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Abstract

This paper studies linear and nonlinear autoregressive leading indicator mod-
els of business cycles in OECD countries. The models use the spread between
short-term and long-term interest rates as leading indicators for GDP, and
their success in capturing business cycles is gauged by the non-parametric
procedures developed by Harding and Pagan (2001). Our preliminary find-
ings indicate that bivariate nonlinear models of output and the interest rate
spread can successfully capture the shape of the business cycle. In partic-
ular, they can capture the features of recession and the deviation of the
actual path of the cycles from a triangular approximation to this path, both

characteristics that other models of GDP fail to reproduce.
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1. Introduction

One of the most striking aspects of macroeconomic time series data is its cycli-
cal behaviour. Series such as output, consumption and investment all undergo
temporary fluctuations about trend, and the fluctations in different series often
occur at roughly the same time. There are huge literatures that attempt to mea-
sure, explain and predict these so-called business cycles, and much of this work
focusses on output, which is used as an indicator of the multivariate cycle. There
is general consensus that movements in output are representative of the business
cycle, but there are vigorous debates about how to define and measure cycles in
output, how to model them, and how to predict features such as turning points
and recessions. Detrending issues fuel many of these debates, but other important
issues include the possible nonlinearity in business cycles, and which variables are
most useful for predicting output.

Recent work by Harding and Pagan (2001) has addressed several fronts of
these debates. These authors point out the gap between policy makers’ focus
on turning points in the levels of output and academic interest in modeling the
moments of detrended data, and they advocate the use of a cycle dating algo-
rithm that identifies the turning points in levels by analysing changes in levels.
The algorithm requires no detrending of data to define the cycle. Further, once
turning points have been established, it is straightforward to measure various
cyclical properties of peak to trough and trough to peak states, such as duration
and amplitude. Harding and Pagan (2001) go on to develop some nonparamet-
ric techniques that allow one to evaluate models of output, by comparing the
simulated predicted cyclical properties of such models with the corresponding
properties of the data. This model evaluation technique can be used on models
of detrended output, (one simply integrates the simulated data back into levels
at the evaluation stage), and thus it can be used to compare a set of alternative
models of output growth.

This paper studies linear and nonlinear autoregressive leading indicator mod-
els of output growth in OECD countries. Our models use the spread between
short-term and long-term interest rates as leading indicators for growth in GDP,
and their success in capturing business cycles is gauged by the non-parametric

procedures developed by Harding and Pagan (2001). Our primary aim is to



develop forecasting models that can predict turning points and other salient fea-
tures of business cycles, and we particularly interested in assessing the predictive
ability of nonlinear specifications relative to linear specifications. Authors such
as Teréisvirta and Anderson (1992), Clements and Krolzig (1998), Jansen and
Oh (1999) have previously studied the forecasting ability of univariate nonlinear
specifications of output, but univariate analysis is of limited practical relevance,
given the large literatures on leading indicators and variables that Granger-cause
output. Here, we ask whether nonlinear leading indicator models can out-predict
(linear) vector autoregressions.

We build on the work in Anderson and Vahid (2001), who extended the (lin-
ear) class of autoregressive leading indicator (ARLI) models developed by Zellner
and Hong (1989), Zellner et al (1991) and Zellner and Min (1999) to include
nonlinear autoregressive specifications (called NARLI models). NARLI models
allow for differences in behaviour over different phases of the business cycle, and
they also allow for asymmetries in how the indicator leads output. In line with
recent research undertaken by Stock and Watson (1989), Davis and Fagan (1997),
Friedman and Kuttner (1998), Estrella and Mishkin (1998) and others, we use
yield spreads as our leading indicators. The predictive power of the spread is
well established, but apart from a few investigations conducted in logit/probit
settings (see, eg Estrella and Mishkin (1998), Karutnaratne (1999) and Birchen-
hall et al (2000)), most research on this issue has stayed within the confines of
conventional linear regression. Our nonlinear specifications are nevertheless con-
sistent with Galbraith and Tkacz (2000), who test for and find asymmetries in
the link between the yield spread and output in G7 countries. See also De Long
and Summers (1988), Cover (1992), Karras (1996), Choi (1999) and Weiss (1999),
who model asymmetries in the relationship between monetary policy and output.

By using Harding and Pagan’s (2001) model evaluation technique, we assess
the ability of our models to capture the characteristics of cycles, rather than
ability to deliver an accurate point forecast of a mean. We feel that the former is
more relevant when modeling business cycles, because in this context the mean is
rarely of direct interest. Other useful evaluation methods involve the comparison
of probability forecasts of cycle-related events such as turning points or recessions.
See Neftci (1982), Diebold and Rudebusch (1989), Fair (1993) and Anderson and



Vahid (2001) for examples. While Harding and Pagan’s (2001) techniques involve
a definition of the cycle, this cycle is a user defined observable function of the
data at hand. Related concepts such as peaks, phases and recessions are also user
defined. This is slightly different from “declared” cycles such as NBER cycles,
but it allows one to compare measurable properties of the data with a models’
simulated predictions. It is also useful when evaluating business cycle models of
countries where analogues of NBER cycles are not available.

We find that bivariate nonlinear models of output and the interest rate spread
can predict the characteristic features of each country’s business cycle. They can
capture the amplitude and duration of both peak to trough and trough to peak
states, and they can capture the deviation of the actual path of the cycles from a
triangular approximation to this path. Linear leading indicator models of GDP
fail to reproduce this last property, as do univariate nonlinear models. Thus,
the nonlinearity in a bivariate framework appears to be important. Like other
researchers, we find that the spread outperforms other financial indicators.

The next section of this paper provides a brief introduction to Burns and
Mitchell’s (1946) graphical approach of observing the business cycle, and com-
pares this to the cycles defined by Harding and Pagan’s (2001) adaptation of the
Bry and Boschin (1971) algorithm (BBQ). It also outlines some non-parametric
measures of business cycle characteristics (BCC), including an “excess index” that
captures business cycle shape. We then explain how to use these measures as a
benchmark for model evaluation. Section 3 describes our data, and we develop
and evaluate our linear and nonlinear bivariate autoregressive leading indicator
models in Sections 4 and 5. The paper concludes in section 6 with a summary of

our findings.

2. Definitions and Measurement of Business Cycles

Early research on business cycles developed a tradition of studying graphs of
economic indicators and noting the times at which these series reached peaks
or troughs. Burns and Mitchell (1946) at the NBER formalised this tradition,
identifying “reference cycles” on the basis of the dates when different series si-
multaneously reached peaks and troughs. Although Koopmans (1947) argued

against these classical techniques on the basis that a graphical approach lacked a



statistical foundation, the NBER has continued to determine “reference cycles”
for the United States, and it regularly publishes a set of turning points that reflect
a consensus view of when graphs have turned. Both policy makers and academics
view the NBER turning points as indicative of “the (US) business cycle”, despite
the ad-hoc way in which these points are determined.

Koopmans (1947) advocated the parametric modeling of time series as a sci-
entific alternative to the classical approach, and since then, much business cycle
research has been based on modeling the data. However, the presence of trends
in most macroeconomic time series complicates the interpretation of parametric
models. One cannot conduct standard statistical inference on models of trending
data, and the cross correlation and serial correlation properties of detrended series
(often called cyclical components) are very sensitive to the type of detrending pro-
cedure used. Different detrending methods imply different cyclical components,
which need not “turn” when the classical business cycle turns. It follows that
models of detrended data provide only indirect information about classical cy-
cles, and one needs to keep this in mind when interpreting business cycle models.
See Harvey and Jaeger (1993) or Canova (1998) for further discussion on the
modeling of detrended data.

Harding and Pagan (2001) provide a rigorous link between these two ap-
proaches. Since the main problem with the classical approach is the absence of
formal definitions for peaks and troughs, they design an algorithm that can be
applied to raw data to date these events. Their algorithm mimicks the classical
procedures used to find troughs and peaks, so that it identifies turning points
that match the classical “reference cycle” very closely. Once turning points have
been established, one can then measure various properties of classical cycles.
We discuss these properties in more detail below. The difficulties in interpret-
ing parametric models of detrended data are resolved by studying their implied
classical properties. To do this, one firstly uses the parametric model to obtain
simulated series of detrended data, then integrates the detrended series to obtain
levels series, passes the implied levels series through the cycle dating algorithm
and finally compares the measured properties of the simulated levels series with

measures based on the original data.



2.1. Harding and Pagan’s BBQ and nonparametric measures of BCC.

The turning points in “reference” cycles are typically located by finding local
maxima and minima, subject to the conditions that peaks and troughs alternate,
and that periods of contraction and expansion are sufficiently long. Such patterns
are relatively easy to locate on a graph, and a good cycle dating algorithm needs
to be able to recognize these same patterns.

The Bry and Boschan (1971) algorithm used by the NBER is one such al-
gorithm. Designed for use on monthly data, this algorithm identifies a local

maximum (or minimum) when
yt > () yper  for k=1,..., K and K =5 months, (2.1)

provided that each phase of the cycle lasts at least six months and the whole cycle
lasts at least fifteen months. Harding and Pagan (2001) modify this algorithm so
that it can be used on quarterly data, and this modified algorithm is known as
the BBQ. The BBQ algorithm identifies turning points when

yr > (Qypex  for k=1,..., K and K = 2 quarters, (2.2)

provided that each phase of a cycle lasts at least two quarters and the whole cycle
lasts at least five quarters. The advantage of using an algorithm rather than a
graph to locate dates of turning points is that it provides objective rather than
subjective output, and one gets the same dates each time the algorithm is used.
Having identified the turning points in a series, one can then measure and
study various business cycle characteristics (BCC). Harding and Pagan (2001)
focus on four characteristics, which include measures of the length and size of a
cycle, as well as measures of the cycle’s impact and its shape. The four BCC are
listed in Table 1, and since researchers are often interested in differences between
recessionary and expansionary phases of the business cycle, it is useful to calculate
the measures separately, for peak-to-trough phases and trough-to-peak phases.
Figure 1 provides a diagram that illustrates how each characteristic can be
measured in a peak to trough episode. During this recessionary phase, the econ-
omy moves along the curved path from point X to point Y. The base of the
triangle XYZ given by the length of the line XZ shows the duration (D) of the



phase, i.e. how long it takes (in quarters) for the phase to be completed. The
height of the triangle XYZ given by the length of the line YZ shows the amplitude
(A) of the recession, i.e. the total change in output as the economy moves from

its peak at X to its trough at Y. We convert this into a percentage change in our

analysis.
Table 1: Business Cycle Characteristics (BCC)
Measure Description
Mean Duration How many quarters it takes on average
(quarters) to complete each phase of the cycle

Mean Amplitude (%) | Total percentage decrease or increase.

in output per phase of the cycle on average

Cumulation (%) Cumulative percentage loss or gain in output

per phase of the cycle on average

Excess (%) The average excess percentage value per quarter

relative to the triangle approximation

The impact of the recession can be measured by estimating the cumulated loss
in output as the economy moves from the peak to the trough. This is the area
above the curve path. The area of the triangle XYZ, i.e. Cpp; = %DA provides a
crude measure that Harding and Pagan (2001) call the “triangle approximation”
to cumulative losses, and we illustrate this in Figure 1(a). A better approximation
of the cumulated losses in output is given by the sum of the areas of the T
small rectangles r, for t = 1,...T, where T' = D, and each rectangle relates
to a single quarter during the phase. This “rectangle approximation”, given by
Cr = Zle r¢, is illustrated in Figure 1(b). The approximation can be further
improved if we subtact the small corner triangles from the rectangles to obtain
the shaded area in Figure 1(c). Since A = Zthl oy, where each a; measures
the change in amplitude during quarter ¢, the total area in these small triangles
is given by § = %Zthl oy = %A. The “bias corrected” measure of cumulated
output loss is then given by

Co = Cr — %A, (2.3)

and after converting this into a percentage, this is our measure of cumulated

output loss.



The final business cycle characteristic of interest measures the difference be-
tween the “bias corrected” cumulated output loss and the triangle approximation
to this loss. We refer to this as an “Excess” measure and calculate it using the
convention that —Fx = Cr— %A— %DA. The relevant area is illustrated in Figure
1(d). Harding and Pagan (2001) used this measure to create an “excess index”
given by
_ 3DA+3A-Cg

D )

E (2.4)

and since this index describes the shape of the actual business cycle relative to
the triangle approximation, it provides a measure of the shape of the cycle. We
express the excess measure as a percentage in the work that follows.

The above measures relate to a single recession, but one can summarise the
business cycle characteristics of a given macroeconomic variable by calculating the
means of each BCC for over all peak-to-trough and over all trough-to-peak phases.
These eight summary statistics (calculated without any prior detrending of the
series) provide a natural benchmark for the evaluation of a business cycle model,
because a good model should imply the same BCCs as those that are present
in the data. Parametric models are, of course, typically modelling detrended
data. However, this doesn’t prevent the simulation of detrended data and then
the integration of the simulated series to obtain an analogue of the original data
together with its BCC measures. A sufficient number of simulations based on
a parametric model will allow one to estimate the empirical density functions
for each of the eight characteristics of interest, and these densities can then be
compared with the relevant characteristics in the original data. If an observed
BCC lies in the upper or lower tails of the simulated density, then this provides
evidence against the parametric model. In our applications, we undertake 10000
simulations, and reject a parametric model if an observed BCC falls in the lower

5% or upper 5% tail of the relevant empirical distribution.

3. DATA AND MODELS

Our data consists of quarterly time series of real output (gross domestic prod-
uct), short term interest rates and long term interest rates for the United States,

Canada, the United Kingdom and Australia. We provide detailed information on



data sources, our samples, and precise descriptions of our raw series in Appendix
1, and we base our benchmark analyses of business cycle characteristics on the
natural logarithms of real GDP. Our spread variables are calculated by taking the
difference between the interest rates on the long-term bond and the short term
bond, and the variables in our parametric models are output growth (calculated
as 100xthe differenced logarithms of real GDP) and the spread. We use the no-
tation y; to denote output growth (which we will call output) and s; to denote
the interest rate spread. Graphs of all variables are provided in Appendix 1.
Summary statistics of the business cycle characteristics for each of our log(GDP)

series are provided in Table 2. Here, it is quite clear that each characteristic varies
considerably from country to country, and that the characteristics of the peak-

to-trough phase are quite different from those of the trough-to-peak phase.

Table 2: Benchmark Business Cycle Characteristics
USA Canada UK* Australia Netherlands

Mean Duration

PT 3.8 4.0 4.4 3.7 2.5
TP 20.4 16.0 25.5 29.5 14.4
Mean Amplitude
PT -2.1 -3.2 -3.2 -3.1 -2.4
TP 22.9 17.2 21.5 28.3 14.9
Cumulation
PT -4.2 -6.6 -9.6 -5.2 -3.1
TP 342 257 381 458 185
Fxcess
PT -0.1 0.3 -0.1 0.1 -0.0
TP 1.4 1.4 -5 1.5 1.0

Note: The UK figures relate to a cycle with a minimum length of 4 quarters

rather than 5. This makes our analysis comparable to Harding and Pagan (2001)

The literature on nonlinearities in business cycles has developed in response
to observed differences between recessionary and expansionary phases, but its
success in modelling these differences has been questioned. Harding and Pagan

(2001) note that a random walk model with drift can produce asymmetries similar



to those in Table 2, although this model fails to capture “excess” in the trough-to-
peak phase. A Markov-switching model (see Hamilton (1989)) also fails according
to this criterion, which leads Harding and Pagan to conclude that “there is little
evidence that nonlinear effects are important to the nature of the business cycle”.
Harding and Pagan (2001) also experiment with putting serial correlation into
their model and forming a vector autoregression of output and investment, but
none of these models capture “excess” in the trough-to-peak phase.

Our nonlinear leading indicator models differ from the above in two ways.
Firstly, we model the joint behaviour of a financial indicator and output (rather
than the joint behaviour of real variables). This is consistent with the view
that monetary policy affects the business cycle, and it is also consistent with
evidence that monetary variables Granger cause output. The other important
feature of our models is that our nonlinear specifications are bivariate rather than
univariate. Most previous work on nonlinearities in business cycles has focussed
nonlinear univariate specifications of output, thereby ignoring the multivariate
nature of business cycles.

We develop our models, one country at a time, to make sure that we account
for country specific characteristics. In each case, we estimate a random walk in
output to provide a baseline univariate specification, and then a VAR in output
and the spread to provide a baseline bivariate model. We use AIC to guide our lag-
length choices for the VAR, but eliminate lagged variables if they are statistically
insignificant and their removal does not lead to serially correlated residuals. We
estimate these restricted VARs both equation by equation using OLS, and as a
Seemingly Unrelated Regression, but there is never much difference between the
two, and our simulations are based on the latter. We call our restricted VARs
ARLI models, and we compare the simulated properties of these models with
those of the random walk models and the raw data. This allows us to assess how
the lag structure and the financial indicator in each ARLI model accounts for
ability to capture business cycle characteristics.

We develop our nonlinear models by conducting specification tests on each
equation in the ARLI model. These tests include Tsay (1989) tests for threshold
behaviour, tests by Luukonnen et al (1988) and Terisvirta (1994) for evidence of

smooth transition autoregressive behaviour, and other tests for structural change.
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Statistically significant evidence of nonlinearity is found for each country, but
the implied nonlinear form is different in each case. We use the results of the
nonlinearity tests to guide our specification for each equation, and as above, we
remove statistically insignificant explanators from equations provided that their
removal does not lead to serially correlated residuals. Further details are provided

below, in our country by country analysis.

4. Empirical Analysis

4.1. The United States

Univariate analysis of y; found that an AR(2) model was preferred to a random
walk (in In(real GDP)), but there was no evidence to support a univariate non-
linear specification for y;. The relevant equations for the period 1961:1 to 2000:4

(160 observations) were

Z//\t = 0.53 + 0.26y;—1 + 0.13y;_2 OMLE = -822, AIC=2.483, and
(0.10)  (0.08) (0.08)

nw = 0.87 oy = 870, AIC=2.572.
(0.07)

Bivariate analysis suggested a longer lag structure, with AIC selecting a
VAR(5) in output and the spread as a baseline model. However, after omitting
the insignificant lags and testing for serial correlation present in the residuals of
each equation, we obtained the ARLI models presented in Appendix 2, which
use just three lags. There was little difference between the results obtained using
equation by equation OLS estimation, and system estimation. Both models show
that the spread Granger-causes output, and that feedback is also present.

Nonlinearity tests based on a VAR(3) found widespread evidence of nonlinear-
ity in each equation, as shown in Table 3. Both TAR and STAR tests supported
regime switching behaviour in output, with any lag of s; driving changes in regime.
The spread equation is clearly nonlinear, regardless of the hypothesized switching
variable. Related tests (see Luukkonen et al (1988)), and tests for the presence
of a lagged depth of recession variable (see Beaudry and Koop, 1993) also found
evidence of regime behaviour.

We estimated TAR and STAR specifications for each equation, using s;—1

as a transition variable, then s; 2 and then s; 3. From these experiments, an
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LSTAR model for output with s;_o as the transition variable fitted the data
best. For the spread equation, an LSTAR model with s, 1 as the transition fitted
the data better than models with other transition variables, but the difference
between alternative specifications was slight. The two chosen equations are given
in Appendix 2, and we call this model our Bi-NARLI model. Given that lagged
spread variables were possible transition variables for both equations, we also
considered the possibility of a common nonlinear factor (see Anderson and Vahid
(1998)). Such a factor was supported, using s;_2 as a transition variable, and the

corresponding Com-NARLI model is given in Appendix 2.

Table 3: P-values of Nonlinearity Tests on USA Data

Test Transition  Output Spread Common
Variable  Equation Equation Nonlinearity
TAR test Yt—1 0.5822 0.0000 0.6101
(Tsay, 1986) Yt—2 0.3144 0.0041 0.4077
Yt-3 0.2613 0.0121 0.8752
St1 0.0051 0.0001 0.0079
St—2 0.0006 0.0032 0.0050
S¢_3 0.0189 0.0000 0.0455
STAR test Yt—1 0.6607 0.0151 0.9397
(Terdsvirta, Yt—2 0.3525 0.0000 0.2973
1994) Yt—3 0.4074 0.0019 0.6387
St1 0.0024 0.0005 0.0399
St—2 0.0007 0.0377 0.3018
S¢_3 0.0134 0.0000 0.0067

Note: The last column tests the null hypothesis that any nonlinearities in the

individual equations are the same. See Anderson and Vahid (1998) for details.

Table 4 presents the summary results of Harding and Pagan’s (2001) procedure
applied to 10,000 simulations of 160 observations of the DGP implied by each
model. The results for our linear models are similar to those in Harding and
Pagan. The random walk model fails to capture most aspects of the peak-to-
trough stage and it is also unable to predict the shape of the trough-to-peak

episodes (expansions). The latter is true for all of our linear models. In contrast,
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the nonlinear models can capture all features. In particular, the observed “excess”
for expansions is within the simulated confidence intervals, showing that these

models provide plausable specifications of the true data generating process.

Table 4: Simulated Business Cycle Characteristics for the USA.

Raw RW + AR(2) ARLI Bi Com-
Data Drift NARLI NARLI
Duration
PT 3.8 2.4* 3.1 3.3 2.9 3.1
(2.0,3.4) (2.0,4.5) (2.2,5.0) (2.0,4.0) (2.0,4.4)
TP 20.4 36.5 31.0 27.6 37.0 32.6
(13.0,80.0) (15.0,64.5) (14.3,49.3) (17.3,73.0) (16.0,66.5)
Amplitude
PT —2.1 —1.0* —14 —-1.5 1.7 -1.9
(-1.7,-0.5)  (-2.3,-0.7) (-2.5,—0.8) (—3.1,-0.7) (—3.2,—0.8)
TP 22.9 34.2 30.9 27.0 35.5 34.4
(12.2,75.6) (15.0,64.5) (13.3,50.3) (16.6,69.9) (16.3,69.6)
Cumulation
PT —4.2 —1.4* —-2.6 -3.2 —-2.8 -3.4
(-2.7,-0.5)  (—6.0,—0.7)  (~7.4,—0.9) (-6.2,-0.7) (—7.5,—0.9)
TP 342 1025 865 655 1107 958
(97,3451) (156,2649) (136,1841) (195,3254) (188,2901)
Excess
PT -0.10 0.00 0.00 0.00 0.02 0.02
(=0.15,0.15)  (—0.16,0.16) (—0.16,0.17) (—0.21,0.27)  (—0.19,0.24)
TP 1.36 0.05 —0.00* 0.04* 0.08 0.05

(-1.43,1.58)  (-1.40,1.34) (—1.12,1.28) (—1.20,1.38) (—1.23,1.36)

Note: The values in parentheses are bounds of 90% confidence intervals derived
from the simulated distributions. The asterisks highlight those sample statistics

whose 90% bounds do not contain the observed cycle characteristic.

4.2. Canada

Univariate analysis of y; found that an AR(1) specification was preferred to a
random walk (in In real GDP), but there was no evidence to support a longer lag

structure for y;. The relevant equations for the sample of 156 observations were

n = 0.63+ 0.31y; 1 oMLE = 874, AIC=2.584, and
(0.10)  (0.08)

nw = 091 oMLE = 913, AIC=2.669,
(0.07)
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and we found no statistically significant evidence of univariate nonlinear be-
haviour in ;.

The AIC criterion selected a VAR(2) in output and the spread as a baseline
bivariate model, and after omitting the insignificant lags and testing for serial
correlation present in the residuals of each equation, we obtained the ARLI models
presented in Appendix 3. As in the US case, there was little difference between
the results obtained using equation by equation OLS estimation, and system
estimation. Both models show that the spread Granger-causes output, and that
weak feedback is also present.

Although there was no evidence of an omitted CDR variable in either equation,
TAR and STAR tests (see Table 5) found strong evidence of nonlinearity. These
tests supported regime switching behaviour in each equation, with either y;—1
or s;_1 driving changes in regime. In general, the evidence supporting y;—1 as a
transition variable in individual equations was stronger, and rejected the null that
the nonlinearity was common. On the other hand, the evidence that s; 1 was
driving regime changes was slightly weaker, and more consistent with a common

nonlinear factor hypothesis.

Table 5: P-values of Nonlinearity Tests on Canadian Data

Test Transition  Output Spread Common
Variable  Equation Equation Nonlinearity

TAR test Yt—1 0.0025 0.0100 0.0090
(Tsay, 1986) Yi—2 0.1229 0.9406 0.7835

St—1 0.0368 0.0079 0.1974

S¢—9 0.0718 0.1192 0.5477
STAR test Yt—1 0.0020 0.0019 0.0383
(Terdsvirta, Yt—2 0.1897 0.4443 0.7835
1994) St—1 0.1147 0.0062 0.4617

St 9 0.1718 0.0224 0.9547

Note: The last column tests the null hypothesis that any nonlinearities in the

individual equations are the same. See Anderson and Vahid (1998) for details.

We estimated TAR and STAR specifications for each equation, using y;—1 as

a transition variable, and then again using s; 1 as the transition. STAR models

14



with y;—1 as the transition fitted the data a little better and are presented in
Appendix 3. The transition functions for each model are quite different, with
y¢ showing more pronounced evidence of threshold behaviour than s; Despite
the evidence against using y:—1 as a common transition variable, we estimated a
system in which regimes changed with this variable. The resulting Com-NARLI
model is given in Appendix 3. This model is quite different from the single equa-
tion STAR models (in that it is almost a threshold model, and the lower regime
contains more observations), and relative to its single equation counterparts, it
does not fit the data as well. The residuals of the single equation STAR mod-
els showed no evidence of serial correlation and only weak evidence of ARCH.
Not surprisingly, the residuals of the Com-NARLI system were badly behaved,

providing evidence that the common factor restriction was not appropriate.

Table 6: Simulated Business Cycle Characteristics for Canada.

Raw RW -+ AR(1) ARLI Bi Com-
Data Drift NARLI NARLI
Duration
PT 4.0 2.4* 2.8 2.9 3.7 3.3
(2.0,3.4) (2.0,4.0) (2.0,4.0) (2.0,6.0) (2.0,5.2)
TP 16.0 36.4 27.6 27.6 36.9 36.0
(12.6,82.0) (12.5,56.0) (12.1,58.0) (10.0,89.0) (6.0,99.0)
Amplitude
PT -3.2 —1.1% —1.4* —1.4* —-2.5 —-1.9
(~1.8,-0.5) (-2.2,-0.7) (-2.3,-0.7) (-5.8,-0.7)  (—3.9,—0.6)
TP 17.2 35.9 28.8 28.5 39.0 43.4
(12.3,79.8) (12.4,60.0) (11.8,60.0) (9.5,95.6) (5.0,132.1)
Cumulation
PT —6.6 —1.4* —2.2% —2.5% —6.7 -3.4
(—2.9,—0.5)  (-4.8,—0.8) (=5.5,—0.8) (—21.5,—0.7) (—11.0,—0.7)
TP 257 1061 694 691 1192 1520
(91,3604) (106,2128) (96,2177) (55,4378) (16,6862)
Excess
PT 0.27 —0.00* 0.00* 0.00* 0.06 0.00
(=0.16,0.16) (-0.15,0.14)  (—0.16,0.16)  (—0.19,0.35)  (—0.22,0.25)
TP 1.35 0.04 0.03 0.02 0.14 0.23

(-1.54,1.68) (—1.31,1.40) (—1.44,1.44) (—1.81,2.24) (—2.383.18)

Note: The values in parentheses are bounds of 90% confidence intervals derived
from the simulated distributions. The asterisks highlight those sample statistics

whose 90% bounds do not contain the observed cycle characteristic.
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Output was simulated from each of the univariate and bivariate models, so
that we could assess how well each “captures” the business cycle. We used each
estimated model to simulate 10,000 output series of 158 observations, and then
used Harding and Pagan’s procedures to analyse the classical business cycle fea-
tures implied by each series. Table 6 presents the features that are present in the
Canadian data, and then the summary results for each set of simulations.

The results for the linear models are very interesting, because although each
model can capture the trough to peak characteristics of the cycle, they are unable
to predict the characteristics of peak to trough episodes (recessions). This inabil-
ity is present, regardless of whether or not the interest rate spread is included in
the model. However, once we use a bivariate nonlinear specification, there is a
clear improvement. The bi-NARLI model can capture all features of recessionary
phases that the linear models failed to capture. Out of all the models studied in
this exercise, the mean prediction made for each peak to trough characteristic is
closest to the corresponding observed value, when the Bi-NARLI model is used.
Conversely, if we are interested in predicting any of the observed trough to peak
statistics, then the ARLI model performs best. Relative to the linear models, the
Com-NARLI model also performs well, although it fails to capture the shape of

peak to trough episodes, like the linear models.

4.3. Australia

Harding and Pagan (2001) report that a random walk with drift model performs
reasonably well in capturing the shape of the business cycle in Australia. They
show that there is no significant autocorrelation in the growth rate of the Aus-
tralian GDP, and they establish that the only characteristic of the shape of the
business cycle in Australia that a random walk with drift model cannot reproduce
is the trough to peak excess. Our data set spans a slightly different sample, and
we also find no significant autocorrelation in the growth rate of the Australian
GDP. However, our simulations find that a random walk with drift model fails
in producing the peak to trough amplitude as well as the trough to peak excess.
Here, we ask if a bivariate model of GDP growth and the interest rate spread can
produce the shape characteristics of the Australian business cycles.

In a linear bivariate model of GDP growth and interest rate spread, Granger-
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causality tests show no evidence that the spread Granger-causes GDP growth.
In fact, it seems that GDP growth is unpredictable on the basis of the bivariate
information set that includes lags of GDP growth and the spread. This supports
the random walk with drift model. However, there is strong evidence of het-
eroskedasticity in the GDP growth equation, which is quite apparent from the
graph of the GDP growth in Appendix 1.

The unconditional variance of an autoregressive process depends on the vari-
ance of its innovations as well as the autoregressive parameters. Likelihood com-
parisons of models with a structural break in the autoregressive parameters and
models with a break in the innovation variance favoured the latter, and supported
a break in the variance of innovations in the first quarter of 1984. Conditional
on a break in the innovation variance in 1984:1, the preferred model for the GDP
growth is,

g = 0.83 + 0.085,_5. (4.1)
(0.08)  (0.04)

Under the maintained hypothesis of heteroskedasticity, there is no evidence of
nonlinearity or serial correlation in the errors of this equation.

As in the case of other countries, the interest rate spread in Australia, plotted
in Appendix 1, has more interesting dynamics than GDP growth. There is strong
evidence of nonlinearity in the time series model of interest rate spread in Aus-
tralia with two lags of GDP growth and the spread on the right hand side. The
tests of linearity against an LSTAR alternative provide strong evidence for the
first lag of the spread as the transition variable. The best fitting LSTAR model
has a centrality parameter of -0.35 and a very large smoothing parameter, which
suggests that a TAR model will be appropriate for the spread. The fitted TAR
model to the spread is,

§t = 0.18 + 0.81 St—1 + (St—l < —035) X <— 0.28875_2 — 0.69yt_2> . (42)
(0.13) (0.07) (0.14) (0.21)

Table 7 shows the calculated shape statistics for the actual Australian data
and for the simulated data from three models. The first is a random walk with
drift model. The second, is a random walk with drift model with a break in
variance in 1984:1. We have simulated data from this model to assess if the

variance break is sufficient for producing a model that can capture the shape
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characteristics of the Australian business cycle. The third model, is the bivariate

nonlinear model explained above.

Table 7: Simulated Business Cycle Characteristics for Australia
Aus Data RW + RW + drift TAR

drift +hetero
Mean Duration (qrts)
PT 3.7 2.8 3.9 3.0
(2.0,4.0) (2.3,6.3) (2.0,4.8)
TP 29.5 21.0 10.7* 20.3
(10.0,41.0) (4.8,21.7) (6.5,45.5)
Mean Amplitude (%)
PT 3.1 —1.7* —-5.3 —24
(—2.6,-1.0)  (-86,-2.8)  (—4.1,-1.0)
TP 28.3 22.1 17.8 22.5
(10.4,42.4) (8.3,34.2) (7.9,48.0)
Cumulation (%)
PT —5.2 —-2.8 —12.8 —4.3
(—=5.6,—1.1)  (=30.2,—3.5)  (—10.3,—1.1)
TP 457 391 151 406
(68,1143) (23.4,478) (30,1338)
Excess (%)
PT 0.19 —0.00 —0.00 —0.01
(—0.20,0.20)  (—0.62,0.62)  (—0.32,0.31)
TP 1.53 0.02* 0.06 0.27

(—1.14,1.18)  (—1.46,1.65)  (—1.22,2.02)
Note: The values in parenthese are bounds of 90% confidence intervals derived

from the simulated distributions. The asterisks highlight those sample statistics

whose 90% bounds do not contain the observed cycle characteristics.

4.4. United Kingdom

Univariate analysis of y; found that a random walk (in In real GDP) model was
preferred, but there was significant evidence of change in the variance of the
growth rate. The standard deviation of the output growth in the first half of the
sample is 1.28, and 0.70 in the second half.. There is also significant evidence
of positive serial correlation in the growth rate in the latter half of the sample.
Determination of the break point by maximizing the likelihood leads to a break
point at 1991:1. The following equations show the dramatic change in the time

series properties of the output growth before and after this date:
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yo= 0.64 005y 1+ 6. =1.16 for 1960:1 to 1990:4,

(0.12)  (0.09)
Yy = 022+ 0.67y 1+ & 6. = 0.31 for 1991:1 to 2000:2.
(0.08)  (0.11)

This change is so dramatic that it begs the question of how to proceed. If we
accept that the structure of the growth process has changed in the last ten years,
would there be any point in estimating a time series model for the period before
the change? The period after the change is too short to consider developing a
nonlinear autoregressive leading indicator model for it. It has particularly been
a quiet period with not many pronounced cycles, which makes the evaluation
of models on the basis of their “business cycle characteristics” inapprorpriate.
Alternatively, one can assume that this evidence is a sample peculiarity and ignore
it, or speculate that it is a manifestation of other kinds of nonlineariy. We pursue
the latter.

The AIC criterions selected a VAR(3) in output and the spread as a baseline
bivariate model, and after omitting the insignificant lags and testing for serial
correlation present in the residuals of each equation, we obtained the ARLI models
presented in Appendix 4. As in other cases, there was little difference between
the results obtained using equation by equation OLS estimation, and system
estimation. Both models show that the spread Granger-causes output, and that
weak feedback is also present.

Although there was no evidence of an omitted CDR variable in either equation,
RESET, TAR and STAR tests found strong evidence of nonlinearity in the output
equation. The p-values for the latter three tests were 0.0150, 0.0015 and 0.0048,
with y;_o as the transition variable in the TAR and STAR tests. Only the STAR
test with y; o as the transition variable found evidence of nonlinearity in the
spread equation (the p-value was 0.0421), and a common nonlinearity test rejected
the null hypothesis that the output and spead equations had a common nonlinear
STAR factor.

We estimated STAR specifications for each equation, using y;—o as a tran-
sition variable. The maximum likelihood estimate of the smoothing parameter
in the spread equation was quite large, and the centre of its transition function

was 1.94, which effectively meant that we had a threshold model with very few
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observations in one regime. This model is very similar to the linear model, with
some outlying observations removed. Since the number of outlying observations
only just exceeded the number of estimated parameters, we decided to simply use
the linear model for the spread'. Thus, our Bi-NARLI model has a non-linear
output equation and a linear spread equation. The estimated linear and nonlinear

models for output and the spread are included in Appendix 4.

Table 8: Simulated Business Cycle Characteristics for the UK.

Raw RW + AR(1)+ ARLI Bi
Data Drift Break NARLI
Duration
PT 4.4 3.0* 3.2% 3.4 3.9
(2.3,4.0) (2.3,4.3) (2.4,4.7) (2.5,5.8)
TP 25.5 14.7* 13.6* 15.3 16.6
(8.6,24.5) (7.6,23.0) (8.9,25.5) (9.1,29.0)
Amplitude
PT —-3.2 —1.7* —1.9* —1.9* —2.3
(-=2.3,-1.1) (—2.8,—-1.3) (-2.7,—-1.2) (—3.8,—1.3)
TP 21.5 12.2* 11.9* 12.9 14.8
(7.3,20.2) (6.9,19.9) (7.3,21.6) (7.4,27.0)
Cumulation
PT —9.6 -3.0* -3.7* —-3.9* —6.4
(—5.4,—-1.4) (-7.0,—-1.6) (-7.8,—-1.6) (—15.9,—1.8)
TP 381 158 141* 173 233
(45,394) (37,356) (47,435) (51,626)
Excess
PT —0.14 —0.00* 0.00 0.00 0.01
(-0.13,0.13) (-0.17,0.15) (—=0.15,0.15)  (—0.17,0.20)
TP —0.50 0.00 0.03 —0.00 0.04

(-0.53,0.53)  (-0.55,0.63) (—0.61,0.61) (—0.73,0.79)
Note: The values in parentheses are bounds of 90% confidence intervals derived

from the simulated distributions. The asterisks highlight those sample statistics

whose 90% bounds do not contain the observed cycle characteristic.

Table 8 presents the features that are present in the UK data, and then
summary results for simulations based on each model. As in Harding and Pagan

(2001), we reduce the minimum duration of a complete cycle to 4 quarters in the

'Readers may rest assured that this decision was made before the abilities of models in

capturing business cycle characteristics were evaluated.
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case of UK, because otherwise the algorithm does not choose 1974 as a recession.
The results quite clearly favour the nonlinear autoregressive leading indicator
model. None of the linear models can produce cycles that have the similar shape
to the real data in recessions (peak to trough). Allowing for structural break
in 1990:4 in a univariate time series model of output does not help at all. The
biNARLI model is the only model that can capture all features of the business

cycle that the linear models failed to capture?.

4.5. Netherlands

The graph of output growth for the Netherlands suggests structural change in
this series, and further analysis based on univariate models suggests a structural
break midway between 1974, for both the random walk model and the AR(3)

chosen by AIC. The relevant equations for the random walk models are

o= ((B).ES), ovLE = 1.1994, for the 1966:1-1997:4 sample, and
?/J\t = 1.17, a'NILE = 1.4678 together with g//\t = 0.57, a'NILE = 1.0406
(0.26) (0.11)

for the 1966:1-1974:2 and 1974:3-1997:3 subsamples. The third lag in the AR(3)
model became insignificant after allowing for the structural break, and only one
lag was needed for the latter subsample (see Appendix 5 for these equations), but
apart from this evidence of structural change, univariate nonlinearity tests found
no further evidence of nonlinear behaviour in ;.

The AIC criterion selected a VAR(3) in output and the spread as a baseline
bivariate model, and after omitting the insignificant lags and testing for serial
correlation present in the residuals of each equation, we obtained the ARLI models
presented in Appendix 5. As for the other countries, there was little difference
between the results obtained using equation by equation OLS estimation, and
system estimation. Both models indicated that the spread Granger-causes output,

and that weak feedback was present.

?We also studied the model with the non-linear spread equation which we had ruled out in
favour of the one with linear spread equation. The results are very close to the results of the
BiNARLI model presented in the table.
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Analysis on the output equation in the VAR(3) found no evidence of nonlin-
earity (apart from the structural change). Given that our experience with the UK
case had shown that formal modeling of a structural change was unnecessary once
we allowed for nonlinearity elsewhere in the system, we maintained the output
equation from our ARLI model and turned to the modeling of nonlinearities in the
spread equation. The rationale behind this was that if the spread equation were
nonlinear, then the lagged spread variables in the (linear) output equation would
feed nonlinearities into data generating process for y;. Formal nonlinearity tests
on the spread equation (see Table 9) provided strong support for regime switching
behaviour, but did not clearly indicate an appropriate specification. Accordingly,
we estimated both TAR and STAR specifications with y;_1, ¥_3, St_1, St_2 or
s¢—3 driving changes in regime, and found that a STAR model with s;_o as the
transition variable led to a fit that was much better than all other alternatives.
Our resulting Bi-NARLI model (which is given in Appendix 5) consists of the
ARLI output equation and a nonlinear STAR model of the spread.

Table 9: P-Values of Nonlinearity Tests on the Spread for

Netherlands

Transition | Luukonen et al ~ TAR test STAR test
Variable Test (1988) (Tsay, 1989) (Terdsvirta, 1994)

Yt—1 0.0086 0.0069 0.0075

Yt—2 0.3908 0.2191 0.3030

Yt—3 0.0292 0.1409 0.0188

St—1 0.0069 0.0328 0.0767

St—2 0.0006 0.2406 0.0006

St—3 0.0018 0.0005 0.0034

Table 10 shows the ability of the various models to capture the features of the
Netherlands’ business cycle. Here, we see that all models describe the business
cycle rather well, with the random walk with break model, the ARLI model and
the Bi-NARLI model capturing all features of interest. The simulations show
that the simple random walk model with drift is inadequate, but there is no clear
winner out of the three models that perform well. It appears that the presence of

the spread in the output equation helps to explain business cycle characteristics,

22



although this is not necessary if one accounts for nonlinearities by incorporating

a break in the output process.

Table 10: Simulated Business Cycle Characteristics for Netherlands.

Raw RW + RW -+ AR with ARLI Bi
Data drift drift+break break NARLI
Duration
PT 2.5 3.1 3.1 3.0 3.0 3.1
(2.2,4.5) (2.2,4.4) (2.0,4.3) (2.0,4.3) (2.0,4.5)
TP 14.4 16.7 15.6 17.5 21.9 21.8
(9.0,30.0) (8.4,27.3) (8.3,34.3) (10.7,42.5) (10.4,43.0)
Amplitude
PT —2.4 —2.0 —-1.9 —1.6* —1.7 -1.7
(—2.8,—1.2) (=2.7,—1.1) (=2.3,-0.9) (=2.5—-0.9) (—2.7,—1.0)
TP 14.9 16.3 14.0 13.9 19.9 20.0
(8.9,29.0) (7.2,25.0) (6.5,27.1) (9.9,38.0) (9.4,39.0)
Cumulation
PT -3.1 -34 -3.3 —2.6 -2.9 -3.1
(—6.7,—1.4) (—6.6,—1.4) (-5.3,-1.0)  (-3.1,-1.1) (—6.7,—1.1)
TP 185 229 188 207 357 363
(53,619) (40,509) (34,617) (69,1021) (64,1075)
Excess
PT -0.03 0.00 0.00 0.00 0.00 0.00
(=0.19,0.19)  (=0.18,0.17)  (—0.18,0.18)  (—0.20,0.19)  (—0.20,0.19)
TP 1.02 0.02* 0.20 0.14 0.04 0.01

(-0.80,0.87)  (—0.58,1.12)  (—0.67,1.05) (—1.01,1.08) (—1.05,1.07)

Note: The values in parentheses are bounds of 90% confidence intervals derived
from the simulated distributions. The asterisks highlight those sample statistics

whose 90% bounds do not contain the observed cycle characteristic.

5. Conclusion and Directions for Further Research

In this paper we develop bivariate nonlinear models of output and the interest
rate spreads for five OECD countries. Our primary aim is to develop models that
can account for key business cycle characteristics, and we evaluate our models
by assessing whether or not they imply the cyclical features that are present in
observed data. We find that our models can capture the amplitude, depth and
shape characteristics of cycles, and that they also account for differences between

expansionary and recessionary phases.
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Our results are consistent with other research that has established a clear
link between yield spreads and output, but they differ from most previous work
because our framework is nonlinear, rather than linear. We find that the non-
linearity in our specifications is important, because most linear models of output
and the spread have difficulty in accounting for the characteristics of recessions.
The linear models also fail to capture the shape of expansions. With respect
to differences across countries, our findings support Galbraith and Tkacz (2000).
These authors found that the evidence of asymmetries in the spread-output re-
lationship was stronger in North American countries, than in Europe.We find
that the nonlinearity in the output equations for non-North American countries
is more subtle, arising from nonlinearity in just one of the two equations in the
bivariate system.

Harding and Pagan (2001) find that univariate nonlinear representations of
output do not capture business cycles, and this, together with the work reported
here, suggests that the bivariate nature of our models is important. Given Harding
and Pagan’s (2001) conclusions that VAR models with investment and consump-
tion do not capture business cycle features, we also believe that the use of the
spread, rather than other possible explanators is also important. We have under-
taken other research (in Anderson and Vahid (2001)) that shows that bivariate
nonlinear models of output and money are inferior to those of output and the
spread, and this suggests that the spread is capturing more than just the effects
of monetary policy on output.

Recent work in the Federal Reserve System in the USA (see, eg Kozicki (1997))
has advocated the use of error correction terms from models of financial markets
in models of real variables, and we think that this insight is important. The yield
spread is, of course a valid error correction term in modeling the bond market,
and as such, it summarizes many features of the bond sector. We believe that
further research that employs international interest rate differentials, and error
correction terms from stock markets and exchange rate markets may also lead to

useful models of output, but we do not pursue this idea further here.

24



References

Anderson, H.M. and F. Vahid (2001), “Predicting the Probability of a Recession
with Nonlinear Autoregressive Leading Indicator Models”, Macroeconomic
Dynamics, 3, 1 - 50.

Anderson, H. M. and F. Vahid (1998), “Testing Multiple Equation Systems for

Common Nonlinear Factors”, Journal of Econometrics, 84, 1 - 37.

Athanasopoulos, G (2000), “Inspecting the Business Cycle”, Mimeo, Depart-

ment of Econometrics, Monash University.

Australian Bureau of Statistics (1987), A Guide to Smoothing Time Series-
Estimates of “Trend”, Catalogue No1316.0.

Beaudry, P. and G. Koop (1993), “Do Recessions Permanently Change Out-
put?”, Journal of Monetary Economics, 31, 149-163.

Blainey (1994), A shorter history of Australia, William Heinemann, Port Mel-

bourne, Australia.

Boehm, E.A. (1998), “ A Review in Some Methodological Issues in Identifying
and Analysing Business Cycles”, Melbourne Institute Working Paper, No.
26/98.

Boschan, C. and W. Ebanks (1978), “The Phase-Average Trend: A New Way
of Measuring Growth”, Proceedings of the Business and Economic Statistics

Section of the American Statistical Association.

Bry, G. and C. Boschan (1971), Cyclical Analysis of Time Series: Selected
Procedures and Computer Programs, New York, NBER.

Burns, A.F. and W.C. Mitchell (1946), Measuring Business Cycles, New York,
NBER.

Canova, F. (1998), “Detrending and Business Cycle Facts”, Journal of Mone-
tary Economics, 41, 475-512.

25



Choi, W.G. (1999), “Asymmetric Monetary Effects on Interest Rates across
Monetary Policy Stances”, Journal of Money, Credit and Banking, 31, 386-
416.

Cover, J. P. (1992) “Asymmetric Effects of Positive and Negative Money-
Supply Shocks”, Quarterly Journal of Economics, Vol CVIIL, pp. 1261-82,

Clements, M.P. and H. Krolzig (1998), “A Comparison of the Forecast Per-
formance of Markov Switching and Threshold Autoregressive Models of US
GNP”, Econometrics Journal, 1, c47-c75.

Davis, E. P. and G. Fagan (1997), “Are Financial Spreads Useful Indicators of
Future Inflation and Output Growth in EU Countries?”, Journal of Applied
Econometrics, 12, 701 - 714.

De Long, B. J. and Summers, L. (1988). "How Does Macroeconomic Policy
Affect Output?”, Brookings Papers on Economic Activity, 2, p 433-80.

Durland, J.M. and T.H. McCurdy (1994), “Duration-Dependent Transitions in
a Markov Model of US GNP Growth”, Journal of Business and Economic
Statistics, 12, 279-288.

Estrella A. and F. S. Mishkin (1998), “Predicting U.S. Recessions: Finan-
cial Variables as Leading Indicators”, Review of Economics and Statistics,
LXXX, 45 - 61.

Galbraith, J. W. and G. Tkacz (2000), “Testing for Asymmetry in the link
between the yield Spread and Output in the G-7 Countries”, Journal of
International Money and Finance, 19, 657 - 672.

Hamilton, J.D. and D. H. Kim (2000), “A Re-examination of the Predictability
of Economic Activity Using the Yield Spread”, Discussion Paper # 2000-23,

University of California at San Diego.

Hamilton, J. D. (1989), “A New Approach to the Economic Analysis of Non-

stationary Time Series and the Business Cycle”, Econometrica, 57, 357-384.

Harding, A. and A.R. Pagan (2001), “Dissecting the Cycle”, forthcoming in

the Journal of Monetary Economics.

26



Harvey, A.C. and A. Jaeger (1993), “Detrending, Stylized Facts and the Busi-
ness Cycle” | Journal of Applied Econometrics, 8, 231 - 247.

Karras, G., (1996), ‘Are the Output Effects of Monetary Policy Asymmmet-
ric? Evidence from a Sample of European Countries”, Ozford Bulletin of
Economics and Statistics, 58, 2, 267 - 278.

Karunaratne, N. D. (1999), “The Yield Curve as a Predictor of Growth and

Recessions in Australia”, Mimeo, University of Queensland, Australia.

Kozicki, S. (1997), “Predicting Real Growth and Inflation with the Yield

Spread”, Federal Reserve Economic Review.

Luukkonen, R., P. Saikkonen and T. Teréisvirta (1988), “Testing Linearity
Against Smooth Transition Autoregressive Models”, Biometrika, 75, 491
- 499.

Stock, J. H., and M. W. Watson, (1989) “New Indexes of Coincident and
Leading Economic Indicators”, N.B.E.R. Macroeconomics Annual,
N.B.E.R.

Stock, J.H. and M.W. Watson (1998), “Business Cycle Fluctuations in US
Macroeconomic Time Series”, NBER Working Paper, No. 6528.

Terdsvirta, T. and H.M. Anderson (1992), “Characterizing Nonlinearities in
Business Cycles Using Smooth Transition Autoregressive Models”, Journal
of Applied Econometrics, 7, S119-S136.

Terdsvirta, T. (1994), “Specification, Estimation and Evaluation of Smooth
Transition Autoregressive Models”, Journal of the American Statistical As-
sociation, 89, 208-218.

Tiao, G.C. and R.S. Tsay (1994), “Some Advances in Nonlinear and Adaptive
Modelling in Time Series”, Journal of Forecasting, 13, 109-131.

Tsay, R. (1989) “Testing and Modeling Threshold Autoregressive Processes”,
Journal of the American Statistical Association”, 84, 231-240.

27



Weise, C. L. (1999), “The Asymmetric Effects of Monetary Policy: A Nonlinear
Vector Autoregressive Approach”, Journal of Money, Credit and Banking,
31, 85-108.

Zellner, A. and C. Hong (1989), “Forecasting International Growth Rates Using
Bayesian Shrinkage and other Procedures”, Journal of Econometrics, 40,
183-202.

Zellner, A., C. Hong and C. Min (1991), “Forecasting Turning Points in Inter-
national Growth Rates Using Bayesian Exponentially Weighted Autoregres-

sion, Time-Varying Parameter and Pooling Techniques”, Journal of Econo-
metrics, 49, 275-304.

Zellner, A. and C. Min (1999), “Forecasting Turning Points in Countries’ Out-
put Growth Rates”, Journal of Econometrics, 88, 203-306.

28



Figure 1: Calculation of Cumulative Loss and Excess
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APPENDIX 1: DATA

Precise descriptions of the raw series that we use in this analysis are given below.
Unless otherwise stated, we have drawn all data from the OECD portion of the DX
database. We use the logarithms of real GDP when we undertake our benchmark
analysis, and our models are functions of output growth (y; = 100 x Aln(GDP))
and the interest rate spread (s; = Long-term interest rate - Short-term interest
rate). The effective samples used for analysis are shorter than the raw series

because of lagged variables in the models.

USA (1960:1 to 2000:4)

Output: Real Gross Domestic Product: (Billions of Chained 1996 Dollars,
seasonally adjusted at annual rates, from the U.S. Department of Commerce,
Bureau of Economic Analysis).

Short-Term Interest Rates: 3-Month Treasury (Secondary) Bill Market Rates
(Averages over business days expressed as a percentage, H15 Release from the
Federal Reserve Board of Governors).

Long-Term Interest Rates: 10-Year Treasury Bond Constant Maturity Rates
(Averages over business days expressed as a percentage, H15 Release from the
Federal Reserve Board of Governors).

The effective sample for analysis consisted of 160 observations, dating from
1961:1 to 2000:4.

CANADA (1961:1 to 2000:3)

Output: Real Gross Domestic Product (seasonally adjusted in constant 1992
prices, series CAN.NAGVTTO01.NCALSA).

Short-Term Interest Rates: Interest rates on 90 day deposit receipts. (ex-
pressed as a percentage pa, series CAN.IRT3DRO01.ST).

Long-Term Interest Rates: Yields on long term government bonds (>10 Years).
(expressed as a percentage pa, series CAN.IRLGV06.ST)..

The effective sample for analysis consisted of 156 observations, dating from
1961:4 to 2000:3.

AUSTRALIA (1969:3 to 2000:3)
Output: Real Gross Domestic Product, (seasonally adjusted in 1998/1999
prices, series AUS.NAGVTTO01.NCALSA).
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Short-Term Interest Rates: Yield on 3-Month Treasury Note (expressed as a
percentage pa, series FIRMMTNIY3).

Long-Term Interest Rates: Yield on Long-Term Treasury Bonds (expressed
as a percentage pa, series AUS.IRLTGV02.ST).

The effective sample for analysis consisted of 122 observations, dating from
1970:2 to 2000:3.

UNITED KINGDOM (1960:1 to 2000:2)

Output: Real Gross Domestic Product (seasonally adjusted in constant 1995
prices, series GBR.NAGVTT01.NCALSA).

Short-Term Interest Rates: 3 Month Treasury Bill Rates. (expressed as a
percentage pa, series 11260C..ZF... from the IFS portion of the DX database).

Long-Term Interest Rates: Yields on 10 Year Government Bonds (expressed
as a percentage pa, series GBR.IRLTGV02.ST)..

The effective sample for analysis consisted of 158 observations, dating from
1961:1 to 2000:2

NETHERLANDS (1965:1 to 1997:4)

Output: Real Gross Domestic Product (seasonally adjusted volume index
with 1995 base, series NLD.NAGVVO01.IXOBSA).

Short-Term Interest Rates: 3-Month Loans to Local Authorities (quarterly
averages over monthly data, expressed as a percentage pa, series taken from the
OECD portion of McGill University database).

Long-Term Interest Rates: 10 Year Government Bonds Yield. (expressed as
a percentage pa, series 13861..ZF..from IFS portion of the DX data-base).

The effective sample for analysis consisted of 128 observations, dating from
1966:1 to 1997:4.
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APPENDIX 2: BIVARIATE MODELS OF OUTPUT AND SPREAD
(USA: 1961:1 - 2000:4)

(Standard errors are in brackets)

ARLI-OLS model of output and spread:

th = 029+020t1+014y 2+0205t2 oMmLE = 0.79
(0.11) ~ (0.08) (0.08) (0.06)

S¢ = 0.26 — 0.15y— 2—|—1068t 1—0368;5 2+0198t 3 oMmLE = 0.55
(0.08)  (0.05) (0.08) (0.11) (0.08)

ARLI-SYS model of output and spread:

7 = 0.29 4 0.19y,_ 1—|—014yt 94+ 0.20s4 9 omLE = 0.79
(0.11) (0.08) (0.08) (0.06)

§t = 026—015 Yt— 2—|—106St 1—035St 2+018St 3 (ATMLEZO.55
(0.08)  (0.05) (0.08) (0.11) (0.08)

Bi-NARLI model of output and spread:

y; = —0.52 0.49 0.50 — 0.66 1.37
Yt © 23)yt 1 +( )yt 2+ 3 g)yt 3 3 )St 1 +( )St 2+
0.81 + 0.71 — 0.43y;_o — 0.57 0.73 — 1.40
Juu X ((0 16) * . 24)yt 02 5)y 2 0 9)yt 3 (0.2 )St 0 7)St 2)
fi = (14 exp{—14(s;—p —0.024)})"" oML = 0.71

5t = 045 —0.24y; 2+ 1.19s; 1—0565,5 2+

(0.09)  (0.08) (0.13) (0.14)
fst X (0 21 Yt—2 — 0. 11yt 3 — 0.47815_1 + 0.35 St—2 + 0.345,5_3)
(0.25) (0.07) (0.13) (0.20) (0.09)
fso = (L4+exp{—6.79(s;_1 —1.24)})7 ! oyvre = 0.49

Com-NARLI model of output and spread:

gt = —145— 039 Yt—1 + 076yt 2+0295t 3 — 1.89comy, oMvLE = 0.73
(0.43)  (0.24) (0.27) (0.18) (0.53)

§t = 125+023 Yt—1 — 046y 2+ 1033t 1—0198t 2—|—COmt, (A‘TI\/ILE:O-E)Q
(029)  (0.13) (0.16) (0.07) (0.11)

com; = (1+exp{—1.19(s;—2+0.55)})" < 1.27 — 0.32y,1 + 0. 39yt o+ 0. 193t 3>
(0.40)  (0.13) (0.17) (0.08)

33



APPENDIX 3: BIVARIATE MODELS OF OUTPUT AND SPREAD
(Canada: 1961:4 - 2000:3)

(Standard errors are in brackets)

ARLI-OLS model of output and spread:

g)t = 0.55+0. 19yt 1+ 0. 208t 2 &MLE =0.8175
(0.10)  (0.08) (0.09)

§ = 023—011% 1+ 1.03s4-1 — 0.1654_9 oMLE = 0.7623
(0.09)  (0.07) (0.08) (0.08)

ARLI-SYS model of output and spread:

g = 0.55 4+ 0.19y, 1+0203t D) omLe = 0.8175
(0.10)  (0.08) (0.06)

§ = 023 —0.12y1 4+ 1.028;—1 — 0.16 542 omLe = 0.7623
(0.09)  (0.07) (0.08) (0.08)

Bi-NARLI model of output and spread:

U = 037+064t2+0428t1+0138t2+
(0.16)  (0.20) (0.11) (0.04)

fyt X (0.21 + 0.22y, 1 — 0.64y, 2—0428t 2)

(0.21)  (0.08) (0.20) (0.11)
fyt = (1 + exp {—41.69 (yt,1 + 0.042)})_ oMmLE = 0.7593
Sio= 23T+ 168y — 061y 5+ 0.565 2+
(0.73)  (0.89) (0.38) (0.15)
fot X (—=2.37 — 1.68y;_1 + 0.61y;_2 + 1.148,_1 — 0.795;_2)
(0.73)  (0.89) (0.38) (0.09) (0.17)
foo = (1+exp{—4.72(y—1 +0.32)})* omLe = 0.7037

Com-NARLI model of output and spread:

9 = 0.66 + 0.37y;—1 + 0.425;_o + comy, oMmLE = 0.7629
@1 (©10) (0.08)

§¢ = 017 — 027y 1+ 1.028;1 — 0.2954_9 — 0.67comy, omLe = 0.7367
(0.10)  (0.09) (0-08) (0.09) (0.25)

comy = (1+exp{—211(y, 1 —0.38)})~" [ —0.37y,_ 1+012yt 2—|—016St 1— 0423t 9
(0.10) (0.06) (0.16) (0.08)
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APPENDIX 4: BIVARIATE MODELS OF OUTPUT AND THE
SPREAD
FOR THE UK (1960:1 - 2000:2)

ARLI-OLS model of output and spread:

U = 038+016t3+0125t2 0 =101
(0.10) (008) (0.05)
8¢ = 020—016t3+115st 1—027st2 o =0.67

(0.07)  (0.05) (0.07) (0.08)

Bi-NARLI model of output and spread:

g = 0.26 +0.22y; o+ 1.10s;1 — 1.305— 2+075St 3+
0.11) (0. 11) (0.47) (0.61) (0.36)
0.77y — 0.39y —1.70 2.11 —1.21
fyu X ((0 26) Yi-1 (0.15) Y13 .7 S)St ! +(1 03)St 270 65)St 3)
fi = (1+exp{—1.44(y;_o» —0.38)})~" 6 =094
s; = 0.20 —0.16 1.15 — 0.27 5 = 0.67
5t 0.07) (0. 05)‘% 3t (0. 07)St ) os)st 2 4
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APPENDIX 5: MODELS OF OUTPUT AND SPREAD
(Netherlands: 1966:2 - 1997:4)

(Standard errors are in brackets)

Reduced AR(3) model that incorporates structural change:

2.44 — 0.62y;—1 — 0. 42yt 9 (for 1966:1-1974:2) oMLE = 1.4157
(0.40)  (0.16) (0.16)

0.65 — 0.15y;—1 (for 1974:3-1997:42) oML = 1.0572
(0.12)  (0.10)

ARLI-OLS model of output and spread:

A~

Yt

~

060—023t1+0209 3+014St2 &MLE:1-1233
(0.15) (0.08) (0.08) (0.06)

051—019 Yt— 2—018yt 3+0998t 1—0418t 2+0228t 3, (J'MLE—09628
(0.14)  (0.08) (0.07) (0.09) (0.12) (0.09)

ARLI-SYS model of output and spread:

A~

Yt

0.59 — 0.23y;— 1+020y 3+014st 2 oMmLE = 1.1233
(0.14)  (0.08) (0.08) (0.06)

051—018 Yt— 2—019yt 3+0995t 1—0415t 2+0228t 3, (TMLE—09628
(0.13) ~ (0.07) (0.07) (0.08) (0.12) (0.09)

Bi-NARLI model of output and spread:

0.60 — 0.23y; 1+ 0.20y; 3+ 0.14 8o omLE = 1.1233
(0.15)  (0.08) (0.08) (0.06)
0.28 — 0.11ys—o + 1.165¢—1 — 0.465¢—2 + 0.2054_3
(0.11)  (0.07) (0.13) (0.14) (0.08)
s 1.01 — 1.59y —0.82
fst X (+( )yt 1o ke Yt—2 & 28)yt 3)
( + exp {—16.18 (St_g — 381)}) ovLE = 0.6107
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