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Abstract: In the case of input demand systems based on specification of technology 

by a Translog cost function, it is common to estimate either a system of share 

equations alone, or to supplement them by the cost function. By adding up, one of the 

share equations is excluded. In this paper it is argued that a system of n-1 share 

equations is essentially incomplete, whereas if the n-1 share equations are 

supplemented by the cost function the implied error structure is inadmissible. 

Similarly, if  the technology is specified by a normalized quadratic cost function, it is 

common to estimate either a system of n-1 demand equations alone, or to supplement 

them by the cost function. In both cases, the implied error structure is again 

inadmissible. 

Keywords: Cost Function; Input demands; Share equations; Translog; Normalized 

Quadratic; Error specification. 
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1. Introduction 

In production theory, energy economics, agricultural economics etc. it is common to 

specify the technology by a cost function, and by far the majority of empirical 

applications employ either a Translog cost function or a normalized quadratic cost 

function. Estimation by maximum likelihood or SUR methods is often justified by an 

appeal to the analogous results in consumer demand estimation. In the case of 

consumer demand systems with exogenous total expenditure, it is well known that 

estimation of a system of n expenditure equations or n share equations leads to a 

complete, but degenerate, system specification, and deleting an arbitrary equation 

leads to no loss of information. Parameter estimates are invariant to the deleted 

equation. (See, for example, Barten (1969), Powell (1969), or Bewley (1986). In the 

case of input demand systems based on specification of technology by a Translog cost 

function, it is common to estimate either a system of share equations alone, or to 

supplement them by the cost function. By adding up, one of the share equations is 
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excluded. However, because the level of cost is endogenous rather than exogenous, 

the analogy with consumer demand system is misleading.  In this paper it is argued 

that a system of n-1 share equations is essentially incomplete, whereas if the n-1 share 

equations are supplemented by the cost function the implied error structure is 

inadmissible with the implicit assumptions of the estimation method. In the case of 

input demand systems based on specification of technology by a normalized quadratic 

cost function, it is common to estimate either a system of n-1 demand equations alone, 

or to supplement them by the cost function. In either of these cases it is shown that the 

implied error structure is inadmissible. Alternative estimation strategies for the two 

specifications are suggested. More generally, the Translog and normalized quadratic 

are just two typical applications, and the results extend to cost function specification 

in general, and to technology specified by profit functions or revenue functions. 

2. The Typical Translog and Normalized Quadratic Specifications 

To introduce ideas, consider the case of production theory where technology is 

modelled by the cost function, and the two prime examples of functional forms used 

are the Translog (TL) cost function, and the Normalized Quadratic (NQ) cost 

function. The typical procedures used to derive estimating equations are as follows.  

Define n inputs  1 2, , , nx x x x   with prices  1 2, , , nw w w w  , m outputs 

 1 2, , , my y y y   and v fixed factors  1 2, , , vz z z z  .  For the TL the cost function 

may be specified as 
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 (2.1) 

Applying (the logarithmic form of) Shephard’s Lemma gives the system of input 

demand equations in share form 

 1 1 1

( , , ) ln ln ln

1, ,

n m v

i i ij j ik k ig g

j k g

S w y z w y z

i n

  

   



  



   
 (2.2) 
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where the cost shares 
( , , )

( , , )
( , , )

i i
i

w X w y z
S w y z

C w y z
 , and the ( , , )iX w y z  denote the cost 

minimizing input demand equations
1
. Regularity conditions on the cost function (2.1) 

lead to the following common restrictions on the system (2.2):  

Symmetry:  ij ji    

Homogeneity:  
1

0; 1, ,
n

ij

j

i n


    

Adding up: 

  
1 1 1 1

1; 0, 1, , ; 0, 1, , ; 0, 1, , .
n n n n

i ij ik ig

j i i i

j n k m g v
   

                

 In fact these symmetry restrictions follow from the twice continuous differentiability 

of the cost function (2.1), so a complete set of parameter restrictions would add the 

further symmetry restrictions ; .kl lk gh hg     Both the homogeneity and the 

adding up restrictions on system (2.2) follow from the homogeneity of degree one in 

w of the cost function. Restrictions imposed by monotonicity of the cost function (that 

the ( , , )iX w y z  be nonnegative, which also implies that the cost function is 

nonnegative) and the concavity of the cost function (that the Hessian matrix of the 

cost function i.e. the matrix 
( , , )i

j

X w y z

w




be negative semidefinite) are usually not 

imposed a priori, but may be checked for a particular sample ex post. In typical 

empirical applications (some references here), a subset of n-1 shares from the system 

(2.2) is estimated. Sometimes this system is augmented by the cost function (2.1), in 

which case the additional symmetry restrictions become relevant.  Applications of the 

Translog function are too numerous to list. Examples of papers that estimates the 

share system alone are Binswanger (1974) and Fuss (1977) , while an example of a 

share system complemented by the cost function is Sickles and Streitwieser (1998). 

In the case of the NQ, define  '( , , )C w y z  and  1 2 1' ' , ' ,... 'nw w w w  as the total 

variable cost and a subvector of input prices, both normalized by the price of the n
th
 

input. The cost function in NQ form typically has a representation like the following 

expression (typical reference?): 

                                                

1
 At this stage, the notation is that lower case letters denote exogenous variables, while uppercase 

letters represent the functions representing the decision variables as functions of the givens, the 

exogenous variables. At the estimation stage there will also be observed values of endogenous 

variables, and this distinction will be discussed further in section 3. 
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 (2.3) 

where for simplicity the notation for parameters is approximately as in the TL 

specification, but of course the individual parameters here have a different 

interpretation. A system of cost-minimizing input quantity equations can be derived 

by applying Shephard’s lemma:  

 

 

1

1 1 1

1 '
, ,

'

'

1, , 1.

i
i n

i i i i n i

n m v

i ij j ik k ig g

j k g

wC C C C C
X w y z w

w C w w w w w

w y z

i n



  

     
   

      

       

 

  



 (2.4) 

The homogeneity in prices condition is maintained by the normalization process, the 

symmetry of price effects is satisfied by the restrictions  ij ji  and the global 

concavity in prices of this cost function is equivalent to the restriction that the matrix 

of parameters 
1 1ij n n


 

 
 

 be negative semi-definite, (which, not being a function of 

variables, can be imposed in estimation by means of the Cholesky decomposition). 

Monotonicity of the cost function in input prices, which corresponds to nonnegativity 

of the input demands, is usually not imposed a priori, but may be checked for a 

particular sample ex post. Again, note that no other symmetry type restrictions occur 

in the equation system (2.4), because none of the parameters ,kl gh   appears in these 

equations, but the cost function parameters would also satisfy kl lk   and 
gh hg   . 

In most empirical applications, the system of n-1 demands (specifically excluding the 

equation for the numeraire) of the system (2.4) is estimated. Sometimes this system is 

also augmented by the cost function (2.3), but rarely by the demand function for the 

numeraire input n. 

The implied equation for the numeraire commodity, ( , , )nX w y z   can be derived as 

follows.  By definition, 

 
1

( , , ) ( , , )
n

i i

i

C w y z w X w y z


  

which implies that 
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1

( , , )
n

i i

in

C
C w X w y z

w 

    

and hence 

 
1

1

( , , ) ( , , ) ( , , )
n

n i i

i

X w y z C w y z w X w y z




    

where the dependence on , ,w y z  is to remind us that this is a relation among 

functions, as well as among variables. Note in passing the asymmetry of this 

expression; that this is an identity involving the quantity of the n
th
 factor, but the 

(normalized) expenditures on the other n-1 inputs, together with normalized cost. 

However, the implications of this inherent asymmetry are probably easier to see in 

terms of the implied cost function, rather than the normalized cost function. The 

implied structure of the corresponding (un-normalized) cost function is 
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 (2.5) 

which emphasises the extremely asymmetric treatment of the n
th
 input.  Applying 

Shephard’s Lemma then gives the n input demand equations directly: 
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which further emphasises the asymmetric treatment of input n. Examples of empirical 

applications of the NQ functional form include Shumway (1983) and Moschini 

(1988). 
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3. Estimation Issues 

These two alternative “standard” specifications, which account for the majority of 

empirical applications in areas as diverse as agricultural economics and modelling 

energy demand, raise a number of questions. The two particular functional forms, TL 

and NQ, are merely two common alternative specifications of the technology as 

characterized by the cost function. So apart from mathematical simplicity, why carry 

out estimation based on shares in one case, and quantities demanded in another? The 

appropriate choice of transformation of endogenous variables for estimation purposes 

should be based on the implied statistical properties of the error terms, which are 

usually introduced after this specification stage. Is it even appropriate to estimate a set 

of demand equations such as (2.4)? Is it logical, or even necessary, to delete the nth 

equation of such a system? Can, or should, the cost function be appended to either of 

the systems (2.2) or (2.4)? 

To begin to answer these questions, abstract from the issues raised by specific choices 

of functional forms.  The starting point is the theory of duality. Given a primal 

technology characterised by  ,V y z  , where  ,x V y z indicates that, given the 

vector of fixed factors z, the output vector y can be produced by the input vector x, 

then the behaviour of a cost minimizing firm can be characterised by the cost function 

( , , )C w y z which is defined as the minimum cost of producing a given vector of 

outputs subject to the production technology: 

  
1 1

( , , ) min : , ( , , )
n n

i i i i
x

i i

C w y z w x x V y z w X w y z
 

 
   

 
  . (3.1) 

Then ( , , )C w y z satisfies the standard regularity conditions of a cost funtion: non-

negative; concave in w; non-decreasing in w;  homogeneous of degree 1 in w;  

increasing in y; and ( , , )C w y z is said to be dual to the specification of technology V.  

The structure of C contains both the structure of technology and the results of 

optimization, in this case cost minimization.  The resulting demand equations are 

often called Hicksian demands, in order to reinforce the analogy with consumer 

demand, where they would correspond to income compensated (utility constant) 

demands.  Application of the Envelope Theorem to (3.1) gives Shephard’s Lemma: 

 
( , , )

( , , ) ( , , )
ii w

i

C w y z
X w y z C w y z

w


 


 (3.2) 

the observable input demand equations.  These equations are analogous to the 

Hicksian demand equations of consumer demand theory (though in this case the 

output vector y is observable, whereas in Hicksian demands the level of utility is 

unobservable), and provided the cost function is twice continuously differentiable in 

prices then Young’s Theorem implies 
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w w w w

j i
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 
 (3.3) 

which is the equivalent of Slutsky symmetry in consumer demand, and here implies 

the symmetry of the cross price responses of input demand equations. 

By the property of homogeneity of degree one of the cost function, Euler’s Theorem 

implies the fundamental identity that 

 
1 1

( , , ) ( , , ) ( , , )
i

n n

i w i i

i i

C w y z wC w y z w X w y z
 

   . (3.4) 

In the notation implicit in the above, and that has been used so far, the exogenous 

variables, the variables taken as given in the optimization problem (3.1), have been 

denoted by lower case letters , ,w y z  and can be identified directly with the data on 

these variables. The decision variables in the optimization problem (3.1) have been 

denoted by capital letters, ( , , ), ( , , ), ( , , ), 1, ,i iC w y z X w y z S w y z i n   indicating that 

they are derived functions of the exogenous variables. The endogenous variables will 

be identified with the observed data corresponding to these decision variables, and 

will be denoted by the corresponding lower case letters , , , 1, ,i ic x s i n  .  In practice, 

of course, the model does not fit the data exactly, and this leads to the specification of 

an approriate statistical model which corresponds to a parameterized form of the cost 

function, say ( , , ; )C w y z   (where at this point   simply represents all possible 

parameters characterising the cost function) which implies the specification of the 

conditional means, plus a set of errors, which together lead to a set of stochastic 

equations which might be written most simply as follows: 

 
( , , ; )

( , , ; ) ,     1, ,

t t t t t

it i t t t it

c C w y z v

x X w y z u i n

  

    
 (3.5) 

where the subscript t denotes variation over a sample. SUR or ML type estimation of 

this system would implicitly assume that the n+1 vector of errors  1 2, , , ,t t nt tu u u v  

be i.i.d with constant (parameterized) variances and covariances. But this would lead 

to a logical inconsistency. The data will satisfy 
1

n

t it it

i

c w x


  by construction, and this 

identity together with the functional identity (3.4) produces an identity involving the 

error terms and exogenous variables: 

 
1

n

t it it

i

v w u


 . (3.6) 
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Since the exogenous variables are arbitrary and time varying, identity (3.6) means that 

it is impossible for the errors of the cost function, the tv , to have constant variance or 

constant covariances with the  itu . Thus while the n+1 dimensional system (3.5) is in 

some sense degenerate, in that any n dimensional subset implies the (theoretical and 

statistical) structure of the remaining equation, this degeneracy is data specific, and 

hence the usual arguments for the invariance of parameter estimates to the deleted 

equation do not carry through. Estimates of systems of demand equations, such as the 

NQ model (2.4), with or without the cost function, are based on an internal logical 

inconsistency! 

An analogy with consumer demand systems is illuminating in a number of respects. 

While demand equations for goods are of fundamental interest in the theory of 

consumer demand, empirical work in consumer demand rarely (if ever?) estimates 

demand equations directly. Typically estimation is of expenditure systems, such as the 

Linear Expenditure system, or share systems, such as the Almost Ideal Demand 

System AIDS or the Translog. In each case this consists of the use of exogenous 

variables to transform one set of endogenous variables, the demands, to derived sets 

of endogenous variables, either to expenditures by multiplying individual demands by 

their corresponding prices, or further to shares by then dividing expenditures by total 

expenditure. Individual demands are subject to a data-dependent degeneracy.  In 

contrast, individual expenditures add identically to (exogenous, in this case) 

expenditure, and shares add identically to unity, and in both cases the error in any one 

equation can be expressed as a (not data-dependent) linear combination of the 

remaining n-1 errors, and estimates are invariant to the equation deleted. (see, for 

example, Barten (1969), Powell (1969), Bewley (1986), McLaren(1990)) 

Based on the insights from this analogy, consider first the case of transforming input 

demands to expenditures. Then system (3.5) is translated to  

 
( , , ; )

( , , ; ) ,     1, ,

t t t t t

it it it i t t t it

c C w y z v

w x w X w y z u i n

  

    
 (3.7) 

where it may be noted that all left-hand side variables now have common units of 

measurement. (As is the case with the notation for parameters, the same notation will 

be used for errors with quite different statistical properties in different specifications. 

This avoids a proliferation of notation, and is meant to reinforce the assumption that 

any errors should have “reasonable” statistical properties.)  The restriction on the 

error terms corresponding to (3.6) is now 

 
1

n

t it

i

v u


  (3.8) 

and now the implicit assumption of SUR or ML type estimation that the n+1 vector of 

errors  1 2, , , ,t t nt tu u u v  be i.i.d with constant (parameterized) variances and 

covariances is mathematically possible (though perhaps not empirically legitimate, 

since the errors have units of measurement of current dollars). At the very least, 
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internal consistency requires that NQ demands be estimated in terms of expenditures, 

not demands, in order to justify either deleting one (the n
th

) equation, or else 

appending the cost function to the n-1 dimensional system. 

Consider now the estimation in terms of shares. In this case, the analogy with 

consumer demand is quite misleading (or enlightening?). In consumer demand 

systems, transformation to shares involves division of the endogenous variables, 

expenditures, by an exogenous variable, (predetermined) total expenditure. In 

maximizing utility subject to a budget constraint, total expenditure is given. But in 

minimizing cost subject to a production technology, cost is a decision variable and 

hence endogenous. In particular, dividing by either c or ( , , )C w y z is a conceptually 

different process. 

One way to think about this is to return to the set of functions that result from the 

optimization problem. Logically prior to any issues of estimation, these can be written 

as the (theoretical and degenerate) system: 

 
( , , )

( , , )    1, , .i i

C w y z

w X w y z i n 
 (3.9) 

This system can be nonlinearly transformed to a related but mathematically equivalent 

system by dividing each of the last n equations by the first equation: 

 
( , , )

( , , )    1, , .i

C w y z

S w y z i n 
 (3.10) 

(The complete sequence of transformations of the demand equations of: multiply by 

wi; divide by ( , , )C w y z ; is mathematically equivalent to applying  Shephard’s 

Lemma in logarithmic form instead of Shephard’s Lemma in normal form.) 

The corresponding empirical form of system (3.10) is 

 
( , , ; )

( , , ; ) ,     1, , .

t t t t t

it i t t t it

c C w y z v

s S w y z u i n

  

    
 (3.11) 

In this form, the data will satisfy the identity 
1

1
n

it

i

s


 by construction, and this 

identity together with the functional identity  
1

, , 1
n

i t t t

i

S w y z


  produces an identity 

involving the last n of the error terms: 

 
1

0
n

it

i

u


 . (3.12) 
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It is well-known that estimation of the share sub-system of (3.11) will be invariant to 

the deletion of any one of the n share equations.  Similarly, estimation of the complete 

system (3.11) will be invariant to the deletion of any one of the n share equations. 

While this complete system (3.11) may be mathematically logical, it is unlikely to be 

empirically admissible. The reason for estimating in share form is to transform to a 

system where the errors are likely to be homoscedastic, by expressing the left hand 

variables as shares, bounded between 0 and 1, rather than as variables measured in 

current dollars. But one equation of the complete system, the cost equation, is still 

measured in current dollars. It is empirically unsustainable to assume that the errors of 

the cost function, the tv , have constant variance or constant covariances with the  itu . 

Estimation of any of the n-1 shares as a system on their own may be reasonable, but 

appending the cost function (either in levels form or in logarithmic form) in order to 

recover estimates of the additional parameters seems unadvisable. Thus it appears 

inadvisable to add the cost function to a TL share system. 

Returning to the analogy with consumer demand systems, if what is sought is a 

logically complete system of equations for which an assumption of homoscedasticity 

of the vector of errors may be empirically admissible, scaling of data should be 

carried out using an exogenous variable. For the cost function model, obvious 

candidates are the exogenous variables w, y and z.  The variables in w are not firm or 

scale specific and would seem unsuitable on their own. Variables in y and some z, 

such as fixed factors, are observation and scale specific; however these variables are 

real, whereas the variables in the logically complete system are nominal. One option 

would be to remove price effects by first dividing all of the theoretical equations by 

an index of the w, or some form of generally available price index, such as the CPI or 

a PPI, and then by some measure of scale, such as an index of the elements of y and/or 

those elements of z that are observation specific. However, if the prices of outputs are 

available, a more obvious procedure is the following. If the prices of outputs are given 

by the n vector p, define (observed) revenue as 
1

.
m

t jt jt

j

r p y


   This variable has the 

advantage of being measured in nominal dollars, and being a natural measure of the 

size of the particular firm. 

Now modify system (3.7) to 

 

( , , ; )

( , , ; )
,     1, , .

t t t t
t

t t

it it it i t t t
it

t t

c C w y z
v

r r

w x w X w y z
u i n

r r


 


   

 (3.13) 

This system of n+1 equations contains all of the information from the paradigm of 

cost minimization, and embodies a set of errors that are logically consistent and likely 

to satisfy the implicit assumptions involved in ML or SUR estimation. Again, the 

errors satisfy the identity 
1

n

t it

i

v u


 and estimation can proceed by estimating any n 

dimensional subset of equations. Parameter estimates will be invariant to the equation 
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deleted. Note that the equation corresponding to the cost function has no specific role 

in system(3.13), such as allowing the estimation of parameters that are unavailable 

from the other equations.  This is obvious since any equation in (3.13) can be 

expressed as a linear combination of the other n equations.  The fact that appending 

the Translog cost function (2.1) to the share system (2.2), or appending the NQ cost 

function (2.3) to the demand system (2.4), allows the estimation of additional 

parameters such as the 0 , , , , ,k kl kg g gh       simply reflects the loss of information 

that occurs when estimating arbitrarily restricted systems such as (2.2) or (2.4). 

4. Further Issues with the Estimation of NQ Systems 

The above issues are further confused in the case of the NQ system, because of the 

naturally asymmetric treatment of the n
th
 factor. In fact, there are always n possible 

specific NQ specifications, according to which of the n inputs is treated as the 

numeraire. Applying the reasoning above, an econometrically compatible system of 

n+1 equations is given by the cost function plus the input expenditure equations: 

 

1

1 1 1

1 1

0

1 1 1 1 1

1 1 1 1 1

    1, , 1

1 1
2 2

1 .
2

n m v

i i i i ij j i ik k i ig g i

j k g

m n n m m

n n n k k n ij i j kl k l n

k i j k l

m v v v v

kg k g n g g n gh g h n

k g g g h

w x w w w y w z w i n

w x w y w w w y y w

y z w z w z z w



  

 

    

    

     

   

  

  

  

  

   

   

  

 (3.14) 

  

The above system highlights a more fundamental asymmetry in the treatment of 

inputs in the NQ model
2
.  Comparing the first n-1 expenditure equations with the 

expenditure equation for input n, it is clear that all higher order interaction terms in 

the cost function have in fact been loaded on the n
th
 factor. This probably explains 

why attempts to estimate systems of n-1 demand equations plus the cost function 

usually fail. There appears no logical reason why the n
th

 factor should be singled out 

for this responsibility. One possible response is to note that while the standard 

specification of the NQ cost function appears general in regard to its specification in 

terms of the variables w, y, and z, it is in fact highly constrained in regards to its 

treatment of the technical characteristics of the n
th
  factor relative to its treatment of 

all other factors. More logically, given the structure of the first n-1 expenditure 

equations it would seem that a reasonable set of n input demand equations, still using 

the n
th
 price as a numeraire, would be to specify the system 

                                                

2 Symmetric treatments of the NQ system do exist, but they introduce a number of unidentified 

additional parameters.  See Diewert and Wales (1987). 
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1

1 1 1

1 1

0

1 1 1 1

    1, , 1

1
2

n m v

i i i i ij j i ik k i ig g i

j k g

n n m v

n n n ij i j k k n g g n

i j k g

w x w w w y w z w i n

w x w w w y w z w



  

 

   

     

   

  

  

   

   

 (3.15) 

with the implied cost function 

 

1 1 1

0

1 1 1 1

1 1

1 1 1 1 1

1( , , ; )
2

.

n m n n

t t t n i i k k n ij i j

i k i j

n m n v v

ik i k ig i g g g n

i k i g g

C w y z w w y w w w

w y w z z w

  

   

 

    

   

  

  

  

    

  

 (3.16) 

This is a complete n+1 equation system which is both economically and statistically 

degenerate – any n dimensional subset could be estimated, and estimates would be 

invariant to the equation deleted. Of course, the units of measurement of all equations 

are now (current) dollars, and homoscedasticity may require scaling all equations by a 

common measure of price (such as wn, or more reasonably, a measure of revenue). 

This system would be a parsimonious system that may be preferable to a completely 

symmetric treatment, such as using a generalized Barnett or generalized McFadden 

system.  It is also interesting to note the potential simplification in notation that is 

suggested by this form. ( 0  becomes n , k  becomes nk , g  becomes ng ) 

5. Conclusion 

This paper has considered a number of theoretical issues that arise in the statistical 

specification of a number of commonly used empirical specifications based on a cost 

function specification of technology and optimizing behaviour, with special emphasis 

on the Translog and Normalized Quadratic functional forms. By analogy, similar 

issues arise when specifications are based on alternative representations of 

technology, such as profit functions and revenue functions. A companion paper will 

illustrate all of the issues raised in this paper by estimating all of the specifications 

considered for a large dataset comprising pseudo-micro level observations on 

Australian broadacre agriculture. 
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