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Abstract

A new approach is proposed for forecasting a time series with multiple
seasonal patterns. A state space model is developed for the series using the
single source of error approach which enables us to develop explicit models
for both additive and multiplicative seasonality. Parameter estimates may
be obtained using methods adapted from general exponential smoothing,
although the Kalman filter may also be used. The proposed model is used to
examine hourly and daily patterns in hourly data for both utility loads and
traffic flows. Our formulation provides a model for several existing seasonal
methods and also provides new options, which result in superior forecasting
performance over a range of prediction horizons. The approach is likely
to be useful in a wide range of applications involving both high and low
frequency data, and it handles missing values in a straightforward manner.

Keywords:exponential smoothing; Holt-Winters; seasonality; structural time
series model

2



1 I NTRODUCTION

Time series may contain multiple seasonal cycles of different lengths. For exam-
ple, the hourly electricity demand data shown in Figure 1 exhibit both daily and
weekly cycles. Such a plot contrasts with the seasonal times series usually con-
sidered, which contain only an annual cycle for monthly or quarterly data. Note
that we use the term “cycle” to denote any pattern that repeats (with variation)
periodically rather than an economic cycle that has no fixed length.

There are several notable features in Figure 1. First, we observe that the daily
cycles are not all the same, although it may reasonably be claimed that the cycles
for Monday through Thursday are similar, and perhaps Friday also. Those for Sat-
urday and Sunday are quite distinct. In addition, the patterns for public holidays
are usually more similar to weekends than to regular weekdays. A second feature
of the data is that the underlying levels of the daily cycles may change from one
week to the next, yet be highly correlated with the levels for the days immedi-
ately preceding. Thus, an effective time series model must be sufficiently flexible
to capture these principal features without imposing too heavy computational or
inferential burdens.

Existing approaches to modeling seasonal patterns include the Holt-Winters
exponential smoothing approach (Winters 1960) and the ARIMA models of Box
et al. (1993). The Holt-Winters approach could be used for the type of data shown
in Figure 1, but suffers from several important weaknesses. It would require168
starting values (24 hours×7 days) and would fail to pick up the similarities from
day-to-day at a particular time. Also, it does not allow for patterns on different
days to adapt at different rates. In a recent paper, Taylor (2003) has developed
a double seasonal exponential smoothing method, which allows the inclusion of
one cycle nested within another. His method is described briefly in Section 2.2.
Taylor’s method represents a considerable improvement, but assumes the same
intra-day cycle for all days of the week. Moreover, updates based upon recent
information (the intra-day cycle) are the same for each day of the week.

An ARIMA model could be established by including additional seasonal fac-
tors. Such an approach again requires the same cyclical behavior for each day of
the week. Although the resulting model may provide a reasonable fit to the data,
there is a lack of transparency in such a complex reduced-form model compared
to the specification afforded by Taylor’s approach and by the methods we describe
later in the paper.

Harvey (1989) provided an unobserved components approach to modeling
multiple seasonal patterns and his approach is similar in some ways to that de-
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scribed in this paper. The principal difference is that Harvey’s state equations
use multiple (independent) sources of error in each state equation, whereas our
scheme uses a single source of error, following Snyder (1985). At first sight, the
multiple error model may seem to be more general, but this is not the case. As
shown, for example, in Durbin & Koopman (2001), both sets of assumptions lead
to the same class of ARIMA models, although the single source models typically
have a larger parameter space. The single source of error model has several ad-
vantages over the multiple source model (Ord et al. 2005).

1. the parameters may be estimated directly by least squares without using the
Kalman filter;

2. the updating equations are identical in form to the model equations, making
interpretation more straightforward;

3. models for non-linear processes (e.g. the multiplicative Holt-Winters method)
are readily formulated and easy to apply;

4. it becomes feasible to develop prediction intervals for both linear and non-
linear methods (Hyndman et al. 2005).

There are, of course, other approaches to forecasting electricity load data, such
as Ramanthan et al. (1997) and Cottet & Smith (2003). These authors rely upon
short-term temperature predictions to improve the quality of their forecasts, which
is clearly a desirable relationship to exploit in this context. As our interest lies
more broadly in the development of single series methods for which suitable ex-
planatory variables may not be available (e.g. hourly sales figures, volume of
stock trading, traffic flows) we do not pursue this approach here. However, it is
worth noting that regression components are readily added to such models (Ord
et al. 2005).

The paper is structured as follows. The additive Holt-Winters (HW) method
and Taylor’s double seasonal (DS) scheme are outlined in Section 2. Our multi-
ple seasonal (MS) process is introduced and developed in section 3; the primary
emphasis is on the additive scheme, but the multiplicative version is also briefly
described. Applications to hourly data on electricity demand and on traffic flows
are considered in sections 4 and 5, respectively. Concluding remarks and direc-
tions for further research are presented in section 6.
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Figure 1: Sub-sample of hourly utility data

2 EXPONENTIAL SMOOTHING FOR SEASONAL DATA

2.1 A Structural Model for the Holt-Winters (HW) Method

The Holt-Winters (HW) exponential smoothing approach (Winters 1960) includes
methods for both additive and multiplicative seasonal patterns. Our primary devel-
opment in sections 2 and 3 is in terms of additive seasonality; the corresponding
model for the multiplicative case is presented in section 3.5. A model for the ad-
ditive seasonal HW method will decompose the series valueyt into an errorεt, a
level `t, a trendbt and a seasonal component (st). An underlying model based on
the single source of error model (Ord et al. 1997) is

yt = `t−1 + bt−1 + st−m + εt (1a)

`t = `t−1 + bt−1 + αεt (1b)

bt = bt−1 + βεt (1c)

st = st−m + γwεt (1d)

whereεt ∼ NID(0, σ2), andα, β andγw are smoothing parameters for the level,
trend and seasonal terms, respectively. The smoothing parameters reflect how
quickly the level, trend, and seasonal components adapt to new information. The
value ofm represents the number of seasons in one seasonal cycle. We will denote
this model by HW(m) and the seasonal cycle by

ct = (st, st−1, . . . , st−m+1)
′ (2)
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Estimates ofm + 2 different seed values for the unobserved components must be
made; one for the level, one for the trend, andm for the seasonal terms (although
we constrain the initial seasonal components to sum to0).

The HW method allows each of them seasonal terms to be updated only once
during the seasonal cycle ofm time periods. Thus, for hourly data we might
have an HW(24) model that has a cycle of length24 (a daily cycle). Each of the
24 seasonal terms would be updated once every24 hours. Or we might have an
HW(168) model that has a cycle of length168 (24 hours×7 days). Although a
daily pattern might occur within this weekly cycle, each of the168 seasonal terms
would be updated only once per week. In addition, the same smoothing constant
γw is used for each of them seasonal terms. We will show how to relax these
restrictions by use of our MS model.

2.2 A Structural Model for the Double Seasonal (DS) Method

Taylor’s double seasonal (DS) exponential smoothing method (Taylor 2003) was
developed to forecast time series with two seasonal cycles: a short one that repeats
itself many times within a longer one. It should not be confused with double ex-
ponential smoothing (Brown 1959), the primary focus of which is on a local linear
trend. Taylor (2003) developed a method for multiplicative seasonality (i.e. larger
seasonal variation at higher values ofyt), which we adapt for additive seasonality
(i.e. size of seasonal variation not affected by the level ofyt).

Like the HW exponential smoothing methods, DS exponential smoothing is
a method. It was specified without recourse to a stochasticmodel, and hence, it
cannot be used in its current form to find estimates of the uncertainty surrounding
predictions. The problem is resolved by specifying a single source of error model
underpinning the additive DS method. Lettingm1 andm2 designate the periods
of the two cycles, this model is:

yt = `t−1 + bt−1 + s
(1)
t−m1

+ s
(2)
t−m2

+ εt (3a)

`t = `t−1 + bt−1 + αεt (3b)

bt = bt−1 + βεt (3c)

s
(1)
t = s

(1)
t−m1

+ γd1εt (3d)

s
(2)
t = s

(2)
t−m2

+ γd2εt (3e)

whereεt ∼ NID(0, σ2), and the smoothing parameters for the two seasonal com-
ponents areγd1 andγd2. We denote this model by DS(m1, m2) and the two sea-
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sonal cycles by

c
(1)
t = (s

(1)
t , s

(1)
t−1, . . . , s

(1)
t−m1+1)

′ (4)

and

c
(2)
t = (s

(2)
t , s

(2)
t−1, . . . , s

(2)
t−m2+1)

′ (5)

Estimates form1 + m2 + 2 seeds must be made for this model.
There arem2 seasonal terms in the long cycle that are updated once in every

m2 time periods. There are an additionalm1 seasonal terms in the shorter cycle
that are updated once in everym1 time periods. It is not a requirement of the
DS(m1,m2) model thatm1 is a divisor ofm2. However, ifk = m2/m1, then there
arek shorter cycles within the longer cycle. Hence for hourly data, there would
be 168 seasonal terms that are updated once in every weekly cycle of168 time
periods and another24 seasonal terms that are updated once in every daily cycle
of 24 time periods. For the longer weekly cycle the same smoothing parameter,
γd2, is used for each of the168 seasonal terms, and for the shorter daily cycle the
same smoothing parameter,γd1, is used for each of the24 seasonal terms. In our
MS model we will be able to relax these restrictions.

2.3 Using Indicator Variables in a Model for the HW Method

We now show how to use dummy variables to express the HW(m2) model in two
other forms whenk = m2/m1. We do this to make it easier to understand the MS
model and its special cases in the next section. First we divide the cyclect for
HW(m2) into k sub-cycles of lengthm1 as follows:

cit = (si,t, si,t−1, . . . , si,t−m1+1)
′

= (st−m1(k−i), st−m1(k−i)−1, . . . , st−m1(k−i)−m1+1)
′ (6)

wherei = 1, . . . , k, and

ct = (c′kt, c
′
k−1,t, . . . , c

′
1t)

′ (7)

For example with hourly data, we could divide the weekly cycle of length168 into
7 daily sub-cycles of length24.

Next we define a set of dummy variables that indicate the sub-cycle which is
in effect for time periodt. For example, when using hourly data these dummy
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variables would indicate the daily cycle to which the time period belongs. The
dummy variables are defined as follows:

xit =

{
1 if time t occurs when sub-cyclei (e.g.,dayi) is in effect
0 otherwise

(8)

Then the HW(m2) model may be written as follows:

yt = `t−1 + bt−1 +
k∑

i=1

xitsi,t−m1 + εt (9a)

`t = `t−1 + bt−1 + αεt (9b)

bt = bt−1 + βεt (9c)

sit = si,t−m1 + γwxitεt (i = 1, . . . , k) (9d)

The effect of thexit is to ensure that them2 (= k ×m1) seasonal terms are each
updated exactly once in everym2 time periods. Equation (9d) may also be written
in a form that will be a special case of the MS model in the next section as follows:

sit = si,t−m1 + (
k∑

j=1

γijxjt)εt (i = 1, . . . , k)

where

γij =

{
γw if i = j
0 otherwise

3 M ULTIPLE SEASONAL PROCESSES

3.1 A Structural Model for Multiple Seasonal (MS) Processes

A fundamental goal of our new model for multiple seasonal (MS) processes is to
allow for the seasonal terms that represent a seasonal cycle to be updated more
than once during the period of the cycle. This goal may be achieved in two ways
with our model. We start, as we did for the HW(m2) model in the previous section,
by dividing the cycle of lengthm2 into k shorter sub-cycles of lengthm1. Then
we use a matrix of smoothing parameters that allows the seasonal terms of one
sub-cycle to be updated during the time for another sub-cycle. For example sea-
sonal terms for Monday can be updated on Tuesday. Sometimes this goal can be
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achieved by combining sub-cycles with the same seasonal pattern into one com-
mon sub-cycle. This latter approach has the advantage of reducing the number of
seed values that are needed. When modelling the electricity data in Figure 1, for
example, there are potentially seven distinct sub-cycles; one for each day of the
week. However, since the daily patterns for Monday through Thursday seem to
be very similar, a reduction in complexity might be achieved by using the same
sub-cycle for these four days. More frequent updates may also provide better fore-
casts, particulary when the observationsm1 time periods ago are more important
than those valuesm2 time periods earlier. It is also possible with our model to
have different smoothing parameters for different sub-cycles (e.g., for different
days of the week).

The existence of common sub-cycles is the key to reducing the number of
seed values compared to those required by the HW method and DS exponential
smoothing. As described in section 2.3, it may be possible for a long cycle to
be broken intok = m2/m1 shorter cycles of lengthm1. Of thesek possible
sub-cycles,r ≤ k distinct cycles may be identified. For example, consider the
case whenm1 = 24 andm2 = 168 for hourly data. By assuming that Monday–
Friday have the same seasonal pattern, we can use the same sub-cycle for these 5
days. We can use the same sub-cycle for Saturday and Sunday, if they are similar.
Thus, we might be able to reduce the number of daily sub-cycles fromk = 7 to
r = 2. The number of seed estimates required for the seasonal terms would be
reduced from168 for the HW method and192 for the DS method to48 for the
new method. (A similar quest formed the motivation for developing cubic spline
models for hourly utility data (Harvey & Koopman 1993).)

A set of dummy variables based on ther shorter cycles can be defined by

xit =

{
1 if time periodt occurs when sub-cyclei is in effect;
0 otherwise.

(10)

On any given day, only one of thexit values equals1. Letxt = [x1t, x2t, x3t, . . . , xrt]
′

andst = [s1t, s2t, s3t, . . . , srt]
′.
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The general summation form of the MS model forr ≤ k = m2/m1 is:

yt = `t−1 + bt−1 +
r∑

i=1

xitsi,t−m1 + εt (11a)

`t = `t−1 + bt−1 + αεt (11b)

bt = bt−1 + βεt (11c)

sit = si,t−m1 +

(
r∑

j=1

γijxjt

)
εt (i = 1, . . . , r) (11d)

whereεt ∼ NID(0, σ2).
These equations can also be written in matrix form:

yt = `t−1 + bt−1 + x′tst−m1 + εt (12a)

`t = `t−1 + bt−1 + αεt (12b)

bt = bt−1 + βεt (12c)

st = st−m1 + Γxtεt (12d)

Γ is the seasonal smoothing matrix, which contains the smoothing parameters for
each of the cycles. The parameterγii is used to update seasonal terms during
time periods that belong to the same sub-cycle (e.g., days that have the same daily
pattern). The parameterγij, i 6= j, is used to update seasonal terms belonging
to a sub-cycle during the time periods that occur during another sub-cycle (e.g.,
seasonal terms for one day can be updated during a day that does not have the
same daily pattern). We will denote this model by MS(r; m1,m2) and the seasonal
cycles by

cit = (si,t, si,t−1, . . . , si,t−m1+1)
′ (i = 1, . . . , r) (13)

This model can also be written in a state space form (see Appendix A) and esti-
mated using the Kalman filter (Snyder 1985). Here, as discussed in section 3.4, we
estimate the model in the exponential smoothing framework of Ord et al., 1997.

3.2 Reduced Form of the MS Model

The reduced form of the MS(r; m1,m2) model may be derived from (12) by apply-
ing appropriate transformations toyt to eliminate the state variables and achieve
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stationarity. The reduced form of the MS model is

∆∆m2yt =

[
r∑

j=1

(
θjtL

jm1 − θj,t+1L
i(m1−1)

)
]

εt

+ α∆m2εt−1 + β

m2∑
j=1

Ljεt + ∆∆m2εt

(14)

whereL is the lag operator and∆i = (1−Li) takes theith difference. In the case
where the trendbt is omitted, the reduced form becomes:

∆m2yt =

(
r∑

j=1

θjtL
jm1

)
εt + α

m2∑
j=1

Ljεt + ∆m2εt (15)

Theθit value will be a sum ofr terms, each of which is a product of a value from
xt and a value fromΓ, but at any timet it will be equal to only one of the values
from Γ.

For example in the case with no trend,m1 = 4, m2 = 12 andk = r = 3 (no
repeating sub-cycles), (15) can be written as:

∆12yt =

(
3∑

j=1

θjtL
4j

)
εt + α

12∑
j=1

Ljεt + ∆12εt (16)

In this case,θ1t = x1tγ13 + x2tγ21 + x3tγ32, θ2t = x1tγ12 + x2tγ23 + x3tγ31 and
θ3t = x1tγ11 + x2tγ22 + x3tγ33. See Appendix B for the derivation of the reduced
form.

The reduced form of the model verifies that the MS model has a sensible,
though complex ARIMA structure with time dependent parameters at the seasonal
and near seasonal lags. The advantage of the state space form is that the MS model
is more logically derived, easily estimated, and interpretable than its reduced form
counterpart. In the next section we give the specific restrictions onΓ (and hence
theθit values) that may be used to show that the reduced forms of the HW(m1),
HW(m2) and the DS(m1,m2) models are special cases of the reduced form for the
MS(r; m1,m2) model in (15).

3.3 Model Restrictions

In general, the number of smoothing parameters contained inΓ is equal to the
square of the number of separate sub-cycles (r2) and can be quite large. In addition
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to combining some of the sub-cycles into a common sub-cycle, restrictions can be
imposed onΓ to reduce the number of parameters.

One type of restriction is to force common diagonal and common off-diagonal
elements as follows:

γij =

{
γ∗1 , if i = j common diagonal
γ∗2 , if i 6= j common off-diagonal

(17)

In this caseθ1t = θ2t = . . . = θr−1,t = γ∗2 andθrt = γ∗1 .
Within the type of restriction in (17), there are three restrictions of particular

interest. We will refer to them as

• Restriction 1: γ∗1 6= 0 , andγ∗2 = 0
If r = k, this restricted model is equivalent to the HW(m2) model in
(1) whereγ∗1 = γw. The seed values for thek seasonal cycles in this
MS(k; m1,m2) model and the one seasonal cycle in the HW(m2) model
are related as shown in section 2.3 (wheret = 0).

• Restriction 2: γ∗1 = γ∗2
If the seed values for ther seasonal sub-cycles in the MS(r; m1,m2) model
are identical, this restricted model is equivalent to the HW(m1) model in
(1) whereγ∗1 = γw. Normally in the MS(r; m1,m2) model, the different
sub-cycles are allowed to have different seed values. Hence, this restricted
model will only be exactly the same as the HW(m1) model, if we also re-
strict the seed values for the sub-cycles to be equal to each other.

• Restriction 3: Equivalent to Equation (17)
If r = k, this restricted model is equivalent to the DS(m1,m2) model in
(3) whereγ∗1 = γd1 + γd2 andγ∗2 = γd1. The seed values for thek sea-
sonal cycles in this MS(k; m1, m2) model and the two seasonal cycles in the
DS(m1,m2) model are related by

ci0 = (s
(1)
0 + s

(2)
−m1(k−i), s

(1)
−1 + s

(2)
−m1(k−i)−1, . . . ,

s
(1)
−m1+1 + s

(2)
−m1(k−i)−m1+1)

′ (18)

The MS(r; m1, m2) model allows us to explore a much broader range of as-
sumptions than existing methods, while retaining parsimony. It nests the mod-
els underlying the additive HW and DS methods. It contains other restricted
forms that stand in their own right. A procedure for choosing among the pos-
sible MS(r; m1,m2) models with and without these restrictions is described in the
next section.
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3.4 Model Estimation, Selection, and Prediction

Within the exponential smoothing framework, the parameters in an MS(r; m1,m2)
model can be estimated by minimizing the one-step-ahead sum of squared errors

SSE=
n∑

i=1

(yt − ŷt)
2

wheren is the number of observations in the series. The seed states for the level,
trend and seasonal components may be estimated by applying the procedures for
HW(m2) in Hyndman et al. (2002) to the time periods that represent four com-
pletions of all the sub-cycles (e.g., the first four weeks for hourly data). Them1

estimates for each of thek seasonal sub-cycles are then found by using the re-
lationship between the cycles explained in section 2.3. Ifr < k, the estimates
for the sub-cycles with the same seasonal pattern are averaged. Then the SSE
is minimized with respect to the smoothing parameters by using the exponential
smoothing equations in (11). The smoothing parameters are restricted to values
between 0 and 1.

We have seen that various special cases of the MS(r; m1, m2) model may be
of interest. We may wish to choose the number of seasonal sub-cyclesr to be less
thank, restrict the values of the seasonal parameters, or use a combination of the
two. We employ a two-step process to make these decisions. First we chooser,
and then we determine whether to restrictΓ as follows:

1. Choose the value ofr in MS(r; m1,m2).

(a) From a sample of sizen, withhold q time periods, whereq is the last
20% of the data rounded to the nearest multiple ofm2 (e.g., whole
number of weeks).

(b) For reasonable values ofr (e.g., using common sense and/or graphs),
estimate the parameters in each model.

(c) For each of the models in 1.(b), find one-period-ahead forecasts for
time periodsn− q + 1 to n without re-estimating.

(d) Pick the value ofr with the smallest mean square forecast error

MSFE(1) =
∑n

t=n−q+1(yt − ŷt)
2/q

2. Choose the restrictions onΓ.
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(a) Using the model chosen in part 1 and the samen − q time periods,
compute the one-period-ahead forecast errors for Restrictions 1, 2, and
3, no restriction, and any other restrictions of particular interest.

(b) Choose the restriction with the smallest MSFE.

A point forecast foryn+h at time periodn is the conditional expected value:

ŷn+h(n) = E(yn+h|a0, y1, . . . , yn)

where

a0 = (`0, b0, s1,0, . . . , s1,−m1+1, s2,0, . . . , s2,−m1+1, . . . , sr,0, . . . , sr,−m1+1)
′

= (`0, b0, c
′
1,0, c

′
2,0, . . . , c

′
r,0)

′

Prediction intervals for h periods in the future from time periodn can be found
by using the model in (11) as follows: simulate an entire distribution foryn+h and
pick the percentiles for the desired level of confidence (Ord et al. 1997). For an
80% prediction interval, one would used the tenth and ninetieth percentiles for the
lower and upper limits of the prediction interval, respectively.

3.5 A Model for Multiplicative Seasonality

Thus far, we have concentrated upon models for time series that exhibit additive,
rather than multiplicative seasonal patterns. In the additive case the seasonal ef-
fects do not depend on the level of the time series, while for the multiplicative
case the seasonal effects increase at higher values of the time series. One way that
many forecasters change a multiplicative seasonal pattern into an additive one is
to apply a transformation to the time series, such as a logarithmic transformation.
Another approach is to build the multiplicative seasonality directly into the model
itself. We can adapt the MS(r; m1,m2) model to account for a multiplicative sea-
sonal pattern using the approach of Ord et al. (1997) for the multiplicative HW
method.
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The general multiplicative form of the MS model forr ≤ k = m2/m1 is:

yt = (`t−1 + bt−1)(
r∑

i=1

xitsi,t−m1)(1 + εt) (19a)

`t = (`t−1 + bt−1)(1 + αεt) (19b)

bt = bt−1 + β(`t−1 + bt−1)εt (19c)

sit = si,t−m1

[
1 +

(
r∑

j=1

γijxjt

)
εt

]
(i = 1, . . . , r) (19d)

whereεt ∼ NID(0, σ2). The interested reader should see Ord et al., 1997 for
information on how to estimate the parameters in this model.

4 An Application to Utility Data

In this empirical example, we show that the MS model performs best within the
class of exponential smoothing models. Other approaches to forecasting electric-
ity demand may be more appropriate in particular circumstances: see, for exam-
ple, Ramanathan et al., 1997.

4.1 The Study

The sample consists of2520 observations (15 weeks) of hourly utility demand,
beginning on January 1,2003, from a utility company in the Midwestern area
of the United States. A graph of the data is shown in Figure 2. This utility data
appears to have a changing level rather than a trend so the growth ratebt is omitted.
The data also appears to exhibit an additive seasonal pattern, that is, a seasonal
pattern for which the variation does not change with the level of the time series.
For this reason the main focus of this application is on additive models, although a
multiplicative version of our model is also tested. In addition to the fitting sample
(n = 2520), 504 observations (3 weeks) are available as post-sample data (p =
504) for the comparison of forecasts from different models. There are no weekday
public holidays during the period of this post-sample data.

The data have a number of important features that should be reflected in the
model structure. There are three levels of seasonality: yearly effects (largely
driven by temperatures), weekly effects and daily effects. For this case study, we
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Figure 2: Hourly utility demand

will only seek to capture the daily and weekly seasonal patterns. The yearly pat-
tern can be modelled using a trigonometric specification (Proietti 2000) or by ex-
plicitly including temperature as an explanatory variable (Ramanthan et al. 1997).

A number of competing seasonal structures are examined. The HW(24), HW(168),
DS(24, 168) and MS(7; 24, 168) versions are fitted to the sample of sizen = 2520.
The first four weeks of the sample are used to find initial values for the states. For
the HW method these values are found by using the approach in Hyndman et al.
(2002). The twenty-four additional initial values for daily seasonal components
in the DS method are set equal to0. The initial values for MS models are found
as described in section 3.4. Smoothing parameters for all the models are esti-
mated by minimizing the SSE for the fitting sample of lengthn = 2520, and all
parameters are constrained to lie between0 and1.

Next the best MS model for the utility data is chosen by using the procedure
described in section 3.4 where the last504 observations (q = 504) are withheld
from the 2520 values in the fitting sample. This additional MS model is compared
with the previously considered models.

Then the forecasting accuracy of the models is compared by using the mean
square forecast error forh periods ahead overp post-sample values. The mean
square forecast error is defined as:

MSFE(h) =

∑n+p−h
t=n (yt+h − ŷt+h(t))

2

p− (h− 1)
(20)

whereŷt+h(t) is the forecast ofyt+h at timet. In this application, the MSFE(h)
values are averages based on3 weeks (i.e.p = 504 hours) of post-sample data
and lead timesh of 1 up to48 hours.

16



Model Restriction MSFE(1) Parameters
HW(24) na 278.50 2
HW(168) na 278.04 2
DS(24, 168) na 227.09 3
MS(7; 24, 168) none 208.45 50
MS(2; 24, 168) 3 206.45 3

Table 1: Comparison of post-sample forecasts for the utility data

4.2 Comparison of the Full MS Model with HW and DS Mod-
els

In the first four lines of Table 1, the post-sample MSFE(1) can be compared for
each of the following models: HW(24), HW(168), DS(24, 168), and full MS(7; 24, 168).
The fifth model MS(2; 24, 168) with Restriction3 will be discussed later. The
comparison of the first four models shows that the MS(7; 24, 168) model has the
lowest MSFE(1).

In Figure 3, we use the post-sample data to compare MSFE(h) for these four
models over longer lead-times; specifically for lead-times ofh = 1 through48
hours (i.e. one hour to forty-eight hours). As we did for Table 1, we will delay the
discussion of MS(2; 24, 168) model with Restriction3 until later. Most of the mod-
els are reasonably accurate for shorter lead-times, although the HW(24) model is
consistently the worst and shows the greatest deterioration over the longer lead
times. None of HW or DS models does as well as the MS(7; 24, 168) model,
especially at lead-times other than those whereh is near a multiple of24.

4.3 Selecting an MS Model

In this section we select the best MS model, based on the procedure for model
selection described in section 3.4. The first step is to chooser in MS(r; 24, 168).
To start this step we withhold504 observations or three weeks of data (q = 504)
from the sample (n = 2520) . Then, we need to re-examine the data to look
for common daily patterns for different days of the week. One way to look for
potential common patterns is to graph the 24-hour pattern for each day of the
week on the same horizontal axis. In figure 4 we plot the seasonal terms that
are estimated for the seven sub-cycles in the MS(7; 24, 168) model during the last
week of the sample (t = n − 168, . . . , n) . The plot suggests thatr = 7 may use
more daily patterns than is required. The similarity of some weekday sub-cycles
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indicates that alternative structures could be tested.
Visual inspection of Figure 4 shows that the Monday – Friday sub-cycles are

similar, and Saturdays and Sundays are similar. Closer inspection shows that
the Monday–Tuesday patterns are similar, Wednesday–Friday patterns are sim-
ilar, and Saturdays and Sundays display some differences from each other. A
third possible approach is to assume Monday–Thursday have a common pattern
and Friday, Saturday and Sunday have their own patterns. This choice is plausi-
ble because Fridays should have a different evening pattern to other weekdays as
consumers and industry settle into weekend routines. Support for this choice of
common sub-cycles can also be seen in Figure 4 where Friday starts to behave
more like Saturday in the evening hours. We list these three choices below.

• r = 4 Version1 MS(4; 24, 168): common Monday–Thursday sub-cycle,
separate Friday, Saturday and Sunday sub-cycles;

• r = 4 Version2 MS(4(2); 24, 168): common Monday–Tuesday, Wednesday–
Friday sub-cycles, separate Saturday and Sunday sub-cycles;

• r = 2 MS(2; 24, 168): common Monday–Friday sub-cycle, common week-
end sub-cycle.

We finish the first step of the model selection process by comparing the value
of MSFE(1) for the MS(7; 24, 168) model to the values for the three sub-models
listed above. The MSFE(1) values are computed for the withheld time periods
n − q + 1 to n (i.e. 2017 to 2520) and are shown in Table 2. In Table 2 we
say this MSFE(1) compares ‘withheld-sample’ forecasts to distinguish it from the
MSFE(1) in Table 1, which is computed for the p post-sample values (i.e.2521
to 3024) that are not part of the original sample. The model with the smallest
MSFE(1) in Table 2 is the MSFE(2; 24, 168) model. Thus, we choose this model
in the first step.

In the second step of the process from section 3.4, we compare Restrictions
1, 2, and3 from section 3.3 for the MS(2; 24, 168) model that was chosen in the
first step. The MSFE(1) values for these three additional models are also shown
in Table 2. The model with the smallest MSFE(1) for the withheld sample test is
the MS(2; 24, 168) model with Restriction3. Hence, this model is our selection
for the best MS model for forecasting.
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Model Restriction MSFE(1) Parameters
MS(7; 24, 168) none 234.72 50
MS(4; 24, 168) none 239.67 17
MS(4(2); 24, 168) none 250.34 17
MS(2; 24, 168) none 225.51 5
MS(2; 24, 168) 1 246.51 2
MS(2; 24, 168) 2 234.49 2
MS(2; 24, 168) 3 225.31 3

Table 2: Withheld-sample MSFE in MS model selection for utility data

4.4 Forecasting with the MS, HW and DS Models

In general, the MS models provide better point forecasts than the HW and DS
models. To see this, we return to the examination of Table 1 and Figure 3,
both of which contain values for post-sample forecasting. In Table 1, the model
with the smallest MSFE(1) is the MS(2; 24, 168) model with Restriction3, and
MS(7; 24, 168) is second best. The MS(2; 24, 168) model with Restriction3 also
has far fewer parameters to estimate than MS(7; 24, 168); 3 rather than50.

Figure 3 shows MSFE(h) values for post-sample lead-times of1 hour to48
hours (i.e.h = 1, ..., 48). The MSFE(h) values for the MS models are consistently
lower than for the HW and DS alternatives with the values for the MS model cho-
sen by our selection process being much lower. The more accurate forecasts are
the result of the MS models offering a more realistic structure to capture changes
in seasonality. An interesting feature of Figure 3 is the way in which the models
have clearly lower MSFE(h) values whenh is a multiple of24. Thus, forecasts
are generally more accurate for all methods when they are made for the same time
of day as the last observation.

Figure 5 shows post-sample forecasting accuracy of the MS(2;24,168) model
with Restriction3. Forecasts and 80% prediction intervals are provided only for
the first eight hours of the post-sample period because the intervals become ex-
tremely wide as the time horizon increases. Furthermore, temperature becomes
an important factor in utility demand when forecasting more than a few hours into
the future. As noted in the introduction, explanatory variables can be added to
state space models. During the eight hour period in Figure 5, the forecasts are
very good. The80% prediction intervals were calculated via simulation.
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Estimation done for α̂ γ̂1 γ̂2

h = 1 1 0.12 0.084
h = 24 0 0.83 0.83
h = 168 0 0.13 0.11

Table 3: Utility data smoothing parameter estimates

4.5 Further Comments

The parameterα was estimated to be between0 and1, and this constraint was
binding in most cases (i.e.̂α = 1). Note that anα = 1 corresponds to a purely
seasonal model for the differences. One cause for the wide prediction intervals
at longer time horizons is the large estimate forα. Large structural change will
require wide prediction intervals. However, if one’s goal is to forecast more than a
few hours ahead, it would be appropriate to estimate the parameters by minimizing
the sum of squaredh-step-ahead errors instead of the usual one-step-ahead errors.
Table 3 shows the effect on the estimates for the parameters when the estimation
criterion is altered. When the sum of squares is minimized for24-step-ahead or
168-step-ahead errors, the estimate forα is 0. This smaller value for̂α will reduce
the width of the prediction intervals at the longer lead times.

In addition to examining the utility data in Figure 2 when deciding that addi-
tive seasonal models were appropriate, we tested the multiplicative MS(7; 24, 168)
model in (19) with no trend. We found that the withheld-sample MSFE(1) was
271.48, which is larger than the MSFE(1) of 234.72 for the additive MS(7; 24, 168)
model. This provides further support for our choice of additive seasonality. An
advantage of the single source of error models is that such nonlinear models can
be included in a study.

Since Taylor (2003) found that adding an AR(1) term improved the forecasting
accuracy of the DS model for his utility data, we also examined whether adding
an AR(1) would help for our data. We found that forecasts at lead-times longer
than one time period are worse when the AR(1) term is included.

5 An Application to Traffic Data

In this section we investigate an application of the MS approach to hourly vehicle
counts and compare forecasts with those from HW and DS approaches.
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5.1 The Study

The fitting sample consists of1680 observations (10 weeks) of hourly vehicle
counts for the Monash Freeway, outside Melbourne in Victoria, Australia, begin-
ning August,1995. A graph of the data is shown in Figure 6. The observation
series has missing values. The gaps in the data are for periods of days (i.e. multi-
ples of24) and can be handled using unconditional updating of the states. When
yt is not observed, the error cannot be calculated. The error is still unknown and
governed by anN(0, σ2) distribution. The best prediction of the uncertain error
is then the mean of its distribution, namely0. Hence we useet = 0 to predict
the next state vector from the old state vector using the system equation. Such an
approach can be applied to any single source of error model. In many traffic appli-
cations this ability to handle missing values is particularly useful when counting
equipment has to be taken off-line for maintenance.

Apart from the missing observations, the traffic data share the same features
as the utility data, although yearly effects are less pronounced. We seek only to
capture the daily and weekly seasonal patterns. Since this data appears to have
no trend and to exhibit an additive seasonal pattern, we use additive seasonality
for the HW, DS, and MS approaches and omit the equation for the growth ratebt.
Victorian public holidays appear throughout the sample and follow a similar daily
pattern to Sundays.

This study of vehicle flows includes the HW(24), HW(168), DS(24, 168) and
MS models. Models are compared by using the MSFE forh periods ahead over a
post-sample of lengthp = 504. We examine lead-times of up to two weeks (h =
1, ..., 336), which can be relevant for planning road works. Smoothing parameters
and seeds are estimated using the same procedures as the previous section.

An MS model is chosen using the method in section 3.4 withq = 336 (i.e.
two weeks of data). Based on visual inspection of the raw data and plots of the
seasonal terms for the MS(7; 24, 168) model, three candidates were tested along
with the full MS model.

• r = 4 Version1 MS(4; 24, 168): common Monday–Thursday sub-cycle,
separate Friday, Saturday and Sunday sub-cycles;

• r = 3 MS(3; 24, 168): common Monday–Friday sub-cycle, separate Satur-
day and Sunday sub-cycles;

• r = 2 MS(2; 24, 168): common Monday–Friday sub-cycle, common week-
end sub-cycle.
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Model Restriction MSFE(1) Parameters
MS(7; 24, 168) none 498.31 50
MS(4; 24, 168) none 428.88 17
MS(3; 24, 168) none 394.42 10
MS(2; 24, 168) none 308.84 5
MS(2; 24, 168) 1 310.94 2
MS(2; 24, 168) 2 333.85 2
MS(2; 24, 168) 3 310.94 3
MS(2; 24, 168) public holidays none 228.68 5

Table 4: Comparison of withheld-sample forecasts for the traffic data

In Table 4 we see that, among the first four models, MS(2; 24, 168) has the
smallest MSFE(1), where this MSFE is computed using the withheld values within
the original sample. Thus, we chooser = 2 in step 1. None of the restrictions are
supported. However, if we account for public holidays by using the same indicator
as the one for the Saturday/Sunday sub-cycle, the one-period-ahead forecasts for
the withheld data are greatly improved . Hence, we choose MS(2; 24, 168) with
public holidays for our best MS model.

5.2 Comparison of the MS Models with the HW and DS Mod-
els

In Table 5, the post-sample MSFE(1) can be compared for each of the follow-
ing six models: HW(24), HW(168), DS(24, 168), full MS(7; 24, 168) (with and
without public holidays), and MS(2; 24, 168) model with public holidays. We see
that the MS(2; 24, 168) model that accounts for public holidays has the smallest
MSFE(1), while the MSFE(1) for the MS(7; 24, 168) model is slightly larger than
the essentially common value for HW(168) and DS(24, 168). The MS(2; 24, 168)
model with public holidays is clearly the best model for forecasting ahead one
hour, offering a reduction of approximately15% in MSFE over the HW and DS
models.

In Figure 7, we can compare the HW(24) model, the HW(168) model, the
MS(7; 24, 168)model, and the MS(2; 24, 168) model with public holidays over
lead-times of1 through336 hours. The values of MSFE(h) whenh > 1 in this
figure give a different ordering to forecasting accuracy than those in Table 5. The
estimate ofγd1 whenm1 = 24 for DS(24, 168) is effectively zero, meaning it is
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Model Restriction MSFE(1) Parameters
HW(24) na 365.09 2
HW(168) na 228.60 2
DS(24, 168) na 228.59 3
MS(7; 24, 168) none 238.33 50
MS(7; 24, 168) public holidays none 245.25 50
MS(2; 24, 168) public holidays none 203.64 5

Table 5: Comparison of post-sample forecasts for the traffic data

equivalent to HW(168). Thus, the DS(24, 168) model is not included, as it is in-
distinguishable from HW(168). The model selected by our MS selection process,
MS(2; 24, 168) with public holidays, is no longer best, but it still provides far more
accurate forecasts than the HW and DS models. Clearly, the MS(7; 24, 168) pro-
duces the best forecasts (i.e. the smallest MSFE(h)) for forecasting horizons of 2
or more hours ahead.

The unconditional updating of the states during periods of missing data proves
to be effective for all models. Generally jumps are observed in the level`t after
periods of missing data. The jumps are more pronounced for the MS(7; 24, 168)
model, which has a relatively stable level during periods of no missing data.

Multi-step-ahead forecasts and80% prediction intervals for the post-sample
data using the MS(7; 24, 168) model can be found in Figure 8. The forecasts
follow the observed series closely and the prediction intervals are not as wide as
those for the utility data. These narrower intervals can partially be explained by
the extremely small estimate forα. For MS(7; 24, 168), α̂ = 0.01.

6 Conclusions

A new approach for forecasting a time series with multiple seasonal patterns has
been introduced. The framework for this approach employs single source of er-
ror models that allow us to forecast time series with either additive (linear) or
multiplicative (nonlinear) seasonal patterns. For both additive and multiplicative
seasonality, the Holt-Winters (HW) methods and Taylor’s double seasonal (DS)
methods are special cases of our new multiple seasonal (MS) process. For the
additive case, we have looked at this relationship with the HW and DS meth-
ods explicitly in two ways; though the reduced ARIMA form of the MS model
and though the use of indicator variables. In this development, we have provided
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single source of error models for HW, DS, and MS approaches. The parameter
estimates for our MS model can be found using a Kalman filter or by the more
intuitive exponential smoothing. Since we have models rather than just methods,
we were able to produce prediction intervals as well as point forecasts.

We applied our MS model to utility demand and vehicle flows. In each case
the data had been collected by the hour and displayed daily and weekly seasonal
effects. The MS model provided more accurate forecasts than the HW and DS
models because of its flexibility. The MS model allows for each day to have
its own hourly pattern or to have some days with the same pattern. In addition,
the model allows days with different patterns to affect one another. By identify-
ing common seasonal patterns for different sub-cycles, the MS structure makes
it possible to greatly reduce the number of parameters and seeds required by the
full MS model. We found in both examples that we could use two sub-cycles.
Public holidays and missing values were easily handled by the MS model in the
examples.

There are some interesting possibilities for future research. Investigation of
the effect of longer lead times on model selection and parameter estimation would
be valuable. Our multiple seasonal approach should also be helpful on lower
frequency observations when one does not want to wait to update a seasonal factor.
A key aim of the MS model is to allow for the seasonal terms to be updated more
than once during the period of the long cycle of the data, which was 168 in both
of our examples.

A First-Order Form of the Model

The MS(r; m1,m2) model can be written in first-order form where the state vari-
ables are lagged by only one period in the state transition equation:

yt = Htat−1 + εt (21a)

at = Fat−1 + Gtεt (21b)

whereat is the1 × (rm1 + 2) state vector containing level, trend and seasonal
terms:

at = (`t, bt, s1,t, . . . , s1,t−m1+1, s2,t, . . . , s2,t−m1+1, . . . , sr,t, . . . , sr,t−m1+1)
′

.
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Ht is a1× (rm1 + 2) row vector containing values of1 and0 (depending on
which subcyclet corresponds to):

Ht = (1, 1, 0, . . . , 0, x1t, 0, . . . , 0, x2t, 0, . . . , 0, xrt)

F is a block-diagonal(2 + rm1)× (2 + rm1) matrix of the form:

F =




F`
... 0

· · · ... · · ·
0

... Fs




where

F` =

(
1 1
0 1

)

is the level and trend component ofF . The seasonal component is therm2× rm2

matrix defined by:

Fs = I ⊗ F1

whereI is ther × r identity matrix andF1 is them2 ×m2 matrix of the form

F1 =




0 0 . . . 0 1
1 0 . . . 0 0
0 1 . . . 0 0
...

...
.. .

...
...

0 0 . . . 1 0




(22)

Gt is a(2 + rm2)× 1 vector, the values of which are determined byΓ, α, β and
xt:

Gt =




α
β∑r

i=1 γ1ixit

0
...∑r

i=1 γ2ixit

0
...∑r

i=1 γrixit)
...
0
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The first-order form of the model can be estimated using general state space meth-
ods such as the Kalman filter (Snyder 1985) or by exponential smoothing (Ord
et al. 1997).

B The MS(r; m1,m2) Model in Reduced Form

Consider the MS(r; m1, m2) model in (11). We restrict attention to the case where
r = m2

m1
. This does not entail any loss of generality because all cases in which

the number of distinct cycles of periodm1 is less thanm2

m1
can be considered as

special cases of the caser = m2

m1
with some equality constraints on the smoothing

parameters and seed values.
The non-seasonal part of the series is a ”local linear trend” process, which is

an ARIMA(0,2,2) , see e.g. Snyder(1985). Hence, the important thing to estab-
lish is the reduced form of the seasonal component. Sincesi,t−m1 rather thansi,t

appears in theyt equation, We start by lagging equation (11d)m1 periods. Then
the following is true fori = 1, ..., r.

si,t−m1 = si,t−2m1 + (
r∑

j=1

γijxj,t−m1)εt−m1

Repeated substitutionr times leads to:

si,t−m1 = si,t−m2−m1 + (
r∑

j=1

γijxj,t−m1)εt−m1 + (
r∑

j=1

γijxj,t−2m1)εt−2m1 + · · ·

+(
r∑

j=1

γijxj,t−(r−1)m1)εt−(r−1)m1 + (
r∑

j=1

γijxj,t)εt−m2 .

The last term hasxj,t rather thanxj,t−m2 becausexj,t = xj,t−m2. For eachj, one
and only one of ther dummy variablesxj,t, xj,t−m1 , ..., xj,t−(r−1)m1 is equal to one
and the rest are zero, and asj changes, a different one of these indicator variables
switches to one. Hence ther terms(

∑r
j=1 γijxj,t−m1), (

∑r
j=1 γijxj,t−2m1), ...,

(
∑r

j=1 γijxj,t) are a circular backward rotation ofγi1, γi2, ..., γir, therth row of the
matrix of smoothing parameters. An example of such backward rotation would
beγi2, γi1, γir, γir−1, ..., γi4, γi3. Depending on which sub-cyclet belongs to, the
rotation starts from a different point. However, sincesi,t−m1 is added toyt only
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whenxi,t = 1, i.e. whent belongs to sub-cyclei, the relevant rotation starts from
γi,i−1 (or γi,r if i = 1) and circles back and ends withγi,i.

Hence, we have

(1− Lm2) si,t−m1 =
r∑

j=1

γc
ijεt−jm1 for t ∈ sub-cyclei (23)

whereγc
i1, ..., γ

c
ir is the particular backward rotation ofγi1, γi2, ..., γir described

above andL is the ‘lag’ or the ‘backshift’ operator. This shows that each of ther
seasonal factors is a seasonal ARIMA(0, 1, 0)m2×(0, 0, r − 1)m1

. Using equation
(23) and noting thatxi,t = xi,t−m2 , the seasonal component ofyt can be written
as:

r∑
i=1

xi,tsi,t−m1 =
r∑

i=1

xi,tsi,t−m1−m2 +
r∑

i=1

xi,t

r∑
j=1

γc
ijεt−jm1

=
r∑

i=1

xi,t−m2si,t−m1−m2 +
r∑

j=1

(
r∑

i=1

xi,tγ
c
ij

)
εt−jm1

=
r∑

i=1

xi,t−m2si,t−m1−m2 +
r∑

j=1

θj,tεt−jm1

whereθj,t ≡
∑r

i=1 xi,tγ
c
ij. This shows that the seasonal component inyt is a

seasonal ARIMA(0, 1, 0)m2 × (0, 0, r − 1)m1
with periodic moving average pa-

rameters. Henceyt is the sum of an ARIMA(0,2,2) and a seasonal ARIMA
(0, 1, 0)m2×(0, 0, r − 1)m1

with moving average parameters that depend on which
sub-cyclet belongs to.

To find the reduced form, we subtractyt−m2 from yt first:

yt− yt−m2 = `t−1− `t−1−m2 + bt−1− bt−1−m2 +
r∑

j=1

θj,tεt−jm1 + εt− εt−m2

Repeated substitution in equation (11b) yields:

`t−1 − `t−1−m2 + bt−1 − bt−1−m2 =

m2∑
j=1

bt−j + α

m2∑
j=1

εt−j

which leads to:

4m2yt =

m2∑
j=1

bt−j + α

m2∑
j=1

εt−j +
r∑

j=1

θj,tεt−jm1 +4m2εt.
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If there was no trend in the model, the reduced form would be the above equa-
tion without the first term on the right hand side. With the trend, becausebt is inte-
grated, we still have to take an extra round of first differencing to achieve stationar-

ity. Using the facts that4bt−j = βεt−j and
m2∑
j=1

εt−j−
m2∑
j=1

εt−j−1 = εt−1−εt−m2−1,

we get

44m2yt = β

m2∑
j=1

εt−j+α4m2εt−1+
r∑

j=1

(θj,tεt−jm1−θj,t−1εt−jm1−1)+44m2εt.

This shows that after first andm2 differencing,yt is a moving average of order
m2 + 1 with non-zero, but periodic, moving average parameters about seasonal
lags corresponding to a sub-cycle of periodm1.
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