0


 εt−1. (18)

Notice that the real reduction in the number of parameters is 10− 3 = 7.

Imposing restrictions on A leads to a uniquely identified VARMA structure which can
be estimated by full information maximum likelihood. We call this structure a canonical
SCM VARMA representation.

Definition 3. A canonical SCM VARMA representation is one that:

(a) The orders of the SCMs are as small as possible;
(b) The zero restrictions needed to account for the redundant parameters have been set on

the moving average coefficients rather than the autoregressive ones; and
(c) All the redundant parameters in the transformation matrix A have been restricted to

achieve unique identification.

In the first rule for achieving unique identification, we stated that any non-zero element
in a row of A can be normalised to one. A problem can arise in practice if we decide
to normalise to one an element whose true value is zero. To safeguard against this, our
procedure adds tests of predictability using subsets of variables. Starting from the SCM
with the smallest order (the SCM with minimum p + q), exclude one variable, say the Kth

variable, and test if a SCM of the same order can be found using the K− 1 variables alone.
If the test is rejected, the coefficient of the Kth variable is then normalised to one and by
applying the second rule of unique identification the corresponding coefficients in all other
SCM s that nest this one are set to zero. If the test concludes that the SCM can be formed
using the first K − 1 variables only, the coefficient of the Kth variable in this SCM is zero,
and should not be normalised to one. It is worth noting that if the order of this SCM is
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uniquely minimal, then this extra zero restriction adds to the restrictions discovered before.
Continue testing by leaving variable K − 1 out and test if the SCM could be formed from
the first K − 2 variables only, and so on. These tests are all GMM tests (see Hansen 1982)
with suitably chosen weighting matrices given by the structure of the system.

To summarise, our complete V ARMA (p, q) modelling procedure comprises of the fol-
lowing three stages:

Stage I: Identification of the scalar components. This stage follows the T&T methodology.
The only extra condition we require is that if the rule of elimination is applied, then the
zero restrictions are placed on the MA coefficients.

Stage II: Placing identification restrictions on matrix A. Stage II of the identification
process applies the identification rules stated above to identify the structure of the trans-
formation matrix A. Extensive Monte-Carlo experiments in Athanasopoulos (2005) show
that these first two stages of the proposed methodology perform well in identifying some
pre-specified data generating processes with various orders of embedded SCM s.

Stage III: Estimation of the uniquely identified system. This stage uses FIML to estimate
the parameters of the uniquely identified structures. The canonical correlations procedure
produces good starting values for the parameters, in particular for the SCM s with no moving
average components. Alternatively, lagged innovations can be estimated from a long VAR
and used for obtaining initial estimates for the parameters as in Hannan and Risannen
(1982). The maximum likelihood procedure provides estimates and estimated standard
errors for all parameters, including the free parameters of A. All usual considerations
that ease the estimation of structural forms are also valid here, and should be exploited in
estimation.

4. Empirical Examples

The following two empirical examples illustrate the application of each of the stages of the
proposed methodology.

4.1. US Flour Price Data
This data set has been previously analysed and modelled by Tiao and Tsay (1989), Grubb
(1992) and Lütkepohl and Poskitt (1996). The data consists of three monthly series on flour
price indices from August 1972 to November 1980, i.e., N = 100 observations, for the cities
of: Buffalo, Minneapolis, and Kansas. The logarithms of the series are plotted in Figure
(1).

In Stage I of the identification process we identify the overall order of the VARMA model
and the orders of embedded SCM s in the data. Panel A of Table (1) reports the results of
all canonical correlations test statistics divided by their χ2 critical values. T&T call this
table the “Criterion Table”. If the entry in the (m, j)th cell is less than one, it shows that
there are three SCM s of order (m, j) or lower in this system. Hence, we deduce from this
table that the smallest the overall order of the system can be, is either a V ARMA (1, 1)
or a V AR (2). Given that the primary goal of this research is VARMA modelling, and to
be consistent with T&T, we choose a V ARMA (1, 1) as the overall order. Conditional on
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1974 1976 1978 1980

4.6

4.8

5.0

5.2

5.4

5.6
Buffalo Minneapolis Kansas

Fig. 1. Logarithms of US flour prices

Table 1. Tables for Stage I of the identification process for the log of US flour price
data

PANEL A: Criterion Table PANEL B: Root Table
j j

m 0 1 2 3 4 m 0 1 2 3 4
0 34.17a 5.8 3.0 2.11 1.68 0 0 0 1 1 1
1 2.38 0.44 0.49 0.22 0.34 1 2 3 3 3 3
2 0.25 0.58 0.60 0.49 0.46 2 3 5 6 6 6
3 0.37 0.46 0.67 0.53 0.58 3 3 6 8 9 9
4 0.73 0.62 0.57 0.70 0.77 4 3 6 9 11 12
aThe statistics are normalised by the corresponding 5% χ2critical values

this overall order, the C (s) tests are performed again to identify the individual orders of
embedded SCM s. The number of insignificant canonical correlations found, are tabulated in
Panel B of Table (1), referred to as the “Root Table”. In the root table, the bold type shows
that two scalar components of order (1, 0) are initially identified in position (m, j) = (1, 0).
Then, there are three SCM s of order (1, 1) at position (m, j) = (1, 1). From these three, the
first two are carried through from the previous two (1, 0) scalar components, and the other
is a new scalar component of order (1, 1). Hence, the identified V ARMA (1, 1) consists of
two SCM (1, 0) and one SCM (1, 1).

Using the identification rules for matrix A, a canonical SCM representation of the
V ARMA (1, 1) model identified would be



1 0 0
a21 1 0
a31 0 1


yt = c+




ψ
(1)
11 ψ

(1)
12 ψ

(1)
13

ψ
(1)
21 ψ

(1)
22 ψ

(1)
23

ψ
(1)
31 ψ

(1)
32 ψ

(1)
33


yt−1 + εt−




θ
(1)
11 θ

(1)
12 θ

(1)
13

0 0 0
0 0 0


 εt−1. (19)

Testing for the implemented normalisations, i.e., normalising the diagonal parameters of A
to one, does not seem to be a problem. Furthermore, y3,t is found to be a SCM (1, 0) on its
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Table 2. Estimation results for the log of the US flour price data
Estimated VARMA model: bAyt = bc + bΨ1yt−1 + εt − bΘ∗

1εt−1

bA =

2
664

1 0 0

−0.521
(−20.10)a

1 0

0 0 1

3
775 bc′ =

h
0.199
(5.83)

0.116
(3.64)

0.336
(7.35)

i

bΨ1 =

2
6664

1.078
(33.78)

−0.392
(−11.39)

0.273
(10.64)

−0.454
(−17.15)

0.741
(27.61)

0.168
(8.73)

0.012
(0.18)

−0.297
(−4.98)

1.217
(45.30)

3
7775

bΘ∗
1 =

2
664

−0.616
(−4.45)

0.812
(10.38)

0.122
(1.59)

0 0 0

0 0 0

3
775

bΣε =

2
4

1.977
1.012 0.648
1.998 1.119 2.571

3
5× 10−3

˛̨
˛ bΣε

˛̨
˛ = 1.235× 10−10

Res C.T.b

j
m 0 1 2 3

0 0.60c 0.43 0.38 0.42
1 0.44 0.56 0.41 0.41
2 0.38 0.45 0.56 0.51
3 0.57 0.51 0.54 0.56

a t−statistics in parentheses
bCriterion Table for the residuals from the estimated model
cThe statistics are normalised by the corresponding 5% χ2critical values

own. Therefore, coefficient a31 can be set to zero. The resulting estimated V ARMA (1, 1)
model is shown in Table (4.1).

The appropriateness of the model is checked by applying the C (s) test to the residuals.
The criterion table, presented at the bottom of Table (4.1), shows that three white noise
processes are identified, i.e., the residuals follow a vector white noise process.

Comparison to the T&T Results T&T also pursue a V ARMA (1, 1) model of the flour
price data. The estimated model is presented in two steps. In the first step the estimated
transformation matrix Â is presented and the linearly transformed series,

zt = Âyt, (20)

is formed. Then, a standard V ARMA (1, 1) of the form,

zt = c∗ + Φ∗
1zt−1 + εt −Θ∗

1εt−1,

is estimated. The estimation results are presented in Table (4.1). The contribution of the
suggested extension to the T&T methodology becomes clear when comparing the two sets
of results. Firstly, the T&T V ARMA (1, 1) model is based on 24 estimated parameters in
comparison to the 16 freely varying parameters of the model identified by our procedure.
Also, the Φ̂∗

1 and Θ̂∗
1 estimates in T&T are two-step estimates based on the estimates of Â.
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Table 3. Tiao and Tsay (1989) estimation results for the logarithms of the US flour
price data

Estimated model: zt = bc∗ + bΦ∗
1zt−1 + εt − bΘ∗

1εt−1 where zt = bAyt

bA =

2
4
−0.40 0.83 −0.40
0.61 −0.51 −0.60
0.55 0.82 −0.06

3
5 bc∗′ =

h
0.26
(1.37)

−0.16
(−1.78)

−0.02
(−0.67)

i

Φ̂∗
1 =

2
6664

0.88
(14.67)a

−0.02
(−0.67)

−0.00
(−0.00)

0.27
(1.69)

1.02
(12.75)

0.03
(0.75)

−0.84
(−2.40)

−0.12
(−0.67)

0.93
(10.33)

3
7775 Θ̂∗

1 =

2
664

0 0 0

0 0 0

−1.48
(−4.77)

1.05
(5.53)

0.52
(5.78)

3
775

Σ̂ε =

2
4

0.12
−0.00 0.85
0.20 −1.47 3.64

3
5× 10−3

˛̨
˛Σ̂ε

˛̨
˛ = 7.79× 10−7

a t−statistics in parentheses. These test statistics are conditional on Â,
which makes them unreliable as they do not incorporate the uncertainty
in the estimation of A.

Therefore, if the uncertainty in Â is not taken into account, the standard errors and hence
the t−statistics of the second stage estimation are invalid. In contrast, our estimates of the
parameter matrices are efficiently estimated using FIML and have correct standard errors.
Finally, T&T present their estimated model in terms of the transformed series zt which is
not necessarily the series of interest whereas our model is in terms of yt.

The results presented from the two studies under consideration are not directly com-
parable as they stand. To make these results directly comparable we present the reduced
form of each of the models in Table (4.1). Panel A presents the reduced form of the model
estimated by our proposed methodology. The corresponding reduced form of the model
estimated by T&T is presented in Panel B. In Panel C we present the reduced form of the
T&T model produced by Grubb (1992). The results between the reduced form of the T&T
model calculated here and the one presented by Grubb (1992) vary slightly. This could be
due to rounding error. The determinants of the covariance matrices indicate that our model
fits the data best, despite requiring less parameters.

4.2. US Macroeconomic Data
The aim of the above example was to illustrate the proposed modelling procedure and to
compare the resulting estimated VARMA model with previous studies. This highlighted
the advantage of our proposed procedure in the efficient estimation of parameters and in
calculating standard errors. However, due to the short sample size, it was not feasible to
investigate the forecasting performance of estimated models. In our second example, we use
three monthly macroeconomic time series that are often modelled jointly in empirical models
of the business cycle. The relatively large number of observations in this example allows us
to hold some observation for out-of-sample forecast evaluation. The forecast performance
of the estimated VARMA model is evaluated against two VAR models selected by different
model selection criteria. Vector autoregressive models are the most popular models in the
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Table 4. Reduced form of the estimated models for the log of the US flour price data
PANEL A: Athanasopoulos and Vahid

ĉr =

2
4

0.199
0.219
0.336

3
5 Ψ̂r

1 =

2
4

1.078 −0.392 0.273
0.107 0.536 0.310
0.012 −0.297 1.217

3
5 Θ̂r

1 =

2
4
−1.039 0.812 0.122
−0.541 0.423 0.064

0 0 0

3
5

˛̨
˛Σ̂AV

η

˛̨
˛ =

˛̨
˛Â−1

˛̨
˛
˛̨
˛Σ̂ε

˛̨
˛
˛̨
˛Â−1T

˛̨
˛ =

˛̨
˛Σ̂ε

˛̨
˛ = 1.235× 10−10

PANEL B: Tiao and Tsay (1989)

ĉr =

2
4
−0.254
0.138
−0.109

3
5 Φ̂r

1 =

2
4

1.153 −0.488 0.293
0.181 0.450 0.322
0.133 −0.427 1.226

3
5 Θ̂r

1 =

2
4

1.393 −1.227 −0.063
0.960 −0.846 −0.043
0.600 −0.528 −0.027

3
5

˛̨
˛Σ̂T&T

η

˛̨
˛ =

˛̨
˛Â−1

˛̨
˛
˛̨
˛Σ̂ε

˛̨
˛
˛̨
˛Â−1T

˛̨
˛ =

˛̨
˛Σ̂ε

˛̨
˛
˛̨
˛Â
˛̨
˛
−2

= 1.332× 10−10

PANEL C: Grubb (1992): Reduced form of the T&T model

bΦ1 =

2
4

1.24 −0.56 0.27
0.30 0.36 0.29
0.25 0.51 1.22

3
5 bΘ1 =

2
4

1.22 −1.12 −0.04
0.84 −0.77 −0.03
0.53 −0.48 −0.02

3
5

˛̨
˛Σ̂GR

η

˛̨
˛ = 1.281× 10−10
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Fig. 2. Growth rates of US macroeconomic data

applied time series literature.
The data employed are three monthly macroeconomic US time series extracted from the

multivariate data set compiled by Stock and Watson (1999):

- Industrial Production: seasonally adjusted total index (1992=100);

- Manufacturing & Trade Sales: seasonally adjusted total in millions of chained 1992
dollars; and

- Business & Manufacturing Inventories: seasonally adjusted total in millions of chained
1992 dollars.

The series span from March 1959 to December 1998, i.e., N = 478 observations. We model
the growth rate of these series (100 × ∆ln (yi,t) for i = 1, 2, 3) jointly. The time series of
growth rates are plotted in Figure (2).

We have divided the data into two sub-samples: the estimation sample (March 1959
to December 1983 with N1 = 298 observations) and the hold-out sample (January 1984
to December 1998 with N2 = 180 observations). We estimate each model once and for all
using the estimation sample, i.e., all models are estimated using y1 to yN1 . We then use
each estimated model to produce a sequence of h-step-ahead forecasts for h = 1 to 15. That
is, with yN1 as the forecast origin, we produce forecasts for yN1+1 to yN1+15. The forecast
origin is then rolled forward one period, i.e., using observation yN1+1, we produce forecasts
for yN1+2 to yN1+16. We repeat this process to the end of the hold-out sample. Therefore,
for each model and each forecast horizon h, we have N2−h + 1 forecasts to use for forecast
evaluation purposes.



14 Farshid Vahid

Table 5. Tables for Stage I of the identification process for the US macroeconomic
data

PANEL A: Criterion Table PANEL B: Root Table
j j

m 0 1 2 3 4 m 0 1 2 3 4
0 9.11a 4.17 3.16 2.55 1.85 0 0 1 2 2 2
1 2.92 0.63 0.82 0.79 1.14 1 1 3 4 5 5
2 1.39 0.54 1.23 1.14 0.81 2 2 4 6 7 8
3 1.11 1.12 0.89 0.81 1.05 3 2 5 7 9 10
4 1.39 1.01 0.97 1.12 0.99 4 2 5 8 10 12
aThe statistics are normalised by the corresponding 5% χ2critical values

4.2.1. Model identification and estimation
The Criterion Table in Panel A of Table (4.2.1) shows that the minimum possible overall
order of the system is a V ARMA (1, 1). Reading from the root table in Panel B of Table
(4.2.1), we identify one exchangeable SCM (1, 0) or SCM (0, 1) (see the note on exchange-
able models that follows) and two further SCM (1, 1).

A note on exchangeable models In multivariate time series analysis, we sometimes find
pathological cases where a process can be represented either as a finite V AR (p) or a finite
V MA (q) process. For instance, we might have the bivariate V ARMA (1, 0) process

yt =
[

a a
−a −a

]
yt−1 + ηt, (21)

which can be equivalently represented as

yt = ηt −
[ −a −a

a a

]
ηt−1. (22)

For more on such equivalent representations see Lütkepohl (1991). Through the transfor-
mation matrix A = (α1, α2)

′, where α1 = (1, 0)′ and α2 = (1, 1)′, equation (21) leads
to [

1 0
1 1

]
yt =

[
a a
0 0

]
yt−1 + εt, (23)

i.e., a SCM (1, 0) and a SCM (0, 0). However through the same transformation matrix A,
equation (22) leads to

[
1 0
1 1

]
yt = εt −

[ −a −a
0 0

]
εt−1, (24)

i.e., a SCM (0, 1) and a SCM (0, 0). Such exchangeable models produce a recognisable
pattern in the Root Table (as shown in Table (4.2.1)). The choice between the two models
is arbitrary. In an extensive forecasting study, Athanasopoulos and Vahid (2005) conclude
that the choice between such exchangeable models does not make a significant difference in
terms of forecasting accuracy. In this example we proceed with the SCM(0, 1) and only
report the result for this case. We have checked that the qualitative results reported below
are independent of this choice.
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Using the identification rules for matrix A, a canonical SCM representation of the
V ARMA (1, 1) model would be




1 0 0
0 1 0

a31 a21 1


yt = c+




ψ
(1)
11 ψ

(1)
12 ψ

(1)
13

ψ
(1)
21 ψ

(1)
22 ψ

(1)
23

0 0 0


yt−1+εt−




θ
(1)
11 θ

(1)
12 θ

(1)
13

θ
(1)
21 θ

(1)
22 θ

(1)
23

θ
(1)
31 θ

(1)
32 θ

(1)
33


 εt−1. (25)

In the second stage of our procedure, when testing for appropriate normalisations in matrix
A, we discover that a linear combination of y1,t and y3,t alone is a SCM (0, 1), i.e. a21 is
not significantly different from zero and should not be normalised to 1. Therefore, we set
a21 to zero. The resulting estimated V ARMA (1, 1) model is shown in Panel A of Table
(4.2.1). The Criterion Table for the residuals at the bottom of Panel A shows that the
residuals follow a vector white noise process.

4.2.2. Forecast evaluation
In order to evaluate the out-of-sample forecast performance of the estimated V ARMA (1, 1)
model, we employ two VAR models as multivariate alternatives, a V AR (12) and a V AR (2).
These models are respectively selected by the Akaike Information Criterion (AIC) and
the Bayesian Information Criterion (BIC) from all VAR models up to a maximum lag
length of 24. Obviously the V AR (12) model has the best in-sample fit, as shown by the
determinant of the estimated error covariance matrices presented in Panel B of Table (4.2.1) .
It is important to note that the V ARMA (1, 1) produces a better fit than the V AR (2)
despite having two less parameters. This means that if the class of models considered had
included V ARMA models, then at least BIC would have chosen V ARMA (1, 1) in this case.
However, in multivariate time series applications, in particular in applied macroeconomics,
vector autoregressions are the only class of models that are routinely considered.

For each forecast horizon h, we consider two measures of forecasting accuracy. The first
is the determinant of the mean squared forecast error matrix, |MSFEh|, and the second is
the trace of the mean squared forecast error matrix, tr (MSFEh). Clements and Hendry
(1993) show that the |MSFE| is invariant to elementary operations on the forecasts of
different variables at a single horizon, but not invariant to elementary operations on the
forecasts across different horizons. The tr (MSFEh) is not invariant to either. In this
forecast evaluation exercise, we present both of these measures.

For each forecast horizon h, Table (4.2.2) (see also Figure (3)) reports the percentage
improvement (PIh) in the forecast error measures of the V ARMA (1, 1) model over the
VAR alternatives. For example in terms of the |MSFE| the PI for forecast horizon h is
calculated as

PIh =

( ∣∣MSFEV AR
h

∣∣
∣∣MSFEV ARMA

h

∣∣ − 1

)
× 100.

The results show that in general the VARMA model outperforms the two VAR alternatives.
On average over all 15 forecast horizons, the determinants of mean squared forecast error
matrices of both VAR models are 14% larger than that of the VARMA model. The magni-
tude of the PIs are lower for the tr (MSFE), but the overall picture is similar. Noticeable
from the graphs in Figure (3) is the greater variation observed for the PI of the VARMA
against the V AR (12) for both the forecast error measures. This is perhaps due to the
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Table 6. Estimation results for the US macroeconomic data
PANEL A: Estimated VARMA model: bAyt = bc + bΦ1yt−1 + εt − bΘ1εt−1

bA =

2
664

1 0 0

0 1 0

−0.68
(−5.744)

0 1

3
775 bc′ =

h
0.088

(2.478)a
0.001
(0.217)

0.035
(1.634)

i

bΦ1 =

2
664

0.910
(5.188)

−0.211
(−1.451)

−0.446
(−1.877)

0.125
(2.334)

0.947
(62.223)

−0.088
(−1.061)

0 0 0

3
775 bΘ1 =

2
6664

−0.229
(−1.753)

0.085
(0.375)

0.503
(2.146)

0.001
(0.027)

−0.867
(−20.225)

0.047
(0.695)

0.03
(0.317)

0.107
(0.855)

−0.289
(−4.581)

3
7775

bΣε =

2
4

0.1606
0.0062 0.0265
−0.0154 −0.0105 0.15

3
5

˛̨
˛bΣε

˛̨
˛ = 6.09× 10−4

Res C.T.b

j
m 0 1

0 0.26c 0.26
1 0.29 0.82

PANEL B: Error covariance matrices for VARs selected by AIC and BIC

bΣV AR(12)
ε =

2
4

0.1151
−0.001 0.0198
0.0744 −0.009 0.1704

3
5

˛̨
˛bΣV AR(12)

ε

˛̨
˛ = 2.70× 10−4

bΣV AR(2)
ε =

2
4

0.1606
0.0072 0.0307
0.0942 −0.005 0.2027

3
5

˛̨
˛bΣV AR(2)

ε

˛̨
˛ = 7.04× 10−4

a t− statistics in parentheses
bCriterion Table for the residuals from the estimated model
c The statistics are normalised by the corresponding 5% χ2 critical values
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Table 7. Percentage improvement in —MSFE— and tr(MSFE) of VARMA(1,1)
model over VAR models selected by AIC and BIC

Panel A: PI in terms of |MSFE|
Forecast Horizon (h)

1 2 3 6 9 12 15

V AR (12) 18.814 16.704 14.434 13.699 19.327 11.456 -1.885
V AR (2) 11.225 16.184 18.209 17.743 11.988 10.859 9.482

Av. of Forecast Horizon
1-3 1-6 1-12 1-15

V AR (12) 16.651 17.318 17.866 15.359
V AR (2) 15.206 18.733 16.070 14.862

Panel B: PI in terms of tr (MSFE)

Forecast Horizon (h)
1 2 3 6 9 12 15

V AR (12) 3.059 1.070 1.633 1.780 6.177 3.004 -0.533
V AR (2) 1.019 0.730 1.475 0.930 0.958 1.183 1.125

Av. of Forecast Horizon
1-3 1-6 1-12 1-15

V AR (12) 1.921 1.685 3.342 2.798
V AR (2) 1.075 1.534 1.315 1.257

fact that the V AR (12) is likely to include many redundant parameters. Since long-horizon
forecasts of each model converges to the unconditional mean implied by the model, it is ex-
pected that the forecast performances become closer in longer horizons. The PI values get
closer to zero as horizon increases, and in fact the PIs for h = 15 relative to the V AR (12)
become slightly negative, indicating that the V AR (12) outforecasts the V ARMA (1, 1) for
this forecast horizon.

In empirical business cycle analysis, the purpose of multivariate time series modelling is
to forecast a measure of economic activity several periods into the future. In our example,
the index of industrial production would be our measure of economic activity. Table 8 shows
to what extent the forecasts of the industrial production produced by the V ARMA (1, 1)
model are better than those produced by the VAR alternatives. This shows that for the
horizons up to two quarters ahead, that is for the horizons that are very important for
business cycle analysts, the VARMA model produces substantially better forecasts than
the VAR alternatives.

5. Conclusion

This paper proposes a VARMA modelling procedure that extends the Tiao and Tsay (1989)
scalar component methodology in the directions foreseen by the discussants of that paper.
The proposed modelling procedure consists of three stages: (i) identification of the SCM s
embedded in a VARMA process; (ii) specification of a canonical scalar component VARMA
model by placing identification restrictions on the left hand side matrix that contains the
contemporaneous relationships between the dependant variables; and (iii) full information
likelihood estimation of the fully specified VARMA model.
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Fig. 3. Percentage improvement in terms of the forecast error measures, the VARMA model achieves
versus the VAR models selcted by AIC and BIC

Table 8. Percentage improvement in MSFE of the VARMA(1,1) model over VAR
models selected by AIC and BIC when forecasting Industrial Production

PI in terms of MSFE forecasting Industrial Production

Forecast Horizon (h)
1 2 3 6 9 12 15

V AR (12) 11.354 18.879 18.313 19.073 6.803 4.260 -3.038
V AR (2) 3.095 6.671 5.278 -1.357 -1.061 0.268 0.760

Av. of Forecast Horizon
1-3 1-6 1-12 1-15

V AR (12) 16.182 17.841 12.811 10.249
V AR (2) 5.015 2.889 1.112 0.959
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The complete VARMA modelling procedure is applied to two multivariate data sets. The
first application highlights the advantage of the proposed extension to the T&T procedure
in the estimation of parsimonious VARMA models. The second application shows the
competitive out-of-sample forecasting performance of the identified VARMA model relative
to alternative VAR models.
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