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Abstract: We propose a new method for forecasting age-specific mortality and fertility rates

observed over time. Our approach allows for smooth functions of age, is robust for outlying

years due to wars and epidemics, and provides a modelling framework that is easily adapted to

allow for constraints and other information. We combine ideas from functional data analysis,

nonparametric smoothing and robust statistics to form a methodology that is widely applicable

to any functional time series data, and age-specific mortality and fertility in particular. We

show that our model is a generalization of the Lee-Carter model commonly used in mortality

and fertility forecasting. The methodology is applied to French mortality data and Australian

fertility data, and we show that the forecasts obtained are superior to those from the Lee-Carter

method and several of its variants.

Key words: Fertility forecasting, functional data, mortality forecasting, nonparametric

smoothing, principal components, robustness.

JEL classification: J11, C53, C14, C32.

1 Introduction

In this paper, we propose a new approach to forecasting age-specific mortality and fertility

rates that combines ideas from functional data analysis, nonparametric smoothing and robust

statistics. While our methodology could be applied to forecasting functional time series in other

contexts, we restrict our attention here to mortality and fertility forecasting.

There has been a surge of interest in this problem in the last few years, driven by the need

for good forecasts to inform government policy and planning. Fundamental changes in wel-

fare policy are taking place in many countries as a result of forecasts of an increasing elderly
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population. These age-specific population forecasts rely on age-specific forecasts of mortality

and fertility rates. Therefore, any improvements in mortality and fertility forecasting have an

immediate impact in guiding policy decisions regarding the allocation of current and future re-

sources. Future mortality rates are also of great interest in the insurance and pensions industry,

and fertility forecasts are of interest to governments in planning children’s services.

Recently, several authors have proposed new approaches to mortality forecasting utilizing

smoothing and statistical modelling. We add to this literature with another approach that dif-

fers from the existing proposals in that it treats the data as functional, and provides estimation

and forecasting that are robust to outliers. Our methodology also applies to the fertility fore-

casting problem, and to other areas where forecasts of functional data are required.

We review some of this literature below, but first we define the problem more precisely. Let

yt(x) denote the log of the observed mortality or fertility rate for age x in year t. We assume

there is an underlying smooth function ft(x) that we are observing with error. Thus, we observe

the functional time series {xi, yt(xi)}, t = 1, . . . , n, i = 1, . . . , p where

yt(xi) = ft(xi) + σt(xi)εt,i , (1.1)

εt,i is an iid standard normal random variable and σt(xi) allows the amount of noise to vary

with x. Typically {x1, . . . , xp} are single years of age (x1 = 0, x2 = 1, . . . ) or denote 5-year age

groups. We are interested in forecasting yt(x) for x ∈ [x1, xp] and t = n + 1, . . . , n + h.

Figure 1 shows an example of such data for France. (Age-specific mortality rates can be higher

than one as they are traditionally computed as the total number of deaths of people aged x

in year t divided by the estimated number of people of age x in the middle of the year. See

Wilmoth, 2002.) The observational error is clear from the figure, as is the increasing variance

for higher ages, especially for x > 100. It is also apparent that the dynamic behaviour of the

underlying curves is relatively complicated with, for example, the ‘bump’ around 18–19 years

higher relative to nearby ages in 1977 than in the other years plotted. Similarly, the general drop

in mortality over time (largely due to improvements in hygiene, diet and medical interventions)

is not uniform over either age or time. Furthermore, there are some ‘outlier’ years such as 1918;

this particular year was unusual due to the large number of 15–50 year old deaths as a result

of World War I and the effects of the Spanish flu pandemic. Clearly, any forecasts of these data
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Figure 1: Five years of data showing male death rates in France. Note the changing shape in the curve
over time and the increased variance for high ages. The year 1918 was an outlier due to the Spanish flu
pandemic and World War I.

will need to be able to model the complex dynamic behaviour and be robust to outlying years.

Our approach is a natural extension of methods for mortality and fertility forecasting that have

evolved over the last two decades. An important milestone during that period was the public-

ation of Lee and Carter (1992); they proposed a methodology for modelling and extrapolating

long-term trends in mortality rates and used it to make forecasts of US mortality to 2065. The

methodology has since become very widely used and there have been various extensions and

modifications proposed (e.g., Lee and Miller, 2001; Booth, Maindonald and Smith, 2002; Ren-

shaw and Haberman, 2003; and Wolf, 2004). The methodology has also been applied to fertility

by Lee (1993) and others.

The Lee-Carter method involves using the first principal component of the log-mortality (or

fertility) matrix with (i, t)th element {yt(xi)}. Our proposed methodology can be considered

a successor to Lee and Carter in that it also involves a principal component decomposition of

the mortality or fertility rates. It also draws on the approaches of Bozik and Bell (1987) and Bell

Hyndman & Ullah: 8 February 2005 3
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and Monsell (1991).

However, we differ from these authors in several important respects. First, we use the func-

tional data paradigm (Ramsay and Silverman, 1997) to frame our methodology. This immedi-

ately leads to the use of nonparametric smoothing to reduce some of the inherent randomness

in the observed data. It also avoids problems associated with data grouped into age intervals.

Second, we propose a robust version of principal components to avoid difficulties with outly-

ing years.

Our approach is summarized below.

1 Smooth the data for each t using a nonparametric smoothing method to estimate ft(x)

for x ∈ [x1, xp] from {xi, yt(xi)}, i = 1, 2, . . . , p.

2 Decompose the fitted curves via a basis function expansion using the following model:

ft(x) = µ(x) +
K

∑
k=1

βt,k φk(x) + et(x) (1.2)

where µ(x) is a measure of location of ft(x), {φk(x)} is a set of orthonormal basis func-

tions and et(x) ∼ N(0, v(x)).

3 Fit univariate time series models to each of the coefficients {βt,k}, k = 1, . . . , K.

4 Forecast the coefficients {βt,k}, k = 1, . . . , K, for t = n + 1, . . . , n + h using the fitted time

series models.

5 Use the forecast coefficients with (1.2) to obtain forecasts of ft(x), t = n + 1, . . . , n + h.

From (1.1), forecasts of ft(x) are also forecasts of yt(x).

6 The estimated variance of error terms in (1.2) and (1.1) are used to compute prediction

intervals for the forecasts.

Because of the outlying years, we shall use robust estimation for the age functions µ(x) and

φk(x). The time series {βt,k} will not be estimated robustly, so that any outlying years will be

modelled by outliers in the time series. This enables the outlying years to be clearly identified,

and the time series models used in step 3 will be chosen to allow for outliers.

At first it might be thought that model (1.2) should also have a separate additive time term
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βt,0 along with the age term µ(x). Then the model would be similar to a two-way analysis of

variance with µ(x) and βt,0 representing the two main effects, and the interaction modelled as

the sum of product terms. However, we omit the time term as it complicates the forecasting

because it is then difficult to ensure βt,0 is uncorrelated with βt,k for k ≥ 1. We want to have βt,k

uncorrelated with βt,j for all j 6= k, so that multivariate time series models are not required.

The nonparametric smoothing (step 1 above) can be undertaken using one of the existing

smoothing methods (e.g., Ruppert, Wand and Carroll, 2003; or Simonoff, 1996). We prefer

constrained and weighted penalized regression splines for mortality and fertility data. The

weighting takes care of the heterogeneity due to σt(x) and we apply either a monotonic con-

straint (for mortality rates) or a concavity constraint (for fertility rates). These constraints and

the smoothing methods used are described in more detail in Section 2.

The decomposition using an orthonormal basis (step 2) is achieved using functional principal

components analysis based on Ramsay and Dalzell (1991). We discuss the application of this

approach in a time series context in Section 3, using a robust method for principal components

to avoid problems with outlying observations.

Silverman (1996) discusses a smoothed version of principal component analysis for functional

data, but we prefer smoothing the functional data first rather than smoothing the principal

components directly, as it allows us to place relevant constraints on the smoothing more easily.

Locantore et al. (1999) also proposes a robust approach to functional principal component ana-

lysis, developed for analysing some ophthalmology data. Our approach for making the prin-

cipal components decomposition robust is much more efficient than their method (see Croux’s

contribution to the discussion of Locantore et al., 1999).

Section 4 describes steps 3–6 including forecasting the coefficients {βt,k} and the construction

of the forecasts and forecast intervals for yt(x). We apply the ideas to Australian fertility and

French mortality data in Section 5. Finally, in Section 6 we explore connections between our

proposed methodology and some of the methods that have been suggested in the demographic

literature. We also show how the model can be easily extended to allow for cohort effects and

explanatory variables.

There are two recent proposals for mortality forecasting that also incorporate nonparametric
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smoothing. De Jong and Tickle (2004) show how to combine spline smoothing and estimation

via the Kalman filter to fit a generalized version of the Lee-Carter model. Currie et al. (2004)

employ bivariate penalized B-splines to smooth the mortality surface in both the time and age

direction. They then model the numbers of deaths using a Poisson distribution rather than

the mortality rates that we choose to model. The forecasting is achieved by extrapolating the

fitted surface in the time direction. They assume the observed data are independent, so any

serial correlation in the time dimension is presumably soaked up by the smoothing procedure.

Neither of these approaches is robust and so do not cater for unusual years. Nor can they easily

incorporate qualitative constraints such as monotonicity or concavity on the smoothing. They

are also more difficult to generalize for cohort effects and explanatory variables.

2 Constrained and weighted smoothing

Let mt(x) denote the observed mortality rate for age x in year t and define Nt(x) to be the total

population of age x at 30 June in year t. Then mt(x) is approximately binomially distributed

with estimated variance N−1
t (x)mt(x)[1 − mt(x)]. So the variance of yt(x) = log[mt(x)] is (via

a Taylor approximation)

σ̂2
t (x) ≈ [1 − mt(x)]N−1

t (x)m−1
t (x). (2.1)

We define weights equal to the inverse variances wt(x) = Nt(x)mt(x)/[1 − mt(x)] and use

weighted penalized regression splines (Wood, 2003; He and Ng, 1999) to estimate the curve

ft(x) in each year.

For fertility data, let pt(x) denote the observed fertility rate per thousand women for mothers

of age x in year t and Nt(x) is the female resident population of age x at 30 June in year t. Then,

using a similar approach,

σ̂2
t (x) ≈ [1000 − pt(x)]N−1

t (x)p−1
t (x). (2.2)

We apply a qualitative constraint to obtain better estimates of ft(x), especially when σt(x) is

large. For mortality data, we assume that ft(x) is monotonically increasing for x > c for some

c (say 50 years). This monotonicity constraint allows us to reduce the noise in the estimated

curves for high ages, and is not unreasonable for this application (the older you are, the more
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likely you are to die). We use a modified version of the approach described in Wood (1994) to

implement the monotonicity constraint.

For fertility data, we constrain the fitted curves to be concave. Again, this seems reasonable

and is satisfied for all the fertility data we have seen. He and Ng (1999) provide a method for

implementing this constraint.

3 Robust functional principal components

There are many ways the basis functions (in step 2 above) could be chosen. However, the op-

timal orthonormal basis set is obtained via principal components (see Ramsay and Silverman,

1997, p.90). For a given K, this gives the basis functions {φk(x)} which minimize the Mean

Integrated Squared Error

MISE =
1

n

n

∑
t=1

∫

e2
t (x) dx.

Thus, this basis set provides the best fit to the estimated curves. It also enables more informat-

ive interpretations and gives coefficients that are uncorrelated, thus simplifying the forecasting

process.

Because we seek a robust estimate of µ(x), we shall use the L1-median of the estimated smooth

curves { f̂1(x), . . . , f̂n(x)}, given by

µ̂(x) = argmin
θ(x)

n

∑
t=1

‖ f̂t(x) − θ(x)‖

where ‖g(x)‖ =
(∫

g2(x) dx
)1/2

denotes the norm of the function g. The algorithm of Hössjer

and Croux (1995) can be used to compute µ̂(x) on a fine grid of points. The median-adjusted

data is denoted by f̂ ∗t (x) = f̂t(x) − µ̂(x).

We now introduce two methods for obtaining robust principal components for { f̂ ∗t (x)}: one

uses a weighted approach and the other is based on a projection pursuit algorithm. Then we

will combine the two methods to obtain an efficient and robust method for obtaining the basis

functions {φk(x)}.
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3.1 Weighted principal components

Our aim is to find the functions φk(x) such that the variance of the scores

zt,k = wt

∫

φk(x) f̂ ∗t (x) dx (3.1)

is maximized subject to the constraints

∫

φ2
k(x) dx = 1 and

∫

φk(x)φk−1(x) dx = 0 if k ≥ 2. (3.2)

These are defined iteratively for k = 1, . . . , K where K ≤ n − 1. The weights wt are chosen

so that outlying observations receive low weight. (Exactly how this is done is explained in

Section 3.3.)

We proceed in a similar manner to Ramsay and Silverman (1997, Chapter 6). Suppose that we

can write each adjusted smoothed function f̂ ∗t (x) in an alternative basis expansion

f̂ ∗t (x) =
m

∑
j=1

at,j ξ j(x)

and let A = (at,j) denote the n × m matrix of coefficients. This basis expansion arises naturally

if the computation of f̂t(x) is achieved using regression splines. Now let J be the m × m matrix

with (i, k)th element Jik =
∫

ξi(x) ξk(x) dx and find the Choleski decomposition J = U ′U .

Then

φk(x) = (U−1g(k))′ξ(x) . (3.3)

where g(k) is the kth normalized eigenvector of (U−1)′JSJ ′U−1, S = (n − 1)−1A′W 2A, W =

diagonal(w1, . . . , wn), and ξ(x) = [ξ1(x), . . . , ξm(x)]′. If Φ is the p × (n − 1) matrix with (i, k)th

value φk(xi), and F is the n× p matrix with (t, i)th element f̂ ∗t (xi) then β̂t,k is the (t, k)th element

of B = F Φ.

A computationally simpler procedure is to discretize the smooth functions f̂ ∗t (x) on a fine grid

of q equally spaced values {x∗1 , . . . , x∗q} that span the interval [x1, xp]. Denote the resulting

n × q matrix by G and let G∗ = WG where W = diagonal(w1, . . . , wn). Then the singular

value decomposition of G∗ gives G∗ = ΨΛV ′ where φ̂k(x∗j ) is the (j, k)th element of Ψ. If

B = GΨ, then β̂t,k is the (t, k)th element of B. Other values of φk(x) can be computed using

linear interpolation.

Hyndman & Ullah: 8 February 2005 8
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3.2 Principal components by projection pursuit

Joliffe (2002) describes several proposals for obtaining robust principal components. However,

most of these are based on robust estimates of the sample covariance matrix. In the context

of functional data, this approach poses difficulties because the covariance matrix is of infinite

dimension. Instead, we adopt the projection-pursuit approach of Li and Chen (1985).

Here, our aim is to find the functions φk(x) such that the dispersion of the scores (3.1) with

equal weights is maximized subject to the constraints (3.2). We measure the dispersion by

the function S(z1,k, . . . , zn,k). Note that if S is taken to be the sample variance, then this is

identical to the definition of principal components given by Ramsay and Silverman (1997, p.86).

Other measures of dispersion will lead to alternative decompositions analogous to the classical

procedure. The remarkable properties of variance enable very rapid computation via singular

value decomposition as described earlier. With other measures of dispersion, computation is

more difficult, and the values of φk(x) must be obtained iteratively for k = 1, 2, . . . .

The algorithm of Li and Chen (1985) is as robust as the dispersion measure used. However, it

is extremely slow and several authors (beginning with Croux and Ruiz-Gazen, 1996 & 2005)

have sought to find more computationally attractive approaches. To our knowledge, the best

current solution is the RAPCA algorithm of Hubert, Roussseeuw and Verboven (2002) as it

is more numerically stable and faster for high-dimensional data than the other proposals for

obtaining projection-pursuit estimates of principal components. The RAPCA algorithm uses

the first quartile of pairwise differences as the measure of dispersion; thus

S(z1,k, . . . , zn,k) = 2.2219cn{|zi,k − zj.k|; i < j}(τ)

where τ =
( ⌊n/2⌋+1

2

)

and cn is a small-sample correction factor to make S an unbiased estim-

ator.

The Li-Chen algorithm (and its derivatives, including RAPCA) are designed for discrete mul-

tivariate data, rather than functional data. However, we can use a fine discretization of the

data to obtain approximate solutions. Applying the RAPCA algorithm to the matrix G gives

functions φ1(x), . . . , φK(x) computed on the grid of points x ∈ {x∗1 , . . . , x∗q}.

One drawback with this approach is that the RAPCA algorithm tends to give basis function

Hyndman & Ullah: 8 February 2005 9
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estimates that have higher curvature than the original components { f̂t(x)}. Consequently, we

seek a combination of the projection-pursuit approach with the weighted approach to principal

component analysis, retaining the best features of each. This also has the advantage of higher

efficiency.

3.3 Two-step algorithm for functional principal components

We propose a combination of the weighted principal component method and the RAPCA al-

gorithm to give the following two-step procedure for robust functional principal component

analysis:

1 Use the RAPCA (projection pursuit) algorithm described in Section 3.2 to obtain initial

(highly robust) values for {β̂t,k} and {φk(x)} (t = 1, . . . , n; k = 1, . . . , K).

2 Define the Integrated Squared Error for period t as

vt =
∫

x

(

f̂ ∗t (x) −
K

∑
k=1

β̂t,kφk(x)
)2

dx .

This provides a measure of the accuracy of the principal component approximation for

year t. We then compute the weights wt = 1 if vt < s + λ
√

s and 0 otherwise, where

s is the median of {v1, . . . , vt} and λ > 0 is a tuning parameter to control the degree of

robustness.

Use these weights to obtain new estimates of {β̂t,k} and {φk(x)} using the method de-

scribed in Section 3.1.

The choice of weight function is motivated by assuming et(x) is normally distributed for large

enough K. Then vt will have a χ2 distribution and E(vt) = Var(vt)/2. Therefore, using a nor-

mal approximation (valid for large degrees of freedom), the probability that vt < s + λ
√

s is

approximately Φ(λ/
√

2) where Φ(·) is the distribution function of the standard normal dis-

tribution. This is also the efficiency of the algorithm compared to the classical approach when

wt = 1 for all t. For example, with λ = 3 the efficiency is Φ(3/
√

2) = 98.3%, and λ = 4 gives

an efficiency of 99.8%.
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If λ → ∞, then wt = 1 for all t and so the estimates in Step 3 are the same as those using the

method described in Ramsay and Silverman (1997). On the other hand, the smaller the value

of λ, the more outliers are omitted. For λ > 0, our algorithm retains the breakdown point of

the RAPCA algorithm, namely 50%.

4 Forecasting

The two-step robust principal components method described in the previous section yields the

decomposition

f̂t(x) = µ̂(x) +
K

∑
k=1

β̂t,k φk(x) + êt(x).

Thus we need to forecast βt,k for k = 1, . . . , K and t = n + 1, . . . , n + h. For K > 1 this is a

multivariate time series problem. However, because of the way the basis functions φk(x) have

been chosen, the coefficients β̂t,k and β̂t,ℓ are uncorrelated for k 6= ℓ. Therefore it is likely that

univariate methods will be adequate for forecasting each series {β̂t,k}, for k = 1, . . . , K. There

may still be cross-correlations at non-zero lags, but these are likely to be small given the zero

contemporaneous correlations. We explore this issue in the examples of Section 5.

To obtain forecasts of each coefficient, we use univariate time series models for each series

of coefficients {β1,k, . . . , βn,k}, k = 1, . . . , K. These could be ARIMA models (Box, Jenkins &

Reinsell, 1994), structural models (Harvey, 1989), exponential smoothing state space models

(Hyndman, et al., 2002), or any other time series model suitable for the coefficient series.

For those time periods where wt = 0, corresponding to outlying observations, the coefficients

β̂t,k are likely to be very different from the coefficients associated with times where wt = 1.

Therefore, before fitting the time series models for each coefficient series, we replace the coef-

ficients {β̂ j,k} where j ∈ {t : wt = 0} by missing values. Provided the time series model can

be expressed in linear state space form, it is easy to estimate the model parameters in the pres-

ence of missing values by computing the likelihood via the Kalman filter (Brockwell and Davis,

1991, pp.482–484).

Hyndman & Ullah: 8 February 2005 11
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4.1 Forecasting the functions

Now combining (1.1) with (1.2) we obtain

yt(xi) = µ(xi) +
K

∑
k=1

βt,k φk(xi) + et(xi) + σt(xi)εt,i . (4.1)

Then, conditioning on the observed data I = {yt(xi); t = 1, . . . , n; i = 1, . . . , p} and the set of

basis functions Φ, we obtain h-step ahead forecasts of yn+h(x):

ŷn,h(x) = E[yn+h(x) | I , Φ] = µ̂(x) +
K

∑
k=1

β̃n,k,h φ̂k(x) . (4.2)

where β̃n,k,h denotes the h-step ahead forecast of βn+h,k using the estimated time series

β̂1,k, . . . , β̂n,k.

The forecast variance also follows from (4.1):

ζn,h(x) = Var[yn+h(x) | I , Φ] = σ̂2
µ(x) +

K

∑
k=1

un+h,k φ̂2
k(x) + v(x) + σ2

t (x) (4.3)

where un+h,k = Var(βn+h,k | β1,k, . . . , βn,k) can be obtained from the time series model, and

σ̂2
µ(x) (the variance of the smooth estimate µ̂(x)) can be obtained from the smoothing method

used. The observational error variance σ2
t (x) is computed using the approximations (2.1) or

(2.2). The model error variance v(x) is estimated by averaging ê2
t (x) for each x. Because of the

way the model has been constructed, each component is orthogonal to the other components

and so the forecast variance is a simple sum of component variances.

Then, assuming the various sources of error are all normally distributed, a 100(1− α)% predic-

tion interval for yt(x) is constructed as ŷn,h(x) ± zα

√

ζn,h(x), where zα is the 1 − α/2 standard

normal quantile.

4.2 Forecast accuracy and order selection

Let en,h(x) = yn+h(x)− ŷn,h(x) denote the forecast error for (4.2). Then the Integrated Squared

Forecast Error is defined as

ISFEn(h) =
∫

x
e2

n,h(x) dx.

Hyndman & Ullah: 8 February 2005 12
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To choose the order K of the model, we minimize the ISFE on a rolling hold-out sample. That

is, we fit the model to data up to time t and predict the next m periods to obtain ISFEt(h),

h = 1, . . . , m. Then we choose K to minimize
n−h

∑
t=N

m

∑
h=1

ISFEt(h) where N is the minimum number

of observations used to fit the model. In the applications in Section 5, we have used N = 20.

5 Applications

We demonstrate the methodology using two applications involving demographic data—age-

specific fertility and age-specific mortality. In the first case, we have yt(xi) = log(pt(xi))

where pt(xi) denotes the fertility rate for age xi in year t. In the second case we have

yt(xi) = log(mt(xi)) where mt(xi) denotes the mortality rate for age xi in year t.

5.1 Fertility forecasting

Annual Australian fertility rates (1921–2000) for age groups {15–19, 20–24, 25–29, 30–34, 35–

39, 40–44, 45–49} were obtained from the Australian Bureau of Statistics (Cat.No.3105.0.65.001,

Table 38). These are defined as the number of live births during the calendar year, according to

the age of the mother, per 1,000 of the female resident population of the same age at 30 June.

The data are shown as separate time series in Figure 2. We convert these to functional data by

estimating a smooth curve through the observations, taking the centre of each age group as the

point of interpolation. Several of these curves are shown in Figure 3. Note that we set fertility

at ages 13 and 52 to be 0.001 for all years. While this is relatively arbitrary, it will be close to

reality and helps stabilize the fitted curves. Of course, it makes a negligible difference to the

fitted curves between ages 17 and 47.

The smooth curves f̂t(x) were estimated using a weighted median smoothing B-spline, con-

strained to be concave (see He and Ng, 1999, for details). For these data, σ2
t (x) is ob-

tained from (2.2) and we weight the smoothing B-splines using the inverse variances wt(x) =

Nt(x)pt(x)/[1000 − pt(x)].

Figures 2 and 3 both reflect the changing social conditions affecting fertility. For example,

there is an increase in fertility in all age groups around the end of World War II (1945), a rapid

decrease in fertility during the 1970s due to the increasing use of contraceptive pills, and an
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Figure 2: Log fertility rates viewed as functional data and calculated using median smoothing B-splines
constrained to be concave.
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Figure 3: Log fertility rates viewed as functional data and calculated using median smoothing B-splines
constrained to be concave.
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increase in fertility at higher ages in more recent years caused by a delay in child-bearing while

careers are established.

The order-selection procedure described in Section 4.2 led to a model with K = 3 basis func-

tions. The forecast methodology used in these computations was the single source of error

state space model (Hyndman, et al., 2002) which underlies the damped Holt’s method. This

was selected as it extrapolates the local trends seen in the coefficient series while damping them

to avoid nonsensical long-term forecasts. The robustness parameter was set to λ = 3 and the

minimum number of observations used in fitting the models was N = 20.

The fitted bases φ̂k(x) and associated coefficients β̂t,k are shown in Figure 4. In this case, no

points were identified as outliers, and so the fitted principal components are the same as those

obtained using the procedure described in Ramsay and Silverman (1997). The basis functions

explain 86.3%, 10.3% and 2.6% of the variation respectively, leaving only 0.8% unexplained.

From Figure 4, it is apparent that the basis functions are modelling the fertility rates of mothers

in different age ranges: φ1(x) models late-mothers in their 40s, φ2(x) models young mothers in

their late teens and 20s, and φ3(x) models mothers in their 30s. The coefficients associated with

each basis function demonstrate the social effects noted earlier. See, in particular, the increase in

the coefficients around 1945, the decrease in the coefficients during the 1970s, and the increase

in βt,1 and βt,3 and decrease in βt,2 since 1980 reflecting the shift to later ages for giving birth.

Twenty-year forecasts of the coefficients are shown in Figure 4. The grey shaded regions are

80% prediction intervals computed from the underlying state space model as described in

Hyndman et al. (2005).

Combining the forecast coefficients with the estimated basis functions yields forecasts of the

fertility curves for 2001–2020. The forecasts for 2001 and 2020 are shown in Figure 5 along with

80% prediction intervals computed using the variance given by (4.3). Forecasts for the inter-

vening years lie between these two years. Clearly, the greatest forecast change is a continuing

decrease in fertility rates for ages 17–30. A small increase is forecast for ages 30 and over.
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Figure 4: Basis functions and associated coefficients for the data shown in Figures 2 and 3. A decom-
position of order K = 3 has been used. Forecasts of the coefficients are shown with 80% prediction
intervals.
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Figure 5: Forecasts of fertility rates for 2001 and 2020, along with 80% prediction intervals.
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5.2 Mortality forecasting

Annual French mortality rates (1899–2001) for single year of age were obtained from the Hu-

man Mortality Database (www.mortality.org). These are simply the ratio of death counts to

population exposure in the relevant interval of age and time. Some of the data were shown in

Figure 1.

For these data, we estimate ft(x) using penalized regression splines (Wood, 2003) as they allow

monotonicity constraints to be imposed relatively easily. These are useful in our mortality

application where we assume that ft(x) is monotonic for x > c for some c (say 50 years). This

monotonicity constraint allows us to avoid some of the noise in the estimated curves for high

ages, and is not unreasonable for this application (the older you are, the more likely you are to

die). We use a modified version of the approach described in Wood (1994) to implement the

monotonicity constraint.

The observational variance, σ2
t (x), is obtained from (2.1). The order-selection procedure de-

scribed in Section 4.2 led to a model with K = 4 basis functions. The forecast methodology

used in these computations was the same as in the Australian fertility example.

The fitted bases φ̂k(x) and associated coefficients β̂t,k are shown in Figure 6. In this case, several

years were identified as outliers, namely 1914–1919 and 1940–1945. Obviously these are largely

due to war deaths changing the mortality patterns for those years. The basis functions explain

95.7%, 2.1%, 1.1% and 0.5% of the variation respectively, leaving only 0.7% unexplained.

From Figure 6, it is apparent that the basis functions are modelling different movements in

mortality rates: φ1(x) primarily models mortality changes in children; φ2(x) models the differ-

ence between young adults and those over 60; and φ3(x) models the very old. The final basis

function, φ4(x) is more complex and we do not attempt to interpret it. The mortality rates for

children have dropped over the whole data period, while the difference between young adults

and those over 60 has only been falling since about 1960, and has levelled off in the last decade

of data. This phenomenon is captured by the time series model in projecting no change to this

coefficient over the next fifty years.
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Figure 6: Basis functions and associated coefficients for the French male mortality data. A decom-
position of order K = 4 has been used. Outlying years are connected with grey lines; other years are
connected with black lines. Fifty-year forecasts of the coefficients are also shown. The grey shaded regions
are 80% prediction intervals computed from the underlying state space model as described in Hyndman
et al. (2005).

6 Connections with other approaches

There has been many recent studies on mortality forecasting, the vast majority based on the

Lee-Carter (LC) method which combines a parsimonious demographic model with statistical

time series analysis (Lee and Carter, 1992; Carter and Lee, 1992; Lee, Carter and Tuljapurkar,

1995). The LC method uses raw mortality rates rather than smoothed functions, and conven-

tional PCA rather than functional PCA. It also uses only one principal component. In practical

implementations, the LC method seems to always utilize a random walk with drift for forecast-

ing the coefficients, although the original paper allowed for other possibilities.

The modelling framework we propose here is a generalization of the the LC method. The LC

method is obtained if we set K = 1, λ = ∞, and under-smooth the data so the fitted functions

ft(x) interpolate the observations yt(x). A random walk with drift is also a special case of
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an exponential smoothing state space model (it is equivalent to Holt’s linear method with the

second smoothing parameter set to zero).

Lee and Miller (2001) proposed a modification to the LC method in which the coefficient series

is adjusted so the fitted life expectancy is equal to the observed life expectancy in each year.

They also adjust the forecasts by the amount yn(x) − µ̂(x) − β̂n,1φ1(x) in an attempt to reduce

bias. We conjecture that this bias is due to the model having order too low (K = 1) and is

reduced by simply increasing K.

Booth, Maindonald and Smith (2002) modified the LC method to adjust the coefficients using

age-at-death distribution, and to determine the optimal fitting period in order to address non-

linearity in the time component. For Australian data, this modified version results in greater

forecast life expectancy and a fifty percent reduction in forecast error than LC method.

Our approach also bears some similarities to the work of Bozik and Bell (1987), Bell and Monsell

(1991) and Bell (1997). These authors also use a principal component decomposition, but do not

allow for outliers and do not use nonparametric smoothing. They suggest using a multivariate

time series model for all coefficients and do not exploit the orthogonality of the coefficient

series.

We compare our results with those obtained using the methods of Lee and Carter (1992), Lee

and Miller (2001) and Booth, Maindonald and Smith (2002). The methods are applied to the

French mortality data for years 1899–m and we forecast years m + 1, . . . , min(2001, m + 20).

The forecasts are compared with actual values and we average the MSE (on the log scale) over

m = 1959, . . . , 2000. The results are shown in Figure 7. Our approach is the most accurate of the

approaches considered, particularly for longer forecast horizons where the benefit of a damped

trend forecast is greater. The big difference between the Lee-Miller method and the Lee-Carter

method is primarily due to the bias reduction.

Booth, Tickle and Smith (2004) compared out-of-sample forecast performance for the LC, Lee-

Miller and Booth-Maindonald-Smith methods on 20 sex-specific populations, and found that

the two latter methods were both substantially better than the original LC method, but that

there was little difference between these methods. The relatively poor performance of the

Booth-Maindonald-Smith method in our comparison is due to the much longer evaluation
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Figure 7: Comparative forecast accuracy of four methods showing out-of-sample MSE of log mortality.
Fitting period: 1899–m where m = 1959, . . . , 2000. Forecast period: m + 1, . . . , min(2001, m + 20).

period (1959–2000) than was considered in Booth, Tickle and Smith (2004). Forecasts early

in this period were particularly poor due to the presence of substantial outliers in the fitting

period.

7 Extensions

In many situations, there will be multiple functional time series to be forecast, and these will

have related dynamics. Consequently, it is useful to consider several extensions of our basic

model.

Suppose we observe a functional time series yt,j(x) for each of j = 1, . . . , M groups. For ex-

ample, j may denote sex in which case M = 2. Alternatively, j may denote a geographical

region within a country. Then the following models are of interest:

yt,j(x) = µ(x) +
K

∑
k=1

βt,kφk(x) + et,j(x) (7.1)
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yt,j(x) = µj(x) +
K

∑
k=1

βt,kφk(x) + et,j(x) (7.2)

yt,j(x) = µj(x) +
K

∑
k=1

βt,j,kφk(x) + et,j(x) (7.3)

yt,j(x) = µj(x) +
K

∑
k=1

βt,j,kφk,j(x) + et,j(x) (7.4)

These represent models of successively more degrees of freedom. The first (7.1) assumes no

difference between the groups; (7.2) assumes the groups differ by an amount depending only

on x and not t; (7.3) assumes the same basis functions apply to all groups, but the coefficients

differ between groups; and (7.4) allows completely different models for each group.

More complicated variations are possible. For example,

yt,j(x) = µj(x) +
K

∑
k=1

βt,kφk(x) +
L

∑
ℓ=1

γt,j,ℓψℓ,j(x) + et,j(x) (7.5)

If j denotes sex, than a model of type (7.5) may be of interest where each of the coefficient series

γt,j,ℓ is constrained to be a stationary process. This guarantees that the difference in mortality

rates

yt,1(x) − yt,2(x) = µ1(x) − µ2(x) +
L

∑
ℓ=1

[γt,1,ℓψℓ,1(x) − γt,2,ℓψℓ,2(x)] + (et,1(x) − et,2(x))

is non-divergent.

We plan to develop methods to estimate and forecast these extended models in future papers.

Statistical tests for the differences between these models are also of interest as they will enable

the dynamics of related functional time series to be studied.

8 Conclusions

We have introduced a new approach to forecasting functional time series data. While we have

focussed on its applications in demography, we have also used the method in epidemiology

and finance with equal success. It is suitable for any situation where multiple time series are

observed and where the observations in each period can be considered as arising from an un-

derlying smooth curve.
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We have demonstrated the method on fertility and mortality data, and shown that it achieves

better forecasting results than other approaches to mortality forecasting. This superior per-

formance arises for several reasons: (1) we allow more complex dynamics than other methods

by setting K > 1, thus allowing higher order terms to be included; (2) nonparametric smooth-

ing reduces the observational noise; (3) the use of robust methods avoids problems of outlying

years, especially around the world wars. It has the added advantage of providing interesting

historical interpretations of dynamic changes by separating out the effects of several orthogonal

components. We can also produce prediction intervals for our forecasts, taking into account all

sources of variation.

In our implementation of the methodology, we have proposed a simple procedure for order

selection and a simple automated procedure for forecasting the individual coefficients. This

makes it very easy to apply and use. An R package which implements the methodology is

available from the first author.
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