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Abstract

This paper studies the All Ordinaries Index in Australia, and its futures

contract known as the Share Price Index. We use a new form of smooth

transition model to account for a variety of nonlinearities caused by trans-

action costs and other market/data imperfections, and given the recent

interest in the effects of market automation on price discovery, we focus

on how the nonlinear properties of the basis and returns have changed, now

that floor trading in the futures contract has been replaced by electronic

trading.
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I. I������	�
��

Researchers have studied the dynamic relationship between the price of stock

futures contracts and the underlying cash market ever since 1982, when the

Chicago Mercantile Exchange first introduced futures contracts based on Stan-

dard and Poor’s (S&P) 500 Stock Index. Compelling empirical evidence that

future indices lead stock indices and weaker evidence of feedback has attracted

considerable attention, because standard “no arbitrage” arguments predict that

in perfectly functioning markets there should only be contemporaneous corre-

lations between the two return series, and zero cross-correlations at non-zero

lags and leads. Several reasons for the observed “lead-lag” relationship between

stock market and future indices have been put forward, and these include in-

frequent trading in components of the stock index, the use of transactions data

rather than bid-ask quote data in index calculations, time delays in the compu-

tation and reporting of the stock index, and transaction costs associated with

buying portfolios of stocks and futures contracts. Stoll and Whaley (1990) pro-

vide a useful discussion on possible causes of the “lead-lag” relationship, and

Abhyankar (1998) surveys the empirical evidence on this issue.

The factors that give rise to the “lead-lag” relationship between stock indices

and futures also imply nonlinearities in the behaviour of index returns. The

most obvious of these is the nonlinear effect of transaction costs on portfolio

adjustment, but infrequent trading in stocks can also introduce nonlinearities,

as can the delays and other problems associated with the reporting of the stock

index. The literature that studies nonlinearities in index returns is currently

small, and it mostly focuses on thresholds caused by transaction costs. Authors

such as Yadav et al (1994), Dwyer et al (1996) and Martens et al (1998) have

studied the effects of transaction costs on arbitrage, by estimating threshold

models of the basis and/or returns in the United States. These models assume

identical transaction costs for all investors, and behavioural regimes that depend

on whether arbitrage generates net profits after transaction costs. Statistically

significant evidence of thresholds supports these models, but reconciliation of

the estimated thresholds with independent estimates of transaction costs has

been difficult.

One problem with threshold vs transaction cost comparisons is that both

vary over different investors and different types of stocks. Individual investor

and market specific thresholds then become blurred in an aggregate setting,

and it becomes hard to relate any estimate of an “aggregate threshold” back
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to a simple measure of transaction costs. Anderson (1997) studies this prob-

lem in a paper on arbitrage between bills of different maturity within the U.S.

Treasury Bill Market. She models the yield adjustment process using a smooth

transition error correction model in which transaction costs vary across market

participants. The smooth transition allows for a continuum of regimes, which

in the context of modelling stock returns can account for the nonlinear effects of

infrequent trading and data reporting problems as well as heterogenous transac-

tion costs. Taylor et al (2000) use smooth transition error correction models to

study the heterogeneity in transaction costs associated with trading FTSE100

stocks and futures.

This paper studies the All Ordinaries Index in Australia, and its futures

contract known as the Share Price Index. Several papers have analysed the

lead-lag relationship in the Australian context (see, for example, West (1997),

Lin and Stevenson (1999) and Frino et al (2000)), but little direct work has been

done on examining the nonlinearities in Australian markets. We introduce a

new type of smooth transition model to account for nonlinearities caused by

transaction costs and other market/data imperfections, and given the recent

interest in the effects of market automation on price discovery, our study focuses

on how the nonlinear properties of the basis and the returns have changed,

now that floor-trading in the futures contract has been replaced by electronic

trading.

The effects of screen trading have been studied by Grünbichler et al. (1994)

who studied the German DAX index, and more recently, by Taylor et al. (2000)

who studied the U.K. FTSE100 index. The Australian case differs from these

other cases in that the recent automation involved the futures market, and

created a situation in which both the spot and futures markets were then au-

tomated. In the German case, only the futures market was automated and

stocks continued to be floor-traded, while in the UK case the stock market was

automated while futures continued to be floor-traded. While one might expect

screen trading to reduce the nonlinear effects of transaction costs in all three

of these cases, one would also expect that the automation in the Australian

case would remove asymmetries in dynamic behaviour that had been present

because of the operational differences between trading in the spot market and

trading in the futures market.

We find strong evidence of nonlinearity before the futures trading went on-

line, and weaker evidence of nonlinearity after on-line trading. Our analysis
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suggests that the automation of the futures market has removed the nonlinear

properties of the basis, and made the nonlinear properties of the two returns

series more similar. A particularly interesting finding is that prior to the au-

tomation of the futures market, the nonlinearities that characterise each market

are different, whereas after the introduction of on-line futures trading, the re-

turns in each market have a common nonlinear factor. Futures returns lead

stock returns (with feedback) both before and after the introduction of screen-

trading, and the futures lead increases only slightly after automation. The

speed of mean-reversion in the basis is slow, and appears to be unchanged.

The remainder of this paper is organized as follows. Section 2 of this paper

discusses the theoretical basis for our work, together with various econometric

specifications that account for lead-lag relationships and nonlinearities. This

section introduces our new smooth transition error correction model, which

accounts for the possible effects of transaction costs, infrequent trading and

asymmetries between trading in spots vs futures contracts. Section 3 discusses

the institutional detail that underlies the Australian markets for equities and

futures, and then provides details on the samples that are studied in this pa-

per. Section 4 contains our empirical results, which compare the properties of

the data before and after the cessation of floor trading in the futures market.

Section 5 concludes.

II. T�
��
�
	�� B��
�

The relationship between the futures price of shares underlying a futures

contract and the spot price on the cash market for the same shares is often

described by the cost-of-carry model, which postulates that

Ft = Ste
(r−y)(T−t), (1)

where Ft is the futures price of the index at time t, St is the spot price of the

index at time t, r is the interest rate foregone while carrying the underlying

stocks, y is the dividend yield on the stocks and T − t is the remaining life of

the futures contract. Equation (1) is justified by a “no-arbitrage” assumption,

since Ft > Ste
(r−y)(T−t) would enable investors to profit by selling futures and

buying stocks, while Ste
(r−y)(T−t) > Ft would allow profits by buying futures

and short selling stocks. The assumptions that underlie these arguments are

that markets are perfectly efficient, and that transaction costs are zero. This
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simple version of the model also assumes that the interest rate and dividend

yield are constant over the life of the futures contract, although in practice they

will vary, as will r − y, the net cost of carry of the underlying stocks.

Market efficiency implies that lnSt is a random walk, and that the returns

denoted by st = ∆ lnSt are serially uncorrelated. The cost of carry model

then implies that lnFt will be the sum of the random walk process in lnSt

and the series (r − y)(T − t). The dynamic properties of lnFt then depend on

the assumptions about (r − y)(T − t). When working with tick by tick data it

is reasonable to assume that T is sufficiently distant to justify the treatment

of (T − t) as a constant, and together with the assumptions that r and y are

constant, the basis given by bt = lnFt − lnSt is simply a constant1. Constant

bt are not observed in practice, but in this over-simplified case, lnFt follows the

same random walk process as lnSt, and the returns denoted by ft = ∆ lnFt are

perfectly correlated with st and serially uncorrelated. The two return series ft

and st will have zero cross-correlations at all non-zero leads and lags. Given

that bt is not constant, it is common to allow for this by writing

bt = lnFt − lnSt = µ+ υt (2)

in which µ is interpreted as the expected cost of carry, and υt = bt − µ (with

E(υt) = 0) is known as the mis-pricing error. See Brenner and Kroner (1995)

for further discussion on the stochastic implications of equation (1).

Empirical work has shown that lnSt and lnFt are not pure random walks,

and that both include significant mean reverting components. There is also

considerable evidence that lnSt and lnFt are cointegrated (i.e. they share

the same random walk component). The literature has typically dealt with

the observed correlations in returns data by attempting to “correct” for them

(some examples include Stoll and Whaley (1990), and Shyy et al (1996)), or

by explicitly modeling these dynamics (see, e.g., Wahab and Lashgari (1993),

Brenner and Kroner (1995)). The latter approach, which also accounts for the

cointegration is based on an error correction formulation given by

ft = cf + αf(L)ft−1 + βf (L)st−1 + γf bt−d + ε
f
t (3)

st = cs + αs(L)ft−1 + βs(L)st−1 + γs bt−d + εst

in which αf(L), βf(L), αs(L), and βs(L) are polynomials in the lag operator,

and ε
f
t and εst are zero mean, serially uncorrelated errors that can be con-

temporaneously correlated. Equation (3) implies that returns will respond to
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movements in the basis, consistent with arbitrage activities and corresponding

mean reversion in the basis. As noted by Miller et al (1994), some of the mean

reversion is due to corrections for infrequent trading, as stock indices “catch

up” with futures. The parameter d takes no special meaning in a linear setting

(since one can always reparameterise the lagged polynomials to obtain equiva-

lent models regardless of d), but it becomes important in the nonlinear models

below. The assumption that the γ are not zero corresponds to a “no frictions”

assumption, because it implies that returns respond to all movements in the

basis. The presence of the lagged polynomials allows for short run dynam-

ics, which might arise because of problems associated with the calculation and

reporting of the indices.

The adaptation of equation (3) to account for transaction costs is based

on the intuition that arbitrage will only occur when it generates net profits

to investors. Defining c to be investors’ transaction cost and d to be a delay

associated with making the appropriate trades, the arbitrage condition is given

by |bt−d − µ| > c, which implies a no-arbitrage band given by −c < |bt−d − µ| <

c. The transaction costs are assumed to be the same for all investors, and the

same regardless of whether one is going short or long in the underlying stocks.

The corresponding error correction model becomes

ft = cfi + αfi(L)ft−1 + βfi(L)st−1 + γfi bt−d + ε
f
t (4)

st = csi + αsi(L)ft−1 + βsi(L)st−1 + γsi bt−d + εst

which is a threshold error correction model (see, Balke and Fombey (1997)).

The basis bt−d drives the error correction process, and the threshold c defines

three behavioural regimes in which

i = 1 if bt−d − µ < −c (i.e. if vt−d < −c) (4a)

i = 2 if − c < bt−d − µ < c (i.e. if − c ≤ vt−d ≤ c)

i = 3 if bt−d − µ > c (i.e. if vt−d > c)

We expect γf2 and γs2 to be zero because arbitrage will not generate net profits

when |bt−d − µ| < c, (or equivalently when |vt−d| < c). One can generalise this

model to allow for non-symmetric thresholds, and more than three behavioural

regimes. The papers by Yadev (1994), Dywer et al (1996) and Martens et

al (1998) are all set within this framework. They find statistically significant

evidence in favour of transaction cost thresholds, but have difficulty in relating

the estimated thresholds to average transaction costs. Martens et al (1998) find
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evidence of many thresholds in their data, and attribute some of these thresholds

to transaction costs and other thresholds to the effects of infrequent trading.

These thresholds are not symmetrically distributed around µ, which suggests

differences between the responses to negative and positive pricing errors.

The smooth transition error correction model modifies (4) to obtain

ft = c1f + α1

f(L)ft−1 + β1f (L)st−1 + γ1f bt−d (5)

+Ψf ( vt−d)[c
2

f + α2

f (L)ft−1 + β2f(L)st−1 + γ2f bt−d] + ε
f
t

st = c1s + α1

s(L)ft−1 + β1s(L)st−1 + γ1s bt−d

+Ψs( vt−d)[c
2

s + α2

s(L)ft−1 + β2

s(L)st−1 + γ2s bt−d] + εst ,

in which Ψf and Ψs are exponential (ESTAR) transition functions, defined by

Ψj = [1− exp(−
λj

σ2v

( vt−d)
2)] for j = f, s. (5a)

The Ψj take values between zero and one, and they are monotonically increas-

ing with the absolute size of the pricing error. As the Ψj vary, the VECM

parameters also vary, implying that the nature of the price adjustment process

changes with the size of the pricing error. As discussed in Anderson (1997), if

one views the transition function Ψ as a cumulative density for the distribu-

tion of (non-negative) transaction cost thresholds, then relative to a baseline

case without frictions, the parameters change more, when |vt−d| is larger and a

greater proportion of investors find the prospect of arbitrage more profitable.

Taylor et al (2000) interpret their models in this way, setting γ1f = γ
1
s = 0,

and then letting the smooth transition inherent in the Ψj account for multiple

regimes implied by heterogenous transaction costs. In their model, the response

to pricing errors becomes more pronounced, the larger the absolute size of that

error, and error correction is effective only when |vt−d| is sufficiently large.

[Insert Figure 1 about here]

One shortcoming of using smooth transition functions defined by the Ψj ,

rather than thresholds is that the symmetry in Ψj does not allow for asymme-

tries between the responses to negative and positive pricing errors. The use of

transition functions such as Ψj also restrict the effective width of the implied

“no-arbitrage bands”, unless the λj are very small and Ψj is approximately zero

over a large range of vt−d. Figure 1 compares the responses to pricing errors

using the asymmetric threshold and a symmetric (ESTAR) smooth-transition
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approach. While it is possible to modify the ESTAR model to account for asym-

metries (see Anderson 1997), this paper specifies and employs a new smooth

transition function that allows for wide “no-arbitrage” bands as well as asym-

metries. This function allows for different behaviour, depending on whether the

pricing error is positive or negative, and it is defined by

ΦPj =


 1

1 + exp(−
λPj

σv
( vt−d − cP ))

−

1

1 + exp(
λPj

σv
cP )


 .


1 + exp(

λP j

σv
cP )

exp(
λPj

σv
cP )




(6a)

for vt−d > 0, and

ΦNj =


 1

1 + exp(
λNj

σv
( vt−d + cN))

−

1

1 + exp(
λNj

σv
cN)


 .


1 + exp(

λNj

σv
cN )

exp(
λNj

σv
cN)




(6b)

for vt−d ≤ 0. The subscripts P and N respectively indicate those portions of

the transition function that relate to positive and negative pricing errors. We

call Φ a U-STAR transition function, because its main characteristic is that it

is shaped like a drunken U. The constants in the right hand brackets of these

equations scale Φ so that 0 < Φ < 1, and the constants inside the first brackets

ensure that Φ = 0 at vt−d = 0, and that Φ is continuous at vt−d = 0. See Figure

2 for some illustrations.

[Insert Figure 2 about here]

The U-STAR model then uses (6a) and (6b) in a specification given by

ft = c0f + α0

f(L)ft−1 + β0

f (L)st−1 + γ0f bt−d

+I(vt−d > 0).ΦP f( vt−d)[c
P
f + αP

f (L)ft−1 + βPf (L)st−1 + γPf bt−d]

+I(vt−d ≤ 0).ΦNf( vt−d)[c
N
f + αN

f (L)ft−1 + βNf (L)st−1 + γNf bt−d] + ε
f
t

st = c0s + α0

s(L)ft−1 + β0

s(L)st−1 + γ0s bt−d

+I(vt−d > 0).ΦP s( vt−d)[c
P
s + αP

s (L)ft−1 + βPs (L)st−1 + γPs bt−d]

+I(vt−d ≤ 0).ΦNs( vt−d)[c
N
s + αN

s (L)ft−1 + βNs (L)st−1 + γNs bt−d] + εst , (6)

which implies a total response to pricing errors of γ0j+I(vt−d > 0).γP
j ΦjP (vt−d)+

I(vt−d ≤ 0).γNj ΦjN(vt−d). Since the automation of the futures market should

lower transaction costs and make the adjustment of portfolios easier, we expect

smaller “no arbitrage bands” in the latter part of our sample. For γ
0

j � 0 this
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corresponds to a thinner U ( |cP |, and |cN | will be smaller), with steeper sides

(λP and λN will be bigger). Since the stock market in Australia was automated

prior to that in the futures market, the automation of the futures market should

also reduce the differences between trade based on each index, and therefore

reduce the presence of asymmetries. This corresponds to a decrease in the dif-

ference between |cP |, and |cN |, and a decrease in the difference between λP and

λN . Similar patterns in Φj might also be expected even when γ0j �= 0, although

some response to pricing errors (i.e γ
0

j ) is now present at all times.

III. I���
���
���� D
��
�� ��� D���

Our empirical analysis is based on the All Ordinaries Index (AOI), calcu-

lated by the Australian Stock Exchange (ASX). Based on market capitalisation,

the ASX is the 12th largest share market in the world, and the second largest

in the Asia Pacific Region. At the end of 1999, the AOI was based on 253

actively traded stocks and it accounted for 91% of listed Australian equities.

The Australian Stock Exchange trades between 10.00am and 4.00pm (EST)

from Monday to Friday (public holidays excluded). Opening times for individ-

ual stocks are staggered but all stocks are trading by 10.10, and at the end

of the day additional trading at volume weighted prices may continue until

4.20pm. Stock trading has been fully automated since 1991, when the Stock

Exchange Automated Trading System (SEATS) was introduced. SEATS con-

tinuously matches bids and offers during normal trading hours, and updates the

price indices. It also disseminates this updated information to data vendors, at

frequencies which are usually more than once every minute.

The Sydney Futures Exchange (SFE) has been trading Share Price Index

(SPI R©) futures contracts based on the AOI since 1983, when it became the first

exchange outside the USA to list index futures. Almost 20,000 SPI R© contracts

are traded each day, with most trading occurring in contracts with the next

expiry month. Contracts mature at the end of March, June, September and

December each year. Unlike the ASX, the SFE has not been fully automated

until very recently, with trading in SPI R© futures becoming fully automatic on

October 4, 1999. Trading on the floor occurred between 9.50am to 12.30pm, and

then from 2.00 pm until 4.10 pm (EST) from Monday to Friday (public holidays

excluded) until November 12, 1999. Since then, day-time trading hours have

been extended, with trading starting at 9.30am and continuing until 4.30pm.

Standard & Poors took over the management of the ASX indices in April
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2000. This change has led to an expansion of the All Ordinaries Index to cover

500 stocks, and the introduction of two new indices known as the S&P/ASX 200

and the S&P/ASX 300, which are respectively based on 200 and 300 stocks.

SPI R© futures contracts based on the old All Industries Index are still being

issued, but are being phased out as new futures contracts (called SPI200 and

based on the S&P/ASX200) are being phased in. The first SPI200 contracts

were listed in May 2000 and expired in June2000, while the last SPI R© contracts

will expire in September 2000. The old All Ordinaries Index (based on 253

stocks) is still calculated, but will be discontinued after September 2001.

The data used in this study is tick by tick AOI data obtained from IRESS

(Integrated Real Time Equity System) and matching tick by tick SPI R© data

obtained from the SFE. The samples covered the last two weeks of August

in 1999, and the first two weeks of November 1999. The AOI is updated on

IRESS approximately twice a minute, (to the nearest 0.1 index point), and

this was converted to one observation per minute by using the last observation

for each minute. The SPI data for August listed the time (to the nearest

second), volume (number of contracts) and index value (to the nearest integer)

for each transaction, but the November data recorded trade times in minutes,

rather than in seconds. Minute by minute futures index values were obtained by

weighting the index for each trade by its volume. The last available observation

was used when data was missing. Only those contracts for futures expiring in

September 1999 were included in the August data set, and only those contracts

for futures expiring in December 1999 were included in the November data set.

Both markets were open between 10.00 am to 12.30 pm and then from 2.00

pm to 4.00, which led to 271 matched observations each day. However, the

first 15 minutes of each day were discarded to avoid anomalies related to the

staggered opening of the ASX. The daily samples of the stock and futures indices

were each demeaned using the remaining observations (from 10.16 to 12.30

and 2.00pm to 4.00pm); demeaning the futures index accounted for dividends

and interest rates (which were assumed to be constant for each day), while

demeaning the stock index allowed the scaling of the basis to be centered on

zero2. The analysis was then based on samples covering 10.30 am to 12.30 pm

and 2.15 pm to 4.00 pm (226 observations) for each day, which allowed for the

inclusion of up to 15 contiguous lags in our autoregressions. In total, there were

thirteen days of data for August 1999 (2938 observations) and ten days of data

for November 1999 (2260 observations), making 5198 observations altogether.

10



IV. E��
�
	�� A�����
�

It is useful to examine the properties of the returns and the basis prior

to modelling their dynamics, and some summary statistics relating to the de-

meaned data are provided in Table 1. Returns for futures were more volatile

than those for stocks, and the variability of futures increased slightly after

the automation of that market. The basis was slightly skewed, and although

its variability increased after the automation of the futures market, its range

decreased. All reported first order autocorrelation coefficients (excepting the

futures return for November) were statistically significant, and formal tests in-

dicated stronger first order autocorrelation in returns prior to the cessation

of floor-trading in futures, and stronger negative first order autocorrelation in

basis changes after the shift to electronic trading. The reported statistics for

unit root analysis are the averages of Dickey Fuller unit root test statistics for

each of the daily samples. Tests relating to the full samples would have been

misleading given the removal of overnight returns and the use of different de-

meaning transformations for different days. The averages of the Dickey Fuller

are indicative only, but compared to the usual critical values (-2.88 for ln(price)

and -1.95 for the returns and the basis) they suggest that the log prices have a

unit root, and that returns and the basis are stationary. All 46 of the underly-

ing tests on daily data supported a unit root in ln(prices), all but four3 of the

tests rejected a unit root in returns, and all but six3 rejected a unit root in the

basis.

[Insert Tables 1A and 1B about here]

Table 2 reports some summary statistics relating to three linear VECM(12)

specifications that provide the point of departure for our nonlinear modelling

exercise. These models are based on the full sample, the August sample and

the November sample, and full details are provided in Appendix 1. The above

ADF tests justified our error correction representation, and while AIC suggested

that five lags would be sufficient to model the linear dynamics of returns, we

worked with a longer lag structure to allow for the possibility that AIC might

not choose the optimal lag structure for our nonlinear models. The longer lag

structure also provides a broader picture of the “lead-lag” relationship.

For the full sample, the error correction term is negative in the futures

equation and positive in the stocks equation (as expected), with both results
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being statistically significant. Each of the first ten lags of futures returns are

statistically significant in the stock returns equation, in line with previous find-

ings that returns for futures lead returns for stocks. The effect of lagged stock

returns on futures is statistically significant for two lags, but changes sign at

lag three and becomes insignificant after lag four.

[Insert Table 2 about here]

The VECM(12)s for the August and November subsamples are similar to

the full sample model, in that the error correction coefficients are statistically

significant and negative in the future returns equations and statistically signif-

icant and positive in the stock returns equations. Comparing the August and

November equations, the future returns equation changes very little, although

more lags of stocks have predictive power for futures in August (5 lags), than

in November (2 lags). A heteroscedasticity corrected test of no change has a

p-value of 0.1013. The changes in the equation for stock returns are more pro-

nounced, with the futures lead increasing from about eight minutes in August

to ten minutes in November. For this equation, a heteroscedasticity corrected

test of no change strongly rejects the null, with a p-value of 0.0001. For each re-

turn, the overall level of significance (as measured by the p-value for the overall

F-test) is lower in November than August, suggesting that returns have become

less predictable since the automation in the futures market.

[Insert Table 3 about here]

Table 3 reports the results of heteroscedasticity corrected tests of the linear

VECM(12) against various ESTAR alternatives. Each of these alternatives

uses the lagged basis as a transition variable, but the transition lag is allowed

to vary from one up to twelve. The tests are performed on a model of the basis

as well as on the returns equations, because ESTAR behaviour in the basis will

imply ESTAR behaviour in the returns; this model of the basis had the same

explanators as the VECM(12). Given the similarities between the ESTAR and

USTAR specifications, one would expect the ESTAR tests to have power against

USTAR alternatives. The tests are based on second order approximations to

the nonlinear alternative, and they assess whether the explanatory power of

the linear equations increase, when one adds additional regressors that interact

v
2

t−d
with all of the VECM explanators.
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Given the differences between the August and the November models noted

above, and the fact that we wanted to assess the effect of closing futures floor

trading, the nonlinearity tests were performed on each subsample separately.

For August, nearly all of the tests found strong evidence of nonlinearity asso-

ciated with movements in the basis. The p-values of the tests on returns and

the basis were all minimised when d = 6, which suggests a lag of six minutes

between pricing errors and nonlinear adjustment in returns. For November, the

results were less significant and not as clear, but they supported a specification

using d = 6 for each of the returns equation. The basis did not show evidence of

nonlinearity for any value of d, which together with the contrasting August re-

sults suggests that the process for pricing errors has changed since automation.

Linearity in the basis also casts doubt about the presence of a “no-arbitrage

band”. The fact that d = 6 is not a suitable transition variable for the basis

despite its suitability for each return is interesting for another reason, because

this is consistent with a common nonlinear factor in returns. See Anderson and

Vahid (1998) for details on common nonlinear factors.

We next set d = 6 and then estimated the implied USTAR models. Given

the long lag structure and the complicated nature of the nonlinearity, we used

a two stage estimation process, that involved a grid search for the transition

parameters during the first stage. For the August sample we chose to work with

estimates of the transition function for the basis, since the nonlinearity in the

returns was associated with the nonlinear movement in the basis. The estimated

transition parameters for the basis were then incorporated as fixed transition

parameters in the second stage of estimation, which involved estimating the

other parameters for the equations for stock returns and futures returns. For

November we adopted a different approach, since the basis was linear. Here,

we first used a grid search to estimate the transition function for the stock

returns (which we chose in preference to the futures equation because stock

returns are more predictable than futures returns), and we then estimated the

other parameters for the stock return equation. We then used this, together

with an estimated linear equation for the basis, to deduce the futures equation.

This latter technique imposed the common factor restriction implied by the

nonlinearity tests.

[Insert Tables 4A and 4B about here]

Summary statistics relating to each nonlinear VECM(12) are presented in
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Table 4, and the estimated transition functions are illustrated in Figure 3. Full

details are provided in Appendix 2. The lag structure in these nonlinear models

was richer than than that in the linear VECMS. In the nonlinear model, the fu-

tures lead over stocks was 10 minutes in August and increased to 11 minutes in

November, while stocks could predict futures for up to 12 minutes ahead in Au-

gust, but for only 8 minutes in November. An important property of these mod-

els is that the predictability of each type of return decreased after automation

(the R2 dropped quite substantially), consistent with a decline in the strength

of the lead-lag relationship. The error correction terms were statistically signif-

icant in most regimes for the August equations (including the middle regimes),

which provides evidence against restricting γf1 = 0 and γs1 = 0 (as in Taylor

et al (2000)). Thus, although the strength of error correction changes with the

pricing error, the usual transactions cost interpretation of “no-arbitrage” bands

does not provide the whole story in this case. There are other factors affecting

the mean reversion process, which include infrequent trading and complications

associated with trading portfolios of stocks. For November, the error correction

terms were not statistically significant, although the lagged basis still played

a crucial role in that it generated the transition between different behavioural

regimes4.

[Insert Figure 3 about here]

Figure 3 shows that the boundaries of the behavioural regimes for August

and November are different, with the inner band for pricing errors being more

symmetric for November than for August, and thinner. The increased symmetry

suggests that the automation of the futures market has reduced some of the

practical differences between responding to positive and negative pricing errors,

and the thinner band implies that smaller pricing errors will now induce regime

shifts.

It is hard to interpret autoregressive parameters in time series models, and

nonlinearity further complicates interpretation. We therefore study the dy-

namic properties of our models by analysing their generalised impulse response

functions5. We trace the impacts of shocks to futures and stocks on movements

in the basis, assuming that the basis is initially zero and the market is in equilib-

rium. The size of the shocks that we consider are approximately one standard

deviation of the basis (about 0.07) and two standard deviations, and given that

it is often believed that shocks to the stock index are firm specific and differ-

14



ent from shocks to the futures index which reflect macroeconomic shocks (see

Frino et al, 2000), we consider two extreme cases. In the first case a positive

(negative) shock to the basis is caused purely by a positive (negative) shock in

the futures market, and we call this sort of shock a “macroeconomic” shock.

In the second case a positive (negative) shock to the basis is caused purely by

a negative (positive) shock to the stock index, and we call this sort of shock a

“firm specific” shock.

The generalised impulse response functions are illustrated in Figures 4 and

5. There are minor differences between the effects of the two types of shocks,

and minor asymmetries between the effects of positive and negative shocks.

There are no significant differences between the response functions for August

and November. The half lives of all shocks are short, but in each case it takes

more than an hour for equilibrium to be restored.

[Insert Figure 4 and Figure 5 about here]

V. C��	���
��

This paper examines the impact of screen trading in futures on the nonlin-

ear properties of the basis and returns. We use a new form of smooth transi-

tion model to account for nonlinearities caused by transaction costs and other

market/data imperfections, and we study the properties of these models by

inspecting their implied responses to various shocks. We find strong evidence

of nonlinearity before the futures trading went on-line, and weaker evidence of

nonlinearity after on-line trading. Our analysis suggests that the automation

of the futures market has made the nonlinear properties of the stock market

and the futures market more similar, and that after the introduction of on-line

futures trading, the returns in each market have a common nonlinear factor.

Futures returns lead stock returns (with feedback) both before and after the

introduction of screen-trading, and the futures lead increases only slightly after

automation. The speed of mean-reversion in the basis is slow, and appears to

be unchanged. We find that even though the models are statistically different,

their implications as shown by their impulse response functions are virtually

the same.
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Footnotes:

1. In practice, researchers working with tick by tick data often account for

daily changes in (r−y)(T −t) by removing the daily averages of lnSt and

lnFt from the data. See, eg, Dwyer et al (1996).

2. The assumptions that are made when demeaning the daily samples are

that r and y are constant throughout each day, and that the futures

contract expiry date T is far enough into the future to ensure that (T − t)

is approximately constant throughout each day. The demeaning implies

that bt = vt in our empirical work.

3. Two of these exceptions relate to Melbourne Cup Day, when Australians

are much more interested in a horse race than they are in the stock market.

4. Further exploration based on unit root tests for the basis found weak

evidence of “no-arbitrage bands” given by −0.009 < bt−6 < 0.009 for

August and −0.003 < bt−6 < 0.003 for November, but we do not pursue

this issue further here.

5. Unlike linear models, the expected response to shocks cannot be derived

analytically, and are therefore derived by averaging over many simulated

response paths (See Koop et al, 1996).
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TABLE 1A: SUMMARY STATISTIC RELATING TO THE

INDICES AND RETURNS

August November Full Sample

Futures Stocks Futures Stocks Futures Stocks

Max Price Index 3113.8 3083.4 3018.7 3009.0 3113.8 3083.4

Min Price Index 2905.5 2934.1 2880.2 2887.2 2880.2 2887.2

ADF for ln(Price) -1.349 -1.327 -1.629 -1.855 -1.471 -1.557

Max Return 0.1360 0.1169 0.1296 0.1171 0.1360 0.1171

Min Return -0.1240 0.1238 -0.1602 -0.1023 -0.1602 -0.1238

St Dev Return 0.0299 0.0209 0.0319 0.0197 0.0308 0.0204

ρ1 for Return 0.1590 0.2294 0.0049 0.0837 0.0874 0.1705

ADF for Return -4.330 -4.262 -4.229 -4.670 -4.389 -4.158

No of Observations 2938 2938 2260 2260 5198 5198

TABLE 1B: SUMMARY STATISTICS RELATING TO THE

BASIS

August November Full Sample

Mean 0.0000 0.0000 0.0000

Median -0.0007 -0.0026 -0.0013

Max 0.3896 0.2377 0.3896

Min -0.3113 -0.2122 -0.3113

St Dev 0.0688 0.0785 0.0732

Skewness 0.1511 0.1263 0.1388

Kurtosis 5.1954 2.6947 3.8450

ρ1 for ∆bt -0.1336 -0.1727 -0.1528

ADF -2.1157 -2.1333 -2.1233

No of Observations 2938 2260 5198

Notes: ρ1 is the first order autocorrelation coefficient. The reported ADF

statistics are arithmetic averages of the ADF test statistics for the daily samples.

The ADF regressions for the ln(price) contained a constant and 12 lags, while

the ADF regressions for the returns and the basis contained 12 lags.
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TABLE 2: LINEAR ERROR CORRECTION MODELS OF

RETURNS FOR FUTURES AND STOCKS

FULL SAMPLE

Model of Futures Returns:

Last statistically significant (at 5% level) lag of stock returns: st−4

Error correction coefficient (vt−1) with het. c.t-stat: -0.0287 (-3.9731)

Summary statistics: R2
= 0.049, s.e. = 0.030

Model of Stock Returns:

Last statistically significant (at 5% level) lag of futures returns: ft−10

Error correction coefficient (vt−1) with het. c.t-stat: 0.0254 (5.369)

Summary statistics: R2
= 0.161, s.e. = 0.019

AUGUST SAMPLE

Model of Futures Returns:

Last statistically significant (at 5% level) lag of stock returns: st−5

Error correction coefficient (vt−1) with het. c.t-stat: -0.0276 (-2.5394)

Summary statistics: R2
= 0.069, s.e. = 0.029

Model of Stock Returns:

Last statistically significant (at 5% level) lag of futures returns: ft−8

Error correction coefficient (vt−1) with het. c.t-stat: 0.0280 (3.9015)

Summary statistics: R2
= 0.212, s.e. = 0.019

NOVEMBER SAMPLE

Model of Futures Returns:

Last statistically significant (at 5% level) lag of stock returns: st−2

Error correction coefficient (vt−1) with het. c.t-stat: -0.0301 (-3.1313)

Summary statistics: R2
= 0.044, s.e. = 0.031

Model of Stock Returns:

Last statistically significant (at 5% level) lag of futures returns: ft−10

Error correction coefficient (vt−1) with het. c.t-stat: 0.0215 (3.5346)

Summary statistics: R2
= 0.121, s.e. = 0.019
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TABLE 3: P-VALUES OF HETEROSCEDASTICITY

CONSISTENT TESTS OF

H0 : No Nonlinearity vs H1 : ESTAR type nonlinearity

Transition August November

Lag Stocks Futures Basis Stocks Futures Basis

1 .0004 .0000 .0041 .0466 .3900 .8914

2 .0009 .0000 .0016 .2432 .0029 .4106

3 .0000 .0011 .0026 .0258 .1892 .5832

4 .0004 .0001 .0009 .1360 .6489 .7423

5 .0001 .0000 .0000 .0789 .0789 .1068

6 .0000 .0000 .0000 .0211 .0202 .1611

7 .0000 .0001 .0000 .0057 .0797 .3576

8 .0014 .0032 .0313 .1149 .5574 .7632

9 .0615 .0142 .0586 .0100 .4731 .8928

10 .0034 .0067 .0200 .0380 .0750 .3305

11 .0373 .0330 .0407 .0436 .1842 .8670

12 .0004 .0184 .0231 .0001 .2348 .9009

Note: The minimum p-value found for each set of linearity tests is indicated in

bold type.
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TABLE 4A: NONLINEAR ERROR CORRECTION MODEL OF

RETURNS FOR FUTURES AND STOCKS

AUGUST SAMPLE

Model of Futures Returns:

Last statistically significant (at 5% level) lag of stock returns: st−12

Coefficients and heteroscedasticity corrected t-stats for error correction terms:

γ
N : 0.0375 ( 0.692)

γ
0: -0.0442 (-2.528)

γ
P : -0.1321 (-1.256)

Summary statistics: R2
= 0.102, s.e. = 0.028

Model of Stock Returns:

Last statistically significant (at 5% level) lag of futures returns: ft−10

Coefficients and heteroscedasticity corrected t-stats for error correction terms:

γN : -0.1076 (-2.648)

γ0: 0.0518 ( 4.788)

γP : 0.1664 ( 2.492)

Summary statistics: R2
= 0.248, s.e. = 0.018

Correlation between errors for the two equations is 0.365

Implied s.e. of basis = 0.028.

Transition Function:

ΦPt =

[
1

1 + exp(− 3.42

.0688
( vt−6 − 0.13))

−

1

1 + exp( 3.42

.0688
× 0.13)

]
.

[
1 + exp( 3.42

.0688
× 0.13))

exp( 3.42

.0688
× 0.13)

]

for vt−6 > 0

ΦNt =

[
1

1 + exp( 10

0.0688
( vt−6 + 0.09))

−

1

1 + exp( 10

0.0688
× 0.09)

]
.

[
1 + exp( 10

0.0688
× 0.09)

exp( 10

0.0688
× 0.09)

]

for vt−6 < 0

The transition variable vt−6 is < -0.09 for 216 observations, between -.09 and

0.13 for 2616 observations, and > 0.13 for 106 observations.
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TABLE 4B: NONLINEAR ERROR CORRECTION MODEL OF

RETURNS FOR FUTURES AND STOCKS

NOVEMBER SAMPLE

Model of Futures Returns:

Last statistically significant (at 5% level) lag of stock returns: st−8

Coefficients and heteroscedasticity corrected t-stats for error correction terms:

γ
N : -0.0929 (-1.294)

γ
0: -0.0091 (-0.282)

γ
P : -0.0171 (-0.395)

Summary statistics: R2
= 0.043, s.e. = 0.031

Model of Stock Returns:

Last statistically significant (at 5% level) lag of future returns: ft−11

Coefficients and heteroscedasticity corrected t-stats for error correction terms:

γN : 0.0560 ( 1.379)

γ0: 0.0208 ( 1.180)

γP : 0.0146 ( 0.567)

Summary statistics: R2
= 0.163, s.e. = 0.018

Correlation between errors for the two equations is 0.274.

Implied s.e. of basis = 0.031.

Transition Function:

ΦPt =

[
1

1 + exp(− 10

.0785
( vt−6 − 0.04))

−

1

1 + exp( 10

.0785
× 0.04)

]
.

[
1 + exp( 10

.0785
× 0.04))

exp( 10

.0785
× 0.04)

]

for vt−6 > 0

ΦNt =

[
1

1 + exp( 10

.0785
( vt−6 + 0.09))

−

1

1 + exp( 10

.0785
× 0.09)

]
.

[
1 + exp( 10

.0785
× 0.09)

exp( 10

.0785
× 0.09)

]

for vt−6 < 0

The transition variable vt−6 is < -0.09 for 216 observations, between -.09 and

0.04 for 2009 observations, and > 0.04 for 713 observations.
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Figure 1: Response to Pricing Errors
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In this illustration, γ1 = γ3 = 1,and γ2 = 0. The symmetric thresholds (i.e. -c

and c in eqn (4a)) have been replaced by asymmetric thresholds (-.09 and .12).

ESTAR Transition Function (Ψ in eqn (5))
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= 1 in eqn (5a).
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Figure 2: U-STAR Transition Functions

0.0

0.2

0.4

0.6

0.8

1.0

-0.2 -0.1 0.0 0.1 0.2

Pricing Error

��������

��������

c = 0.13

c = - 0.12

0.0

0.2

0.4

0.6

0.8

1.0

-0.2 -0.1 0.0 0.1 0.2

Pricing Error

����
������	�

c = 0.09
c = - 0.12

25



Figure 3: Estimated Transition Functions
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Figure 4: Mean Reversion in the Basis
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Figure 5: Mean Reversion in the Basis
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APPENDIX 1A: LINEAR ERROR CORRECTION MODEL FOR

THE FULL SAMPLE

Returns for Futures Returns for Stocks

Variable Coef het.c t-stat Coef het.c. t-stat

const -0.0002 -0.4523 -0.0000 -0.1316

vt−1 -0.0287 -3.9731 0.0254 5.3686

ft−1 0.0400 2.0193 0.1771 15.6057

ft−2 -0.0340 -1.8107 0.1117 10.3028

ft−3 -0.0296 -1.5672 0.0933 8.2279

ft−4 -0.0006 -0.0320 0.0545 4.9544

ft−5 -0.0095 -0.5568 0.0565 5.0410

ft−6 -0.0034 -0.1933 0.0246 2.2409

ft−7 0.0103 0.6051 0.0264 2.4878

ft−8 -0.0027 -0.1648 0.0233 2.0659

ft−9 0.0015 0.0853 0.0213 1.9916

ft−10 -0.0149 -0.8755 0.0206 1.9126

ft−11 -0.0104 -0.6304 0.0190 1.777

ft−12 0.0059 0.3594 0.0087 0.8354

st−1 0.2903 10.92224 -0.0084 -0.4713

st−2 0.0627 2.3194 -0.0413 -2.2830

st−3 -0.0186 -0.7046 -0.0548 -3.1965

st−4 -0.06422 -2.4054 -0.0349 -2.0721

st−5 -0.0276 -1.0767 -0.0338 -1.9466

st−6 -0.0059 -0.2295 -0.0191 -1.1448

st−7 -0.0444 -1.8100 -0.0437 -2.6382

st−8 -0.0149 -0.6180 -0.0169 -1.0355

st−9 0.0337 1.4646 0.0032 0.2001

st−10 0.0147 0.6366 -0.0242 -1.6130

st−11 0.0233 1.1217 -0.0140 -0.9581

st−12 -0.0033 -0.1593 -0.0265 -1.7854

R2 0.0488 0.1612

s.e 0.0301 0.0187

Note: The pricing error vt−1 = bt−1 − µ is used as the error correction term.
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APPENDIX 1B: LINEAR ERROR CORRECTION MODEL FOR

THE AUGUST SAMPLE

Returns for Futures Returns for Stocks

Variable Coef het.c t-stat Coef het.c. t-stat

const -0.0003 -0.5047 0.0000 0.0220

vt−1 -0.0276 -2.5394 0.0280 3.9015

ft−1 0.1030 4.1596 0.2168 13.3864

ft−2 -0.0370 -1.5210 0.1243 8.2632

ft−3 -0.0035 -0.1317 0.0985 6.1992

ft−4 -0.0173 -0.7257 0.0466 2.8822

ft−5 0.0067 0.2765 0.0567 3.4756

ft−6 0.0064 0.2541 0.0332 2.1668

ft−7 0.04487 1.8601 0.0242 1.6036

ft−8 0.0140 0.5904 0.0321 2.0885

ft−9 -0.0069 -0.2797 0.0154 0.9983

ft−10 -0.0266 -1.1316 0.0093 0.6117

ft−11 -0.0030 -0.1288 0.0214 1.4354

ft−12 0.0138 0.5723 0.0015 0.1025

st−1 0.2831 7.9086 0.0000 0.0040

st−2 0.0205 0.5771 -0.0336 -1.4428

st−3 -0.0291 -0.8341 -0.0643 -2.7648

st−4 -0.0673 -1.8982 -0.0516 -2.2869

st−5 -0.0773 -2.2647 -0.0536 -2.3922

st−6 -0.0188 -0.5383 -0.0211 -0.9796

st−7 -0.0553 -1.6394 -0.0533 -2.4407

st−8 -0.0056 -0.1738 -0.0483 -2.2176

st−9 0.0325 1.0124 -0.0031 -0.1376

st−10 0.0184 0.6242 -0.0036 -0.1712

st−11 0.0384 1.3737 -0.0090 -0.4696

st−12 0.0054 0.1945 -0.0362 -1.7486

R2 0.0694 0.2121

s.e 0.0290 0.0187

Note: The pricing error vt−1 = bt−1 − µ is used as the error correction term
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APPENDIX 1C: LINEAR ERROR CORRECTION MODEL FOR

THE NOVEMBER SAMPLE

Returns for Futures Returns for Stocks

Variable Coef het.c t-stat Coef het.c. t-stat

const 0.0000 0.0116 -0.0001 -0.2701

vt−1 -0.0301 -3.1313 0.0215 3.5346

ft−1 -0.0294 -0.9750 0.1334 8.5887

ft−2 -0.0402 -1.4318 0.0930 6.0773

ft−3 -0.0554 -2.1399 0.0861 5.4026

ft−4 0.0063 0.2420 0.0640 4.289

ft−5 -0.0243 -1.0098 0.0617 4.0238

ft−6 -0.0186 -0.7495 0.0194 1.2551

ft−7 -0.0278 -1.1550 0.0311 2.0984

ft−8 -0.0307 -1.3406 0.0141 0.8690

ft−9 0.0033 0.1357 0.0268 1.8369

ft−10 -0.0080 -0.3314 0.0318 2.1267

ft−11 -0.0177 -0.7459 0.0171 1.1424

ft−12 -0.0085 -0.3784 0.0145 1.0294

st−1 0.2850 7.2584 -0.0483 -1.8785

st−2 0.1211 3.0051 -0.0645 -2.2729

st−3 0.0202 0.5010 -0.0433 -1.6646

st−4 -0.0392 -0.9514 -0.0099 -0.3764

st−5 0.0431 1.0931 -0.0015 -0.0567

st−6 0.0178 -0.4589 -0.0009 -0.0365

st−7 -0.0269 -0.7348 -0.0161 -0.6480

st−8 -0.0213 -0.5792 0.0328 1.3321

st−9 0.0347 1.0309 0.0175 0.7482

st−10 0.0026 0.0711 -0.0482 -2.2835

st−11 -0.0118 -0.3730 -0.0273 -1.2324

st−12 -0.0306 -0.9448 -0.0293 -1.3929

R2 0.0436 0.1205

s.e 0.0313 0.0186

Note: The pricing error vt−1 = bt−1 − µ is used as the error correction term
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APPENDIX 2A: NONLINEAR ERROR CORRECTION MODEL

OF FUTURES (AUGUST SAMPLE)

Superscript 0

Regime

Superscript P

Regime

Superscript N

Regime

Variable Coef t-stat Coef t-stat Coef t-stat

const -0.001 -1.525 0.035 1.987 0.0003 0.0325

vt−6 -0.044 -2.528 -0.132 -1.256 0.037 0.692

ft−1 0.093 3.151 0.299 2.320 0.052 0.510

ft−2 -0.027 -0.941 0.034 0.250 0.065 0.642

ft−3 -0.026 -0.839 0.463 2.773 0.210 1.812

ft−4 -0.015 -0.536 0.154 1.208 0.003 0.024

ft−5 -0.021 -0.736 0.530 3.158 0.044 0.400

ft−6 0.005 0.174 -0.084 -0.650 0.005 0.054

ft−7 0.042 1.579 0.163 1.363 -0.082 -0.846

ft−8 0.044 1.661 -0.318 -2.727 -0.197 -2.261

ft−9 0.025 0.926 -0.230 -2.230 -0.168 -1.549

ft−10 -0.012 -0.449 0.179 1.276 -0.282 -3.322

ft−11 -0.006 -0.224 0.238 1.423 -0.141 -1.420

ft−12 0.020 0.746 -0.009 -0.068 -0.052 -0.567

st−1 0.266 6.564 -0.165 -0.769 0.031 0.219

st−2 0.014 0.341 -0.277 -1.255 0.007 0.053

st−3 -0.022 -0.546 -0.249 -1.324 -0.094 -0.630

st−4 -0.042 -1.016 -0.430 -1.751 -0.136 -0.847

st−5 -0.089 -2.221 -0.229 -1.121 0.129 0.850

st−6 -0.027 -0.710 0.073 0.373 0.174 1.312

st−7 -0.088 -2.361 0.270 1.278 0.240 2.034

st−8 -0.022 -0.635 -0.161 -0.888 0.243 1.986

st−9 0.006 0.180 0.170 0.946 0.221 2.010

st−10 0.011 0.331 -0.238 -1.472 0.155 1.327

st−11 0.016 0.514 0.007 0.044 0.220 1.916

st−12 0.030 0.967 0.032 0.221 -0.213 -2.097

Transition λ not applicable 3.42 10

Transition c not applicable 0.13 -0.09

See equations (6), (6a) and 6(b) for the model specification. All t statistics

are corrected for heteroscedasticity. The R2 is 0.102 and the s.e. is 0.028.
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APPENDIX 2B: NONLINEAR ERROR CORRECTION MODEL

OF STOCKS (AUGUST SAMPLE)

Superscript 0

Regime

Superscript P

Regime

Superscript N

Regime

Variable Coef t-stat Coef t-stat Coef t-stat

const 0.0001 0.277 -0.030 -2.700 -0.009 -1.552

vt−6 0.052 4.788 0.166 2.492 -0.108 -2.648

ft−1 0.185 9.761 -0.019 -0.231 0.116 1.544

ft−2 0.094 5.437 -0.103 -1.175 0.188 2.660

ft−3 0.068 3.852 -0.090 -0.964 0.180 2.090

ft−4 0.015 0.830 -0.266 -2.612 0.250 2.989

ft−5 0.021 1.040 -0.147 -1.755 0.191 2.286

ft−6 0.017 0.991 -0.168 -2.309 0.186 3.466

ft−7 0.017 1.029 0.037 0.440 0.073 1.224

ft−8 0.042 2.443 -0.096 -1.472 -0.059 -1.059

ft−9 0.007 0.384 -0.074 -0.920 0.119 1.735

ft−10 0.001 0.052 -0.050 -0.572 0.019 0.356

ft−11 0.011 0.697 -0.048 -0.553 0.057 0.740

ft−12 0.009 0.558 -0.242 -2.578 -0.012 -0.202

st−1 0.014 0.521 0.097 0.692 -0.041 -0.362

st−2 0.023 0.906 0.027 0.203 -0.336 -3.266

st−3 -0.022 -0.899 0.434 3.408 -0.412 -4.426

st−4 -0.020 -0.819 0.224 1.722 -0.236 -2.368

st−5 -0.011 -0.432 0.030 0.268 -0.244 -2.449

st−6 -0.018 -0.779 0.048 0.345 -0.091 -1.115

st−7 -0.024 -0.986 -0.196 -1.839 -0.176 -2.446

st−8 -0.067 -2.868 0.063 0.461 0.140 1.856

st−9 -0.006 -0.253 0.118 0.989 -0.018 -0.206

st−10 0.010 0.417 0.070 0.601 -0.151 -2.049

st−11 -0.026 -1.280 0.176 1.481 0.124 1.751

st−12 -0.038 -1.778 0.266 2.799 -0.115 -1.654

Transition λ not applicable 3.42 10

Transition c not applicable 0.13 -0.09

See equations (6), (6a) and 6(b) for the model specification. All t statistics

are corrected for heteroscedasticity. The R2 is 0.248 and the s.e. is 0.018.
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APPENDIX 2C: NONLINEAR ERROR CORRECTION MODEL

OF FUTURES (NOVEMBER SAMPLE)

Superscript 0

Regime

Superscript P

Regime

Superscript N

Regime

Variable Coef t-stat Coef t-stat Coef t-stat

const 0.0004 0.372 -0.001 -0.294 -0.008 -0.875

vt−6 -0.009 -0.282 -0.017 -0.395 -0.093 -1.294

ft−1 -0.137 -2.367 0.194 2.421 0.316 3.018

ft−2 -0.061 -1.197 -0.005 -0.070 0.098 1.012

ft−3 -0.099 -1.961 0.092 1.327 0.069 0.653

ft−4 0.020 0.380 -0.065 -0.873 0.007 0.070

ft−5 -0.003 0.056 -0.090 -1.335 0.028 0.258

ft−6 0.022 0.551 -0.077 -1.269 -0.067 -0.802

ft−7 -0.062 -1.706 0.121 2.143 -0.016 -1.192

ft−8 -0.042 -1.275 0.034 0.624 0.060 0.750

ft−9 -0.007 -0.224 0.019 0.309 0.032 0.359

ft−10 -0.023 -0.650 0.046 0.800 -0.049 -0.601

ft−11 -0.003 -0.082 -0.040 -0.706 -0.024 -0.285

ft−12 0.006 0.197 -0.019 -0.363 -0.043 -0.518

st−1 0.355 5.128 -0.104 -1.073 -0.203 -1.443

st−2 0.171 2.454 -0.027 -0.262 -0.249 -1.884

st−3 0.056 0.764 -0.086 -0.848 0.007 0.049

st−4 -0.053 -0.728 0.034 0.317 -0.010 -0.075

st−5 0.055 0.720 -0.029 -0.280 0.095 0.727

st−6 -0.084 -1.307 0.197 2.144 0.144 1.183

st−7 0.066 -1.076 -0.167 -1.903 -0.256 -2.205

st−8 -0.066 -1.141 0.058 0.657 0.229 1.917

st−9 0.034 0.670 -0.001 -0.008 -0.106 -0.838

st−10 0.063 1.049 -0.099 -1.186 -0.095 -0.769

st−11 -0.010 -0.217 -0.098 -1.313 0.172 1.667

st−12 -0.069 -1.348 0.083 1.130 0.067 0.650

Transition λ not applicable 10 10

Transition c not applicable 0.04 -0.09

See equations (6), (6a) and 6(b) for the model specification. All t statistics

are corrected for heteroscedasticity. The R2 is 0.043 and the s.e. is 0.031.
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APPENDIX 2D: NONLINEAR ERROR CORRECTION MODEL

OF STOCKS (NOVEMBER SAMPLE)

Superscript 0

Regime

Superscript P

Regime

Superscript N

Regime

Variable Coef t-stat Coef t-stat Coef t-stat

const -0.001 -1.322 0.0002 0.097 0.011 1.990

vt−6 0.021 1.180 0.015 0.567 0.056 1.379

ft−1 0.105 3.657 0.049 1.191 0.028 0.436

ft−2 0.082 3.108 -0.011 -0.255 0.045 0.807

ft−3 0.096 3.505 -0.018 -0.412 -0.127 -2.458

ft−4 0.075 2.683 -0.037 -0.874 -0.089 -1.585

ft−5 0.076 2.974 -0.027 -0.595 -0.065 -1.097

ft−6 0.020 0.987 -0.008 -0.211 0.036 0.729

ft−7 0.038 1.881 -0.002 -0.042 -0.012 -0.255

ft−8 0.034 1.595 -0.053 -1.357 -0.025 -0.469

ft−9 0.018 0.934 0.006 0.152 0.069 1.240

ft−10 0.018 0.902 0.044 1.225 -0.023 -0.430

ft−11 0.005 0.296 0.029 0.813 0.005 0.092

ft−12 0.010 0.535 0.003 0.093 0.029 0.521

st−1 -0.030 -0.786 -0.069 -1.074 0.085 0.946

st−2 -0.089 -2.377 0.072 1.095 0.050 0.572

st−3 -0.075 -1.791 0.060 0.927 0.127 1.380

st−4 -0.034 -0.833 0.029 0.436 0.201 2.216

st−5 -0.064 -1.637 0.144 2.189 0.106 1.308

st−6 -0.035 -1.030 0.068 1.100 0.020 0.229

st−7 0.028 0.786 -0.095 -1.587 -0.136 -1.752

st−8 0.055 1.786 -0.063 -1.147 -0.008 -0.092

st−9 0.035 1.126 -0.039 -0.712 -0.036 -0.393

st−10 0.011 0.399 -0.123 -2.587 -0.115 -1.473

st−11 0.022 0.831 -0.093 -1.936 -0.080 -0.825

st−12 -0.010 -0.330 0.005 0.103 -0.103 -1.234

Transition λ not applicable 10 10

Transition c not applicable 0.04 -0.09

See equations (6), (6a) and 6(b) for the model specification. All t statistics

are corrected for heteroscedasticity. The R2 is 0.163 and the s.e. is 0.018.
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