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Abstract

A general parametric framework is developed for pricing S&P500
options. Skewness and leptokurtosis in stock returns as well as time-
varying volatility are priced. The parametric pricing model nests the
Black-Scholes model and can explain volatility smiles and skews in
stock options. The data consist of S&P500 options traded on select
days in April, 1995, a total sample of over 500,000 observations. A
number of performance criteria are used to evaluate the alternative
models. The empirical results show that pricing higher order moments
yield improvements in the pricing of options over the Black-Scholes
model as well as other models.
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1 Introduction

The Black and Scholes (1973) model represents the most common framework
adopted in practice for pricing options. Part of the reason for the popularity
of the Black-Scholes model is its analytical tractability as the price is simply
the mean of a truncated lognormal distribution. Two key assumptions of the
Black-Scholes model are that the distribution of the underlying asset returns
is normal and that volatility is constant. In modelling options written on
equities, neither assumption is found to be valid; for a review of the empirical
literature see Bollerslev, Chou and Kroner (1992). One manifestation of these
misspecifications is the occurrence of volatility smiles and skews, whereby
implied volatility estimates vary across strike prices written on contracts in
the same market; see Hull and White (1987), Corrado and Su (1997) and
Hafner and Herwartz (2001), amongst others.

A number of alternative frameworks have been proposed in the literature
to correct for the misspecification of the Black-Scholes model; see Jackwerth
(1999) for a review. These frameworks can be classified into three broad
categories. The first category involves relaxing the constant volatility as-
sumption. Examples are the deterministic volatility model of Dupire (1994),
the stochastic volatility models of Hull and White (1987) and Heston and
Nandi (2000), and the ARCH models of Engle and Mustafa (1992), Duan
(1995) and Hafner and Herwartz (2001). The second category involves re-
laxing the normality assumption using either parametric or nonparametric
methods. Parametric examples are the lognormal mixture model of Melick
and Thomas (1997) and the flexible distributional framework adopted in
Martin, Forbes and Martin (2001), whilst nonparametric examples are the
Edgeworth expansion of Jarrow and Rudd (1982) and Corrado and Su (1997)
and the nonparametric density estimator of Ait-Sahalia (1996), Ait-Sahalia
and Lo (1998, 2000) and Ait-Sahalia, Wang and Yared (2001). The third

category consists of augmenting the mean returns specification. The most



popular form involves the inclusion of a Poisson jump process; see for ex-
ample, Bakshi, Cao and Chen (1997) and Bates (2000), who also allow for
stochastic volatility.

The approach adopted in this paper combines elements of the first two
approaches. A parametric risk neutral distribution based on the generalised
Student t distribution of Lye and Martin (1993, 1994) is proposed which cap-
tures the leptokurtosis and skewness in observed in returns distributions.
Time varying volatility is modelled by specifying the conditional variance to
be a function of the net state returns over the life of the option; see Rosenberg
and Engle (1997) and Rosenberg (1998). The option is then priced by evalu-
ating the expected value of the discounted payoff of the option contract. The
chosen specifications are appealing in that they lead to a computationally
efficient procedure for pricing options based on univariate numerical quadra-
ture. This is in contrast to models priced using Monte Carlo methods, which
require computing the expectation as an average of a large number of simula-
tion paths. Another advantage of the proposed framework is that a number
of existing parametric models are special cases of the generalised Student t
distribution, including the Black-Scholes model. This means that standard
procedures can be adopted to test between competing parametric specifica-
tions. Other approaches based on lognormal mixture distributions (Melick
and Thomas, 1997) and Edgeworth expansions (Jarrow and Rudd, 1982; and
Corrado and Su, 1997) are shown to be related to the generalised Student t
distribution but not directly nested. For these cases other statistical criteria
are adopted to test between the competing models. A final advantage of the
proposed framework is empirical, as the generalised Student t is shown to
yield prices of S&P500 options which are superior to other models based on
normal, symmetric Student t and mixture distributions.

The rest of the paper is structured as follows. Section 2 presents the

!This distribution is also used by Lim, Lye, Martin and Martin (1998) in pricing cur-
rency options.



framework for pricing options using a general parametric family of distribu-
tions and highlights a number of important special cases. The shapes of the
risk neutral probability distributions are investigated, the effects on option
pricing examined and the presence of volatility smiles and skews discussed.
Some further relationships with alternative pricing models are discussed in
Section 4. The empirical implications for pricing S&P500 options on selected
days in April 1995 are presented in Section 5. In evaluating the competing
models, five performance measures are adopted based on significance test-
ing, mispricing, forecastability, hedging errors and volatility skew corrections.
The key result of the analysis is that the generalised Student t model pro-
duces option prices that are superior to prices produced by all other models
considered. A fundamental feature of these results is the importance of mod-
elling skewness in stock returns both to minimise option pricing errors and to
establish a consistent framework to price options across the full spectrum of
moneyness in a single market. Concluding remarks are contained in Section

6.

2 Parametric Valuation of Options

2.1 General Framework

In this section, a general framework for pricing stock options is presented
based on flexible parametric distributions. The distributional model of the
stock price generalises the lognormal distribution which underlies the Black-
Scholes option price model, by allowing for both skewness and kurtosis in
returns.

As options on the S&P500 index are European options, the option price

model developed here does not allow for early exercise.” Consider valuing a

?However, American style options such as options written on the S&P100 index, could
be priced from the framework developed here by using the upper and lower bounds that
characterise the relationships between European and American options; see Melick and
Thomas (1997).



Furopean call stock option at time ¢ maturing at time 7' = ¢ + n, where n
represents the length of the contract. Defining S; as the spot price at time
t of the stock index, the price of the option with exercise price X, is given
as the expected value of its discounted payoff; see Ingersoll (1987) and Hull
(2000)

F(S) = E e " max (Sy — X,0)[S,], (1)

where the conditional expectation E'[.|S;], is taken with respect to the risk
neutral probability measure, 7 = n/365 represents the time until maturity
expressed as a proportion of a year, and r represents the risk-free interest rate.
An alternative way of writing (1) which is more convenient in developing the
generalised forms of the risk neutral probability distribution adopted in this
paper, is

o0

F($) = e [(Sr = X)g(Stl$:)dsh, 2)

where ¢(Sr|S;) is the risk neutral probability density function of the stock
price at the time of maturity, S7, conditional on the current value, S;.

In deriving the form of the risk neutral probability distribution, g(Sr|S;)
in (2), the returns of the stock index over the life of the option contract are
assumed to be generated as

2
m (51 = ( - (’—) o/ )
S 2

where o p; is the annualised conditional volatility process and z7 is a stan-
dardised random variable with zero mean and unit variance. The Rosenberg
and Engle (1997) formulation of the conditional volatility process is adopted
whereby the volatility is specified as a function of the net state returns over

the life of the option

o= exp (8y + By In (S7/51)) . (4)
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This formulation of the volatility process has the effect of making the volatil-
ity a random variable as it is expressed as a function of the terminal price
St, which is unknown at the time of writing the option contract.

In choosing the form of the distribution function of z7, the adopted distri-
bution needs to be able to capture the well-known empirical characteristics
of stock returns; namely, fat-tailed and sharp-peaked distributions relative
to the normal distribution. The distribution adopted here which has these
characteristics is the generalised Student t distribution introduced by Lye
and Martin (1993, 1994). Formally the generalised Student t distribution is
specified as follows. Let w be a generalised Student t random variable with

mean

oy = [wf (w)dw, (5)

variance

ot = [wif (w)dw— 4, (6)

and density given by

f(w) = kexp [91 tan ! (w/\/;) +051n (1/ + w2) + 03w + 94w2}

= k (y + w2)02 exp [94102] exp [91 tan (w/\/;) + Ggw] , (7

where k£ is the integrating constant given by

Et = /exp [01 tan™! (w/\/;) + 65 1n (1/ + wz) + 03w + (9411)2} dw. (8)

For the standardised generalised Student t variate, zp = (w — p,,)/0w, the

density is



p(zr) = koyexp [491 tan* (MTT) + 602 1n (y + (pyy + O"wZT)2)

+03 (1, + Tw2r) + 04 (1, + 0w2r)?] 9)

where k is the same normalising constant as defined in (7). Closed form ex-
pressions do not exist for k, u,, and o2, but these quantities can be computed
numerically.

The risk neutral probability density function g(Sr|S;), is derived from

the returns distribution p (z7) in (7), via

g(S7[S) = |J|p (21), (10)

where J is the Jacobian of the transformation from z; to Sp, given by

dzr
dSt

2
1 0T

- W 1 +ﬁ202T|tT — B, <1n(ST/St) — (r — T) 7')] ,(11)

and o7, is defined in (4).

J —_—

Stock options can be priced by using (9) to (11) in (2). This formula-
tion expands the Black-Scholes pricing framework as now both kurtosis and
skewness in stock returns as well as conditional volatility, are all priced in
the stock option. Apart from some special cases, the integral in (2) will need

to be computed numerically.

2.2 Special Cases

An advantage of the structure of the returns distribution in (9) is that it nests
the normal and Student t specifications. The power term, (v + w?)” in (9) is
a generalization of the kernel of a Student t density and controls the fatness
in the tails of the distribution. The exponential term, exp [#,w?], corresponds

to the kernel of a normal density. Imposing the restriction 6, < 0, ensures



the existence of all moments of the distribution in the same way that all
moments of the normal distribution exist. The parameters ; and 63, control
the level of skewness. For example, letting 5 = 0, the distribution is skewed
to the left (right) when ¢; < 0 (f; > 0) and is symmetric when ¢; = 0.
Some specific cases of (9) that are implemented in the empirical section are

as follows.

2.2.1 Black-Scholes Option Pricing

The Black-Scholes option price model is based on the assumption that returns
are normally distributed. From (9), normality is achieved by imposing the

restrictions

91 - 02 - 03 - 0704 - —05,
thereby yielding the standard normal probability density function
plar) = ke %1, (12)

with
1

\/27?7

as now y,, = 0 and 02 = 1. Using (12) in (10) gives the risk neutral

k:

probability density as

0'2 2
o ; 1 (I (Sr/S) — <r——;‘3>7'
g( T’ t) - ’ \exp _5 O-T|t\/F )

(13)

where J is given by (11) and o4y, by (4).
The other assumption underlying the Black-Scholes model is that volatil-
ity is constant over the life of the contract. By setting 8, = 0 in (4), (13)

simplifies to the lognormal density

9(51|5:) =

1 (ln(ST/St) _ (r . &éﬂl)) 7_)2
2

1
Stexp (61) /T R I exp (B1) /T

(14)



Using (14) in (2), the price of the option is

Ps)—er | Sr=X) ol 1 In (S7/80) — (r — 2220 7\ * p
v P4 St exp(f)V2nT P73 exp(B,) /T T

(15)
The price of the option is given as the discounted value of the mean of a
truncated lognormal distribution. For this case an analytical solution exists

and is given by the standard Black-Scholes stock option pricing equation
F(S;) = BS = S;N(dy) — Xe ""N(ds), (16)

where

In(S;/X) + (7“ + %22’61)) T
exp(By)\/T

050+ (= ).
exp(fy)V/T

2.2.2 Student t Option Pricing

d =

dy =

The Student t distribution is obtained by imposing the restrictions
91 = 93 = 94 = 0,92 = —05(1 + V),

in (9) where v represents the degrees of freedom parameter. The Student t

density is
p(zr) = ko, exp [—0.5(1 +v)In (l/ + (o, + O'wZT)Q)} ) (17)

where the normalising constant is given by

k:F(HTV)Vl—H/
VT (4

~| o



Defining p,, = 0 and 02 = v/ (v — 2), the standardised Student t density is

—(14w)
v ) (), )
(5) A (1 — ) S 8)

Using (18) in (10) gives the Student t form of the risk neutral probability

p(ZT) =

distribution

9(SrlSy) =] 1/
(19)

where J is given by (11) and o, by (4).> The student t option prices are

9 9 — 12+1/
In (Sp/S;) — <r _ —;L> .

T/ T (v —2)

1+

mlt v

computed by using (19) in (2) which can be evaluated using standard nu-
merical quadrature procedures. The degrees of freedom parameter v, controls
the degree of leptokurtosis in the risk neutral distribution. As v — oo, this
distribution approaches normality and the student t option price approaches

the Black-Scholes price.

2.2.3 GST Option Pricing

The standardised Student t distribution in (18) can be generalised to allow
for skewness by imposing the restrictions

(1+v)
5

03:0420,02:—
on (9). The standardised skewed Student ¢ density is given by

plzr) = koyexp [—0.5(1 +v)In (V +(uy, + UMZT)2)

6, tan~! (%)] | (20)

where k is the normalising constant, which unlike in the case of the normal

and Student t distributions, does not have a closed form expression. It is

3 As the distribution in (19) is defined in terms of S, the risk neutral distribution in
this case could be referred to as the log-Student t distribution.
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this simpler parameterisation of the generalised Student t distribution in (9)
which is adopted in this paper, as it provides the minimalist parameterisation
for modelling the effects of kurtosis (via ) and skewness (via 6;) in stock
returns on option prices.

Using (20) in (10) and, in turn, in (2) yields option prices which allow
for both skewness and kurtosis in stock returns. As with the Student t
price, numerical quadrature procedures are used to evaluate the integral in
(2). Option prices based on this distributional formulation are referred to

hereafter as GST prices.

3 Implications for Pricing Options

3.1 Risk Neutral Distributional Shapes

Some examples of the risk neutral probability distribution g(Sr|S;), are given
in Figures 1 and 2 for various parameterisations. The initial spot price is
Sy = 500, for a 6 month option, 7 = 6/12, with a risk-free rate of interest
of r = 0.05. The volatility specification is given by (4) with 8, = —2, and
values of 3, chosen to control for the relative impact of expected returns over
the life of the option on time-varying volatility.

The Black-Scholes model of constant volatility and normality is repre-
sented by the case 3, = 0, in Figure 1. The other graphs show that the
risk neutral probability distribution becomes more positively skewed as (3,
becomes more positive.

The effects of fat-tails and skewness in the stock returns distribution are
compared with the Black-Scholes model, v — oo and 6; = 0, in Figure 2.
The risk neutral probability distribution becomes relatively more peaked than
the lognormal distribution for relatively low degrees of freedom, v = 4 and
6, = 0. For positive values of #;, the risk probability distribution becomes
even more positively skewed, whilst for negative values of 8, the risk neutral

probability distribution exhibits relatively less positive skewness than the
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lognormal distribution, and possibly even negative skewness.

3.2 Option Price Sensitivities

The sensitivity for pricing options under different distributional parameter-
isations is highlighted in Table 1. The option prices are computed for both
one month contracts, 7 = 1/12, and six month contracts, 7 = 6/12, with
strike prices of X = 450,500, 550. The spot rate is S; = 500 with a risk free
rate of interest » = 0.05.

The Black-Scholes case is represented by the row labeled, Normal 3, = 0,
that is, normal returns with constant volatility. The effects on the Black-
Scholes price of time-varying volatility are highlighted in the next set of rows
with values of 3, increasing from 0.1 to 0.4. Not surprisingly, the price of
options increases monotonically as the value of 3, increases, reflecting that
increases in risk caused by increases in volatility are priced at a premium.

The effects of fat tails in the returns distribution are highlighted by the
rows labeled, Student t. For the one month contracts the Black-Scholes price
exceeds the Student t prices for the at-the-money option, S; = X = 500. This
price differential increases as the fatness in the tails of the returns distribution
increases, that is as v decreases from 9 to 4. The opposite result occurs for
both out-of-the-money and in-the-money contracts where the Student t prices
exceed the corresponding Black-Scholes prices.

The effects of both positive skewness and fat tails in the returns dis-
tribution are highlighted by the rows labeled GST in Table 1. Comparing
the Student t and GST prices, the results show that positive skewness yields
lower option prices that are both in-the-money and at-the-money. For out-of-
the-money options, the option prices are relatively higher than corresponding
prices based on symmetric returns distributions.

For the 7 = 6/12 contracts, increases in both positive skewness and fat-

ness in the tails of the distribution result in Black-Scholes under-pricing in-
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Figure 1: Risk neutral probability distributions for alternative volatility pa-
rameterisations assuming normality in stock returns.
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Figure 2: Risk neutral probability distributions for alternative distributional
parameterisations with 3, = 0.
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Table 1:

Sensitivity of option prices to alternative conditional volatility
parameterisations and distributional models: S; = 500, » = 0.05, 3; = —2.

Distribution Model T =1/12 years T = 6/12 years

X : 450 500 550 450 500 550

Normal: 3, = 0.0 51.88 8.86 0.07  62.89 25.66 6.67
Normal: 3, = 0.1 51.96 8.90 0.07 6325 25.95 6.93
Normal: 3, = 0.2 52.03 8.95 0.08  63.62 26.26 7.21
Normal: 3, = 0.3 52.11 8.99 0.09  64.00 26.58 7.51
Normal: 3, = 0.4 52.19 9.03 0.10  64.79 27.57 8.84
Student t: v = 4,3, =0 52.03 7.99 0.32  63.07 23.73 6.05
Student t: v = 9,3, = 0 51.93 859 0.16  63.00 25.04 6.49
GST: v=4,0,=1,8,=0 51.93 7.80 0.57  62.49 23.52 7.40
GST:v=9,0,=1,8,=0 51.91 858 0.21  62.79 24.99 6.85
GST: v=4,0,=2,8,=0 5191 7.73 0.76  62.09 23.19 8.27
GST: v=9,0, =2,8, =0 51.89 855 0.27  62.58 24.91 7.18

the-money options, but over-pricing at-the-money and out-of-the-money op-

tions.

3.3 Volatility Smiles and Skews

The results in Table 1 provide a demonstration of the volatility smile, as the
implied volatilities derived from the Black-Scholes model for the 7 = 1/12
contracts are relatively higher for both out-of-the-money and in-the-money
options than the at-the-money options. For the longer contracts, 7 = 6/12,

the implied volatilities tend to be relatively higher just for the in-the-money
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contracts. This last result provides evidence of a volatility smirk.

To highlight the relationship between volatility smiles and mispecification
of the returns distribution, the following experiments are performed. The
experiments are based on a true volatility parameter value of o7, = 0 = 0.1
or 10%. The option prices are computed for a three month contract length,
T = 3/12, based on a spot rate of S = 500, and strike prices ranging from
X =400 to X = 600, in steps of 1. The risk free rate of interest is » = 0.05.

Two experiments are conducted to highlight the relationship between the
volatility smile and nonnormality in returns. In the first experiment, the
symmetric Student t distribution risk neutral probability distribution in (19)
is used to compute the option price according to (2). The option prices
are computed over the range X/S = 400/500 to X/S = 600/500, with the
volatility parameter of ¢ = 0.1. Equating this price with the Black-Scholes
price gives the value of the implied volatility plotted in Figure 3.* The calcu-
lations are performed for v = 4,9. The results show that the volatility smile
is accentuated as the degrees of freedom parameter is reduced. In particular,
for contracts that mature approximately at-the-money, the observed price,
as based on the Student t distribution, is below the Black-Scholes price using
the true volatility value of ¢ = 0.1. To equate the two prices the implied
volatility is less than the true volatility. For options both deep in-the-money
and out-of-the-money, the Black-Scholes price based on the true volatility
parameter 0 = 0.1, underpredicts the observed price, thereby resulting in
a relatively higher implied volatility parameter value. The degree of under-
prediction is relatively more severe for deep in-the-money options than it is
for the deep out-of-the-money options as the implied volatility is relatively
higher for the former class of options.

The second volatility smile experiment is the same as the first, except

that the symmetric Student t distribution is replaced by the skewed Student

4The GAUSS procedure NLSY' S is used to compute the implied volatilities.
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t distribution in (20). The range of skewness parameter values are 0; =
{—1,0,1}, with v = 4. The results are presented in Figure 4 and show that
negative skewness in the returns distribution accentuates the smirk in the

volatility smile.

4 Relationships with Other Models

4.1 The Jarrow and Rudd Model

The Jarrow and Rudd (1982) option pricing model has much in common with
the approach adopted here, as both represent augmentations of the Black-
Scholes returns distribution through the inclusion of higher order moment
terms. The Jarrow Rudd model has recently been implemented by Corrado
and Su (1997) and Capelle-Blancard, Jurczenko and Maillet (2001).

To show the relationship between the GST and the Jarrow and Rudd
option pricing models, consider expanding the generalised Student t density
in an Edgeworth expansion around the normal density. Letting p (z7) rep-
resent the generalised Student t density with distribution function P (zr),
and n (z7) represent the normal density with distribution function N (zr),
the Edgeworth expansion is

(w1 (P) = %1 (N)) dn (o)
1! dZT

p(zr) = n(zr) -

(k2 (P) = ko (N)) d®n (2r) (k3 (P) = k3 (N)) d’n (2r)
* 2] a2 3 5 U

(ka (P) = ma (N) 43 (k2 (P) = 2 (N))?) dt (1)

* 41 dz4

+ e (2r),

where ¢ (z7) is an approximating error and &; is the i cumulant of the
associated distribution. This expression can be simplified by noting that

both returns distributions are standardised to have zero mean (k; = 0) and
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Figure 3: Volatility smiles generated when returns are distributed as Student
t with varying degrees of freedom: true volatility is o = 0.1.
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Figure 4: Volatility smiles generated when returns are distributed as Gener-
alised Student t (GST) with v = 4 and varying skewness parameter, 6;: true
volatility is ¢ = 0.1.
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unit variance (kg = 1),

(153 (P) — K3 (N)) d*n (2r)
3! dz3

plzr) = n(zr)—

(22)
(k4 (P) = kg (N)) d*n (21)

N 4! dz} e lar).

This expression shows that the difference between the two densities is de-
termined by the third and fourth moments. Substituting (22) into (10) and
ignoring the approximation error, gives the approximate risk neutral proba-
bility distribution function

(k3 (P) — K3 (N)) d*n (27)

9(5r1S) = 17| |n(ar) - - T

(k4 (P) = Ky (N)) d*n (2r1)
a 41 dzs |7 (23)

where J is the Jacobian of the transformation from 27 to St given in (11) and
(3) is used to substitute zr for Sp. This expression shows that the density
g (St|St) is approximated by the lognormal distribution plus higher order
terms which capture skewness and kurtosis. Using (23) in (2) to price options

yields the Jarrow and Rudd option pricing model
F(S) = BS + M@ + A2Qu, (24)

where BS is the Black-Scholes price defined in (16), 3 and Q4 capture the
third and fourth order moments respectively, and A\; and A\, are parameters.

The establishment of the relationship between the GST and Jarrow and
Rudd models also highlights the risk neutral properties of the GST model. In
particular, as the lognormal distribution corresponds to the risk neutral dis-
tribution, provided that the mean of the underlying process is set equal to the
risk free interest rate, and given that the standardised generalised Student t
distribution is constrained to have the same mean, it follows from the argu-

ments in Jarrow and Rudd (1982) that the standardised generalised Student
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t distribution can be interpreted as the risk neutral probability distribution,

at least in the local region around the lognormal distribution.

4.2 Mixture of Lognormals

An alternative approach suggested by Melick and Thomas (1997) to capture
departures from normal returns is based on a mixture of lognormal distribu-

tions. The option pricing model is
F(S;) = ¢BS (014) + (1 — ¢) BS (024) , (25)

where BS (ain‘t) ,i = 1,2, is the Black-Scholes price as defined in (16), but

with time-varying volatility defined as

o1LT)t = (eXP 51,1 + 51,2 In (ST/St))

oot = (exp By1+ Baaln (ST/St)) : (26)
The parameter 0 < ¢ < 1, is the mixing parameter which weights the two
subordinate lognormal distributions.’

To highlight the relationships between the lognormal mixture model and

the GST model, rewrite (25) as
F(8) = BS (024) + ¢ (BS (014) — BS (024)) ,

which is of a similar form to the Jarrow-Rudd model in (24), except that the
term ¢ (BS (01,) — BS (024)), takes the place of the skewness (A;(Q)3) and

kurtosis (A20)4) components.

4.3 Heston’s Stochastic Volatility Model

Heston (1993) specifies an option price model based on stochastic volatility

which is used by Bates (2000), Bakshi, Cao and Chen (1997), Heston and

°In constrast to the specification of (25), in the lognormal mixture model proposed by
Melick and Thomas (1997), risk-neutrality is not imposed on the underlying distribution.
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Nandi (2000) and Chernov and Ghysels (2000). The general solution is of
the form

F(St) = Stpl — eiTTXPQ, (27)

where P, and P, are inverse characteristic functions which are nonlinear
expressions of the underlying parameters of the model. To highlight the
relationship between the Heston model and the approach presented here,
rewrite (2) as

00 ST

§9(5T|5t)d5T ) (28)
X t

F(S) = 5 {e‘”

— X L/ 9(S7|S:)dSy

with the expressions in the square brackets corresponding respectively to

P, and P, in (27). As noted above, the integrals in (28) are computed
easily using standard numerical procedures. In the case of computing the P;
and P, expressions in (27) the inverse of the characteristic function requires

integration over the complex plane which is less straightforward.

5 Pricing S&P500 Stock Options

5.1 Data Description

The data set used in the empirical application consists of quotes on call op-
tions written on the S&P500 stock index, obtained from the Berkeley Options
Database. The quotes relate to options traded in the month of April, 1995.
Specifically, the alternative models are estimated using the midpoints of bid-
ask quotes for April 4th, 11th and 18th respectively. Predictive and hedging
performances are then assessed using data for the remaining days in April.
FEach sub-sample comprises approximately 40,000 prices, for option contracts
extending over the full moneyness spectrum. Defining S — X as the intrinsic
value of the call option, options for which S/X € (0.97,1.03) are categorised
as at-the-money, those for which S/X < 0.97, as out-of-the-money, and those
for which S/X > 1.03, as in-the-money; see Bakshi, Cao and Chen (1997).
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Maturity lengths range from approximately one to five months. Each record
in the dataset comprises the bid-ask quote, the synchronously recorded spot
price of the index, the time at which the quote was recorded, and the strike
price.

As dividends are paid on the S&P500 index, the current spot price, S;, in
(1) and in all subsequent formulae is replaced by the dividend-exclusive spot
price, S;e™?", where d is the average rate of dividends paid on the S&P500
index over 1995. This rate is used as a proxy for the rate of dividend payment
made over the life of each option. Daily dividend data for 1995, used to
construct d, were obtained from Standard and Poors. Only observations for

which the average of the bid and ask prices exceeds the lower bound of
LB = max{0, S;e™ — e X},

and which are recorded between 9.00am and 3.00pm are included in the
sample. The first restriction serves to exclude prices which fail to satisfy the
no-arbitrage lower bound, whilst the second restriction seeks to minimise the
problem of nonsynchroneity between the spot and option prices.

The interest rate, r, is the three month bill rate observed on that day, with
interest rate data obtained from Datastream. Tables 2, 3 and 4 summarise

the main characteristics of the datasets used in the estimation.

5.2 Model Estimation

Define the theoretical price of the j* option contract at written at time ¢, as
.Fjﬂg = F (St, Xj,t; Tj,’l“; Q) .

The relationship between C;, the market price of the j* option contract at

time ¢, and F}, is given by
Cjﬂg = Fjﬂg + Wej ¢, (29)
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Table 2:
S&P500 Option Price Dataset: April 4, 1995.

Variable All Moneyness (S/X)
Contracts
<097 097 —-1.03 >1.03

Call Price: X $60.87 $8.60 $19.90 $66.36
SD $31.17 $2.84 $5.82 $28.83
Min $1.04 $1.04 $3.38 $21.63
Max $156.25 $10.63 $29.88 $156.25
Number 43584 511 4519 38554
Maturity May 11600 45 121 11434
(No. of Prices)  June 16748 39 2047 14662
Sept. 15236 427 2351 12458
Strike Price: X $448.65
SD $34.02
Min $350.00
Max $550.00
Number 30
Spot: X $503.33
(S&P 500 Index) SD $0.56
Min $502.38
Max $504.56
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Table 3:
S&P500 Option Price Dataset: April 11, 1995.

Variable All Moneyness (S/X)
Contracts
<097 097-1.03 >1.03

Call Price: X $50.00 $6.31 $17.13 $57.01
SD $27.15 $1.98 $5.33 $24.50
Min $0.95 $0.95 $1.94 $19.13
Mazx $157.63  $10.07 $29.00 $157.63
Number 43509 438 7088 35983
Maturity: May 9609 19 1706 7884
(No. of Prices)  June 15254 20 1868 13366
Sept. 18646 399 3514 14733
Strike Price: X $463.37
SD $29.96
Min $350.00
Mazx $600.00
Number 31
Spot: X $506.19
(S&P 500 Index) SD $0.72
Min $502.29
Max $508.42
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Table 4:
S&P500 Option Price Dataset: April 18, 1995.

Variable All Moneyness (S/X)
Contracts
<097 097—-1.03 >1.03

Call Price: X $46.89 $5.13 $17.38 $53.73
SD $25.84 $2.45 $5.19 $23.48
Min $0.60 $0.60 $1.10 $17.38
Mazx $156.88 $8.63 $29.50 $156.88
Number 38099 670 6274 31155
Maturity: May 7984 25 1297 6662
(No. of Prices)  June 12579 27 1699 10853
Sept. 17536 618 3278 13640
Strike Price: X $465.73
SD $28.67
Min $350.00
Mazx $550.00
Number 30
Spot: X $505.65
(S&P 500 Index) SD $0.63
Min $504.12
Max $506.71
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where € is the vector of parameters which characterise the returns distribu-
tion and the volatility specification, and e;; represents the pricing error with
standard deviation w. In the case of the Black-Scholes option pricing model,
for example, Q@ = {3, }. Following the approach of Engle and Mustafa (1992),
Sabbatini and Linton (1998) and Jacquier and Jarrow (2000), the pricing er-
ror e, is assumed to be a standardised normal random variable; see also the
discussion in Clement, Gourieroux and Monfort (2000).° Equation (29) can
be thought of as a nonlinear regression equation, with the parameter vector,
2, entering the model nonlinearly.

Letting N represent the number of observations in a pooled data set of
time series and cross-sectional prices of option contracts, the logarithm of
the likelihood function is defined as

InL = —g In (2mw?) — % 3 (M> . (30)

it w

This function is maximised with respect to w and €2, using the GAUSS pro-
cedure MAXLIK. In maximising the likelihood, w is concentrated out of the
likelihood. The numerical integration procedure for computing the theoreti-
cal option price Fj, for the various models is based on the GAUSS procedure
INTQUADI1. As a test of the accuracy of the integration procedure, both
numerical and analytical formulae for the Black-Scholes model were used.
Both procedures generated the exact same parameter estimates to at least

four decimal points.

5.3 Performance Evaluation

The performance of the alternative pricing models is now investigated. Five

procedures are used to assess the performance of the models. The first con-

®More general specifications of the pricing error in (29) could be adopted. For example,
w could be allowed to vary across the moneyness spectrum of option contracts, while a
more general distributional structure for e;;, could be entertained. Alternatively, the
statistical model could be defined in terms of hedging errors; see Bakshi, Cao and Chen
(1997).
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sists of conducting standard tests of significance on the parameter estimates.
The second concentrates on comparing the relative size of mispricing errors
of each model. The third focuses on forecasting properties, whilst the fourth
procedure compares the relative size of hedging errors from each model. The
last procedure examines the ability of the competing models to correct for

volatility skews.

5.3.1 Statistical Tests

The parameter estimates of the alternative models are contained in Tables 5
to 7 for the three respective days investigated, with standard errors based on
the inverse of the Hessian given in parentheses. The results show clearly that
across all three days there is strong statistical evidence of significant negative
skewness. This feature highlights the property that the underlying empirical
returns distribution is asymmetrical and that models which assume symmet-
rical distributions such as the symmetric Student t and normal distributions,
are misspecified. The skewed and symmetric Student t models also show that
the returns distribution exhibits fat-tails, a result which is consistent with
empirical results based on direct analysis of stock returns. For example, the
April 4th estimate of the degrees of freedom parameter, v = 2, from the
Student t model is 1.815% = 3.294.

The parameter estimates of 3, for all empirical models across all days
in Tables 5 to 7 are all statistically significant, thereby providing strong
evidence of time-varying volatility. This result together with the results dis-
cussed above concerning both fat-tails and negative skewness, provide strong

evidence against the standard Black-Scholes option price model.

5.3.2 Mispricing

An overall measure of the pricing error is given by the residual variance w?,

in (29)
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2
o 23t (Chie — Fie)

W= N ,

where Cj; and Fj, are defined above. Estimates of the residual variance

(31)

for each of the four models across the three days, are given Table 9. A
comparison of these estimates across the models shows that the GST model
yields large reductions in the amount of mispricing. The mixture model is
the next best performer with increases in mispricing over the GST model of
between 26% to 119%. The Student t and normal distribution models yield
even larger increases in mispricing with increases of over 600% in some cases.

To allow for differences in parameter dimensionality across the models
when comparing mispricing properties, the AIC and SIC statistics are also
presented in Table 9. These statistics also provide strong evidence in favour
of the GST model over the other three models investigated. Comparing the
GST and Student t, AIC and SIC values shows that there are significant gains
from modelling skewness in stock returns. The smaller values obtained for
the AIC and SIC statistics in the GST and Student models over the Normal
model also show that there are large gains to be made from modelling the
leptokurtosis in stock returns. Comparing the AIC and SIC values for the
GST and mixture models shows that the generalised Student t distribution
does a better job in modelling the impact of leptokurtosis and skewness on

option prices than does the lognormal mixture model.

5.3.3 Forecasting

The forecasting performance of the normal, Student t, GST and lognormal
mixture pricing models is compared in Table 10. The approach consists of
using the parameter estimates based on the 4th of April data to compute
option prices on the 5th, 6th, 7th and 10th of April; see Corrado and Su
(1997). The RMSE is computed as

2
Zj,t (ijt - Fj,t\April 4th)
N )

RMSE = (32)

29



where

Fj,t|Apri1 4th = F (Sta Xj,ta Tty T3 QApril 4th) )

and Qapi 4 signifies parameter estimates based on April 4th data. Using
data from April 4th in (32) and squaring the result would yield the residual
variance estimates reported in Tables 5 to 7.

The procedure is continued for the other two sample periods, with the
parameter estimates based on the 11th of April data used to compute option
prices for the 12th, 13th and 17th of April, and the parameter estimates
based on the 18th of April data used to compute option prices for the 19th
to the 21st of April.

The results of the forecasting test show that the GST pricing model overall
yields the smallest RMSE. This property consistently occurs over all estima-

tion periods and across all forecast horizons.

5.3.4 Hedging Errors

Consider forming a portfolio that is short in the call option. Normalising the
portfolio on a single call option contract, the size of the investment, I, to set

up the portfolio, P, using a delta hedge is
Pt == It == Aj,tSt — CjJ, (33)

where S is the spot price at the time the portfolio is constructed, C;; is the
call price on the j™ option contract, and A;; represents the proportion of

stocks purchased to delta hedge the portfolio

A :%

7yt dSt (34)

The value of the portfolio at the start of the next day based on the

proportion of stocks purchased in the previous day is

Pjii1 =01 Sip1 — Cjgr. (35)
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The value of this portfolio can be compared to investing the amount I; in (33)
at the risk free rate of interest r; for one day. The value of the investment in

period t 4 1, is
]t+1 = ]t exp (Tt/365) = (Ajﬂgst — Cj,t) exp (T't/365) . (36)

The difference between (35) and (36) yields the one day ahead hedging error;
see Bakshi, Cao and Chen (1997)

Hjip1 = Pjy1— L

= Aj,t (StJrl — St exp (T’t/365)) — (Cj,tJrl — ijt exp (T’t/365)) (37)
The hedging error for k days ahead is calculated as
Hj7t+/€ = Aj,t (St+/€ — St exp (T’tk‘/365)) — (Cj,tJrk — Cj,t exp (T’tk/365)) .

The results of the hedging error experiments for the various option price
models across the three sample periods are contained in Tables 11 to 13.
The total number of unique contracts that have matching contracts across
the forecast period are 574 for April 4th results, 563 for April 11th results
and 377 for April 18th results.” All values are expressed in dollars whereby a
value of +X (—X) means that the portfolio earns $X more than (less than)
would be earned from investing the money at the risk free rate of interest
over the pertinent forecast period. The size of the hedging errors are broken-
down into moneyness classes, S;/X;, as well as being reported for the total
class. For comparison the average values of the investment, I; in (33), across
all contracts for each model are also presented in Tables 11 to 13.

The hedging error results in Tables 11 to 13 show that the absolute values
of the hedge errors associated with the one-step ahead forecasts are all small

relative to the size of the initial investment, being less than 46 cents. There

"In computing the hedging errors, the spot rates are those time-stamped with the call
option. Hence, the spot rates will vary slightly over the day for different contracts written
on the same day.
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is a tendency for the in-the-money option contracts to yield portfolios that
have lower values than if the money was invested at the risk free rate of
interest. Comparing the results across option price models, there is very
little to choose between the models as there are no consistent patterns over

either moneyness or forecast horizons.

5.3.5 Volatility Skew Corrections

As a final performance measure, the ability of the alternative models to
correct for volatility skews are examined. The results are given in Figure 5
for the Black-Scholes, Student t and GST models. using options prices on
April 4th 1995, written on May contracts.® In computing the option price,
Fj,, for each model, the point estimates of the distribution parameters in
Tables 5 and 8 are used, while the implied volatility parameter is computed
by solving
Cie = Fju (o),

for each contract assuming volatility over the life of the contract is fixed,
that is, o7y = o. The calculations are performed over the full range of
strike prices.” To generate a smooth implied volatility surface, the implied
volatility estimates presented in Figure 5 are the predictions from regressing
the implied volatility values on a constant and a quadratic polynomial in
moneyness.

For comparability with Figures 3 and 4, the volatility smiles presented in

Figure 5 are plotted against the inverse of moneyness, X/S.1® The results

8Similar qualitative results are obtained for the June and September contracts, as well
as from using data on April 11th and 18th, 1995. To save space these results are not
presented.

9Contracts with the same strike price X, but different moneyness as a result of differ-
ences in the spot price Sy, over the day, are all included. This yields a total sample size of
over 11,000 contracts to compute the implied volatility functions for April 4th.

10The implied volatilities of the lognormal mixture model are not computed as this
model yields two estimates of the volatility parameter. However, constraining the two
volatility parameter estimates to be equal is equivalent to the Black-Scholes model.
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Table 5:

Maximum likelihood estimates of option price models for the
4th of April 1995: standard errors in brackets, N = 43584.

Parameter GST Student  Normal
B, -1.963 -1.991 -2.123
(0.001) (0.001) (0.001)
8, 0.053 0.142 0.402
(0.002) (0.001) (0.001)
=\ 1.815 1.890 n.a.
(0.003) (0.002)
0, -0.750 0.0 0.0
(0.005)
6, -0.5(1+4%) -0.5(1+492) 0.0
03 0.0 0.0 0.0
04 0.0 0.0 -0.5
Av. log-likelihood® -0.380 -0.800 -1.044

(a) The average log-likelihood is InL/N, where L is likelihood and N is the sample size.

(b) n.a. = not applicable.
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Table 6:

Maximum likelihood estimates of option price models for the
11th of April 1995: standard errors in brackets, N = 435009.

Parameter GST Student  Normal
8, -3.001 -1.935 -2.124
(0.011) (0.002)  (0.001)
B 0.199 0.022 0.420
(0.006) (0.002)  (0.001)
N = v 4.001 1.692 n.a.
(0.004) (0.003)
0, -24.848 0.0 0.0
(0.032)
6, -0.5(1+4%) -0.5(1+492) 0.0
03 0.0 0.0 0.0
04 0.0 0.0 -0.5
Av. log-likelihood® -0.281 -0.983 -1.268

(a) The average log-likelihood is InL/N, where L is likelihood and N is the sample size.

(b) n.a. = not applicable.
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Table 7:

Maximum likelihood estimates of option price models for the
18th of April 1995: standard errors in brackets, N = 38099.

Parameter GST Student  Normal
8, -2.344 -1.997  -2.139
(0.006) (0.001)  (0.001)
B 0.520 0.115 0.421
(0.011) (0.002)  (0.001)
v =V 3.523 1.840 n.a.
(0.009) (0.002)
01 -20.555 0.0 0.0
(0.075)
6, -0.5(1+4%) -0.5(1+492) 0.0
03 0.0 0.0 0.0
0,4 0.0 0.0 -0.5
Av. log-likelihood® -0.515 -1.044 -1.197

(a) The average log-likelihood is InL/N, where L is likelihood and N is the sample size.

(b) n.a. = not applicable.

35



Table &:

Maximum likelihood estimates of the mixture of lognormal option
price model for various dates: standard errors in brackets.

Parameter 4th of April 11th of April 18th of April
5171 -1.350 -1.515 -1.525
(0.003) (0.002) (0.004)
B2 0.253 0.081 0.064
(0.005) (0.003) (0.005)
Ba1 -2.687 -2.924 -2.674
(0.001) (0.002) (0.002)
Ba2 -0.919 0.503 0.472
(0.025) (0.003) (0.002)
A 0.250 0.367 0.311
(0.001) (0.001) (0.002)
Av. log-likelihood(® -0.497 -0.685 -0.895

(a) The average log-likelihood is InL/N, where L is likelihood and N is the sample size.

(b) n.a. = not applicable.
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Table 9:

Estimates of mispricing of alternative models across selected days.

Day Statistic Model

GST Student Normal Mixture

4th of April  Residual variance® 0.125 0.290  0.473 0.158
AIC® 0.760 1.601 2.088 0.995
SIC(© 0.760 1.602  2.089 0.996

11th of April Residual variance 0.103 0.418 0.739 0.230
AIC 0.563 1.966 2.535 1.370
SIC 0.563 1.967 2.536 1.371

18th of April Residual variance 0.164 0.473 0.641 0.351
AIC 1.029 2.089 2.394 1.790
SIC 1.030 2.089 2.394 1.791

(a) Based on equation (31).

(b) AIC = -2InL,/N+2k/N, where L is the likelihood, N is the sample size and k is the

number of estimated parameters.

(c) SIC = -2InL/N-+In(N)k/N, where L is the likelihood, N is the sample size and k is

the number of estimated parameters.
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Table 10:

Forecasting performance of alternative option price
models across various days in April 1995: RMSE.

Forecast

Forecast

Forecast

oth
6th
7th
10th

12th
13th
17th

19th
20th
21th

GST Student Normal

0.459
0.498
0.491
0.481

0.320
0.496
0.799

0.649
0.440
0.961

4th of April

0.600
0.625
0.624
0.681

0.701
0.745
0.775
0.816

11th of April

0.660
0.720
0.943

0.901
0.832
0.967

18th of April

0.785
0.682
1.049

0.872
0.777
1.039

Mixture

0.506
0.525
0.499
0.534

0.505
0.628
0.947

0.678
0.606
1.048
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Table 11:

Hedging performance of alternative option price models
estimated on 4th of April 1995: expressed in dollars.

Day Model

Normal Student GST Mixture

4th  Investment (I) 407.77  407.36 403.67  426.45

Moneyness (S/X)

oth <0.97 -0.41 -0.45  -0.39 -0.68
0.97 - 1.00 -0.31 -0.30  -0.24 -0.17

1.00 - 1.03 0.06 0.09 0.13 0.35

>1.03 0.18 0.17 0.16 0.21

Total 0.16 0.15 0.15 0.20

6th <0.97 -0.17 -0.24  -0.16 -0.60
0.97 - 1.00 6.06 6.08 6.22 6.31

1.00 - 1.03 1.27 1.33 1.40 1.76

>1.03 -3.11 -3.11 =312 -3.00

Total -2.68 -2.67  -2.67 -2.54

7th <0.97 14.01 14.00  14.00 13.97
0.97 - 1.00 13.62 13.64 13.67 13.84

1.00 - 1.03 5.72 5.74 5.76 5.90

>1.03 -6.06 -6.06  -6.05 -5.95

Total -5.07 -5.06  -5.05 -4.95

10th <0.97 10.82 10.80  10.78 10.61
0.97 - 1.00 7.41 7.46 7.50 7.78

1.00 - 1.03 7.61 7.67 7.71 8.09

>1.03 -1.79 -1.79  -1.79 -1.66

Total -0.91 -0.90  -0.90 -0.76
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Table 12:

Hedging performance of alternative option price models
estimated on 11th of April 1995: expressed in dollars.

Day Model

Normal Student GST Mixture

11th  Investment (1) 410.29  412.01 408.90  442.07

Moneyness (S/X)

12th <0.97 -0.19 -0.19  -0.20 -0.19
0.97 - 1.00 0.02 0.01 0.01 -0.03

1.00 - 1.03 -0.04 -0.06  -0.07 -0.15

>1.03 -0.04 -0.04 -0.04 -0.05

Total -0.04 -0.04 -0.04 -0.06

13th <0.97 n.a. n.a. n.a. n.a.
0.97 - 1.00 n.a. n.a. n.a. n.a.

1.00 - 1.03 -11.03 -11.08 -10.85 -11.09

>1.03 -0.97 -0.94  -0.95 -0.75

Total -1.45 -1.43  -1.43 -1.25

17th <0.97 5.91 5.85 6.10 5.79
0.97 - 1.00 2.98 2.99 3.26 3.29

1.00 - 1.03 5.34 5.49 5.58 6.25

>1.03 2.01 2.02 1.99 2.22

Total 2.40 2.43 2.42 2.69

n.a. indicates that the cell does not contain any observations.
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Table 13:

Hedging performance of alternative option price models
estimated on 18th of April 1995: expressed in dollars.

Day Model
Normal Student GST Mixture
18th Investment (/) 398.79  401.24 401.42  439.70
Moneyness (S/X)
19th <0.97 0.21 0.27 0.11 0.49
0.97 - 1.00 0.24 0.22 0.11 0.01
1.00 - 1.03 0.35 0.29 0.27 -0.03
>1.03 0.21 0.21 0.24 0.12
Total 0.24 0.23 0.23 0.09
20th <0.97 n.a. n.a. n.a. n.a.
0.97 - 1.00 -11.56 -11.49 -11.70 -11.25
1.00 - 1.03 -3.99 -4.03 -4.04 -4.22
>1.03 -9.89 -9.88 -9.84 -9.93
Total -9.01 -9.00 -8.98 -9.07
21th <0.97 n.a. n.a. n.a. n.a.
0.97 - 1.00 n.a. n.a. n.a. n.a.
1.00 - 1.03 -11.26 -11.44 -11.05 -12.16
>1.03 -8.59 -8.57 -8.53 -8.41
Total -8.62 -8.60 -8.56 -8.45

n.a. indicates that the cell does not contain any observations.
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show the volatility skew associated with the Black-Scholes model, with im-
plied volatility values of in excess of 30% for deep in-the-money contracts,
and less than 10% for deep out-of-the-money contracts. The Student t model
does a good job in correcting for most of the volatility skew arising from the
Black-Scholes model, leaving just a volatility smirk concentrated in the range
of the deep in-the-money options. The implied volatility values from the GST
model show that the addition of the skewness parameter wipes the smirk from
the Student t implied volatility surface, with implied volatility values in the

range of 12% to 14%.

6 Conclusions

A general framework for pricing skewness, leptokurtosis and time-varying
volatility in S&P500 options was developed. The approach consisted of mod-
elling the returns over the life of the option contract as a generalised Student
t distribution. This yielded a parametric form for the risk neutral density
function which was used to price options. The parametric pricing model was
shown to nest the Black-Scholes model and to capture volatility smiles and
skews.

The performance of a range of models were investigated using option
contracts written on the S&P500 stock index for selected days in April 1995.
The key empirical results were that there were significant gains to be made
from pricing skewness and leptokurtosis in stock returns. In particular, the
GST option price model corrected for volatility skews and smirks thereby
provided a consistent framework to price options in a single market across the
full spectrum of moneyness. The generalised Student t modelling framework
was also found to be superior to models where the risk neutral distribution

was assumed to be a mixture of lognormals.
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Figure 5: Volatility smiles for alternative models using data from April 4th,
1995, written on May options.
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