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Local linear forecasts using cubic smoothing

splines
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Abstract: We show how cubic smoothing splines fitted to univariate time series

data can be used to obtain local linear forecasts. Our approach is based on

a stochastic state space model which allows the use of a likelihood approach

for estimating the smoothing parameter, and which enables easy construction of

prediction intervals. We show that our model is a special case of an ARIMA(0,2,2)

model and we provide a simple upper bound for the smoothing parameter to ensure

an invertible model. We also show that the spline model is not a special case of

Holt’s local linear trend method. Finally we compare the spline forecasts with

Holt’s forecasts and those obtained from the full ARIMA(0,2,2) model, showing

that the restricted parameter space does not impair forecast performance.
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1 Introduction

Suppose we observe a univariate time series {yt}, t = 1, . . . , n, with non-linear trend.

We are interested in forecasting the series by extrapolating the trend using a linear

function estimated from the observed time series.

Linear trend extrapolation is very widely used and performs relatively well in prac-

tice. For example, Makridakis & Hibon (2000), Assimakopoulos & Nikolopoulos

(2000), and Hyndman & Billah (2002) discuss the excellent performance of linear

trend methods in the M3-competition. In this paper, we discuss a method for local

linear extrapolation of a stochastic trend based on cubic smoothing splines.

For equally spaced time series, a cubic smoothing spline can be defined as the func-

tion f̂(t) which minimises

n
∑

t=1

(yt − f(t))2 + λ
∫

S

[f ′′(u)]
2
du (1.1)

over all twice differentiable functions f on S where [1, n] ⊆ S ⊆ IR. The smooth-

ing parameter λ is controlling the “rate of exchange” between the residual error

described by the sum of squared residuals and local variation represented by the

square integral of the second derivative of f . For a given λ, fast algorithms for

computing f̂(t) are described by Green and Silverman (1994). Large values of λ

give f̂(t) close to linear while small values of λ give a very wiggly function f̂(t). In

practice, λ is not generally known.

The solution to (1.1) consists of piecewise cubic polynomials joined at the times of

observation, t = 1, 2, . . . , n. Furthermore, the solution has zero second derivative

at t = n. Therefore, an extrapolation of f̂(t) for t > n is linear. The linear

extrapolation of f̂(t) provides our point forecasts.

We derive a new method for computing prediction intervals for these forecasts,

utilizing a stochastic model formulation due to Wahba (1978) and Wecker and Ansley

(1983). We also provide a new method for estimating the smoothing parameter λ.
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Figure 1: Cubic spline forecasts of Australian quarterly beer production (seasonally ad-
justed) for September 2002 – June 2005, with 80% prediction intervals. The line through
the historical data show the fitted cubic spline f̂(t); the forecasts are obtained by a lin-
ear extrapolation of f̂(t); the prediction intervals are obtained from the state space model
described in Section 2. Here λ = 232.2.

Figure 1 gives an example of our forecast procedure applied to seasonally adjusted

Australian quarterly beer production (March 1965 – June 2002). The fitted spline

curve is shown along with the associated linear forecast function and 80% prediction

intervals. The methodology provides a smooth historical trend, a linear forecast

function and prediction intervals.

Forecasts are usually made using models which give most weight to recent obser-

vations, and negligible weight to the distant past. This means that the smoothing

parameter λ should not be too big for forecasting purposes. We make this explicit

by finding the bounds on λ required for our model to be invertible. (Specifically, we

find that λ < 1.640519n3.)

Some linear forecast methods assume there is an underlying linear trend (e.g., a

random walk with constant drift). We do not make this assumption. Our forecast

function is linear, but the underlying trend f(t) is allowed to be non-linear. Further,
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the possible future changes in trend direction are accommodated in our prediction

intervals.

An alternative approach to local linear forecasting is to allow a deterministic non-

linear trend. This is the approach followed by Nottingham and Cook (2001), for

example. We prefer the stochastic trend approach as it allows the uncertainty in the

trend to be explicitly allowed for in the measures of forecast uncertainty. A hybrid

approach, combining both deterministic and stochastic trends, is provided through

SEMIFAR models (see Beran and Ocker, 1999; and Beran and Feng, 2002).

Other local linear forecast models with stochastic trends include an ARIMA(0,2,2)

model, Harvey’s (1989) local linear growth model and the AN model of Hyndman,

Koehler, Snyder & Grose (2002) which underlies Holt’s (1957) linear trend method.

In fact, these are all connected—Harvey’s model is asymptotically equivalent to the

AN model, and the AN model is a reparameterization of an ARIMA(0,2,2) model.

Our paper is structured as follows. Section 2 describes the stochastic model formu-

lation for the cubic smoothing spline forecasts and Section 3 shows how to estimate

the smoothing parameter. Simple expressions for obtaining point forecasts and pre-

diction intervals are given in Section 4. In Section 5 we discuss the relationship

between our model, an ARIMA(0,2,2) model and a state space model underlying

Holt’s linear trend forecasts. These relationships enable us to obtain the maximum

bound for the smoothing parameter λ to ensure invertibility. Finally, in Section 6 we

compare the forecasting performance of our model with other local linear forecasting

models.

2 State space model

The definition of cubic smoothing splines given in Section 1 provides suitable point

forecasts, but does not allow estimation of forecast uncertainty. To that end, we shall

use the stochastic process formulation proposed by Wahba (1978) and developed in

subsequent work of Wecker and Ansley (1983). We present Wecker and Ansley’s
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state space model in the special case of cubic smoothing splines applied to equally

spaced data.

First, we transform the observation time space to [0, 1] by defining the transformed

observation times as {t1, . . . , tn} where ti = i/n. Note that this transformation

means that λ is rescaled also. Our transformed value of λ is λ∗ = n−3λ.

Then, for i = 1, 2, . . ., define

g(ti) = τ
∫ ti

0

(ti − u) dW (u)

where τ > 0 and W (u) is a standard Wiener process. Also let

ui = τ









∫ ti

ti−1

(ti − u) dW (u)

W (ti) −W (ti−1)









and αi =







g(ti) − g(t1)

τ(W (ti) −W (t1))






.

Then we assume Yi satisfies the state space model

Yi = s′

iβ + (1, 0)αi + ei, (2.1)

αi = Tiαi−1 + ui, i = 1, . . . , n (2.2)

where β = (β0, β1)
′ is normally distributed with zero mean and covariance matrix

cI,

Ti =







1 i/n

0 1





 ,

ei are iid N(0, σ2) and si = (1, ti)
′. The starting condition is α0 = (0, 0)′. The state

αi−1 is assumed independent of ui.

Wahba (1978) showed that

lim
c→∞

E (s′

iβ + (1, 0)αi | Y1, . . . , Yn) (2.3)

is the cubic smoothing spline f̂(t) with λ∗ = σ2/τ 2. Thus f̂(t) is the mean of Yt,

and we can obtain point forecasts which extrapolate f̂(t) by applying the Kalman
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recursions to the state space model (2.1) and (2.2). Furthermore, we can also obtain

forecast variances in this way.

However, a more direct approach is possible using a matrix formulation of the model.

Let Y = (Y1, . . . , Yn)
′, e = (e1, . . . , en)′ and g = (g(t1), . . . , g(tn))′. Then

Y = Sβ + g + e (2.4)

where the ith row of S is s′

i.

Proposition 1 Let Y be given by (2.4). Then Y is normally distributed with mean

0 and covariance matrix

Ω = σ2(cSS ′ + λ−1

∗ Σ + In)

where c has been rescaled and where Σ is symmetric with the (j, k)th element on or

above the diagonal given by

Σjk = σ2n−3j2(3k − j)/6, k ≥ j.

That is

Σ =
σ2n−3

6



























2 5 8 · · · 3n− 1

5 16 28
...

8 28 54
...

. . .
...

3n− 1 · · · · · · 2n3



























.

We provide a proof for this result in the Appendix.

We shall use the stochastic formulation given by (2.4) and Proposition 1 to obtain

point forecasts and prediction intervals.
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3 Estimation

Estimates of the smoothing parameter λ∗ can be obtained by maximizing the like-

lihood function of the model which is given by

`(λ∗ | Y ) = |Ω|−1/2(Y ′Ω−1Y )−n/2. (3.1)

Let P be the upper-triangular matrix from the Choleski decomposition of σ2Ω−1.

(Note that P depends only on λ∗.) Then, we can write

|Ω|−1/2 = σ−1|P | (3.2)

and (Y ′Ω−1Y )−n/2 = σn(Y ∗′Y ∗)−n/2 = σn
( n

∑

i=1

w2

i

)−n/2

(3.3)

where Y ∗ = PY and wi is the ith element of Y ∗. Using (3.1)–(3.3), the log-

likelihood is given by

log `(λ∗ | Y ) = (n− 1) log σ + log |P | − n

2
log

( n
∑

i=1

w2

i

)

. (3.4)

Thus we can estimate λ∗ by maximizing

log |P | − n

2
log

( n
∑

i=1

w2

i

)

.

This is a new method for selecting a bandwidth for smoothing splines, although it is

similar in spirit to the likelihood-based method of Wecker and Ansley (1983). (Our

method is much faster as we do not need to iteratively apply GLS estimation or the

Kalman filter.)

4 Prediction

We now wish to use the fitted model to predict the next n0 observations. We write

them as the n0-vector Y0 = S0β+g0+e0 where Y0 = [Yn+1, . . . , Yn+n0
]′ and g0, e0 are

defined analogously, and where S0 has ith row (1, tn+i), i = 1, . . . , n0. We also define
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Σ0 as the symmetric n0×n0 matrix with (j, k)th element σ2n−3(n+j)2(2n+3k−j)/6
for k ≥ j. It is assumed that Y0 has the same properties as the observed vector Y .

Then the variance-covariance of Y0 can be written as Ω0 = σ2(cS0S
′

0 +λ−1
∗

Σ0 + In0
).

To derive the best linear unbiased predictor for Y0 and the variance-covariance

matrix of the associated prediction error, we first combine past and future values of

{Yt} to obtain Z = [Y ′,Y ′

0 ]′ with covariance matrix

E [ZZ ′] =







Ω U

U ′ Ω0





 = σ2(cS1S
′

1 + λ−1

∗ Σ1 + In+n0
)

where S1 and Σ1 are constructed analogously to S, S0, Σ and Σ0. Then, using stan-

dard results for conditional expectations of multivariate normal random variables

(e.g., Rao, 1973, section 8a), we obtain

E[Y0 | Y ] = U ′Ω−1Y (4.1)

and Var[Y0 | Y ] = Ω0 − U ′Ω−1U. (4.2)

Equations (4.1) and (4.2) allow point forecasts and associated prediction intervals

to be easily computed. In particular, the h-step ahead point forecast Ŷn+h is the hth

element of U ′Ω−1Y , and its variance vh is the hth diagonal element of the matrix

Ω0 − U ′Ω−1U . Since Yt is assumed normal, prediction intervals can be constructed

from these first two moments in the usual way. A 95% prediction interval is given

by Ŷn+h ± 1.96
√
vh.

Note that these results assume that c, λ∗ and σ2 are known. In reality, c is any

sufficiently large number (in the empirical calculations described in this paper we

use c = 100), and the parameter λ∗ can be estimated using the procedure described

in Section 3.

To estimate σ2, we first calculate one-step forecasts Ŷt and associated “variances” vt

from (4.1) and (4.2) plugging in σ2 = 1. This has no effect on the forecast means,

but the forecast variances will be incorrect by a factor of σ2. So σ2 can be estimated
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as

σ̂2 =
n

∑

t=1

(Yt − Ŷt)
2/vt.

5 Comparisons with other approaches

The spline model described above gives local linear forecasts based on a stochastic

trend. We now explore connections between this model and other models which also

have stochastic trends and produce local linear forecast functions.

In particular, we look at the range of values for λ which will lead to an invertible

model. Invertibility is a desirable property of a forecasting model because we want

to avoid models where the distant past has a non-negligible effect on the present.

5.1 ARIMA(0,2,2) models

It is known (see Wecker and Ansley, 1983) that the cubic spline state space model

described in Section 2 is equivalent to an ARIMA(0,2,2) model with some restrictions

on parameters. However, no-one seems to have explicitly worked out the connection,

or the implications it has for forecasting with the cubic spline model.

We define the ARIMA(0,2,2) model as

Yt − 2Yt−1 + Yt−2 = εt − θ1εt−1 − θ2εt−2

where {εt} is a Gaussian white noise process with variance σ2
ε . For invertibility, we

also require |θ2| < 1, θ2 − θ1 < 1 and θ2 + θ1 < 1 (Box, Jenkins & Reinsell, 1994).

Then the ARIMA(0,2,2) forecast function is Ŷn+h = `n + bnh where `n = Yn − θ2ên

and bn = Yn − Yn−1 + θ1ên + θ2(ên + ên−1). (Here, êj denotes the jth residual.)

Now Brown and de Jong (2001) show that the cubic spline model can be written as

an ARIMA(0,2,1) process observed with error:

Yt = Xt + ηt, (1 −B)2Xt = ξt + ψξt−1
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where ψ = 2 −
√

3, (X1, X2 − X1) is fully diffuse, and ηt and ξt are uncorrelated

white noise series with means zero and variances σ2 and τ 2 respectively. It is easy

to show this is equivalent to an ARIMA(0,2,2) model with θ2 obtained by solving

the following quartic equation:

θ4

2 − c1θ
3

2 + c2θ
2

2 − c1θ2 + 1 = 0,

θ1 =
θ2

1 + θ2

(ψ/λ∗ − 4)

and σ2
ε = σ2λ∗/θ2, where

c1 = 4 + (1 + ψ2)/λ∗, and c2 = 6 − 2(1 + 4ψ + ψ2)/λ∗ + ψ2/λ2

∗
.

Numerical calculations show that the above quartic equation has at most one root

which gives an invertible solution, and that an invertible solution is obtained if and

only if 0 < λ∗ < 1.640519. Figure 2 shows the values of θ1 and θ2 as functions of λ∗.

In the original time space (where observation times are 1, 2, . . . , n), the upper bound

on λ is 1.640519n3. This upper bound on λ should be imposed whenever the spline

model is used for forecasting purposes. If the model is simply used to describe the
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Figure 2: The relationship between the ARIMA parameters θ1 and θ2 and the cubic spline
parameter λ∗.
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historical trend, invertibility is not relevant and so the bound need not be imposed.

Note that the range of ARIMA(0,2,2) models that can be fitted in this way is greatly

restricted, and that a wider range of models with linear forecast functions can be

obtained by fitting a general ARIMA(0,2,2) model. In fact, Box, Jenkins & Reinsel

(1994) show that all ARIMA(p,2,q) have forecast functions which are asymptotically

linear (the “eventual forecast function”), and that the forecast function is exactly

linear if and only if p = 0 and q ≤ 2.

5.2 Holt’s local linear forecasts

Holt’s local trend method has been used in forecasting for many decades and it

has proved remarkably versatile and useful. Point forecasts (see, e.g., Makridakis,

Wheelwright and Hyndman, 1998, p.158) are given by Ŷn+h = `n + bnh where `n

and bn are computed recursively as follows:

`t = αYt + (1 − α)(`t−1 + bt−1) (5.1)

bt = β(`t − `t−1) + (1 − β)bt−1 (5.2)

for t = 2, . . . , n. Starting values for these recursions are often set to `1 = Y1 and

b1 = Y2 − Y1, although we choose the starting values optimally (see below).

The unobserved components `t and bt represent the level and slope of the series at

time t and α and β are constants. We normally restrict the parameters such that

0 ≤ α ≤ 1 and 0 ≤ β ≤ 1.

Recently, Hyndman, Koehler, Snyder & Grose (2002) (hereafter HKSG) provided a

general modelling framework for exponential smoothing methods, including Holt’s

method. This enables the forecasts to be obtained from a state space model, thus

providing facilities for maximum likelihood estimation, calculation of prediction in-

tervals, etc. HKSG actually provide two state space models for Holt’s method,

which give identical point forecasts but have different properties for high forecast

moments. In this paper, we only consider the additive error version.
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The model can be written as follows:

Yt = `t−1 + bt−1 + εt

`t = `t−1 + bt−1 + αεt

bt = bt−1 + αβεt

where `t denotes the level at time t, bt denotes the slope of the trend at time t, and

εt is a Gaussian white noise process with zero mean and variance σ2. We estimate

the parameters α and β and the initial state vector (`0, b0)
′ by maximizing the

conditional likelihood as described in HKSG.

Hyndman, Koehler, Ord and Snyder (2001) show that the forecast mean of this

model is identical to Holt’s local trend forecast and the forecast variance of the

model is

vh = σ2
[

1 + α2(h− 1)
{

1 + βh+ 1

6
β2h(2h− 1)

} ]

.

Using this expressions, prediction intervals can be constructed in the usual way.

The above state space model underlying Holt’s method is equivalent to an ARIMA(0,2,2)

model where α = θ2 + 1 and β = (1 − θ1 − θ2)/(1 + θ2). In theory, the parameter

space for (α, β) could be taken as the whole invertible region for the ARIMA model

(in which case we would have 0 < α < 2 and 0 < β < 4/α− 2). However, it is usual

to restrict the space further and require 0 < α < 1 and 0 < β < 1 which leads to

more interpretable models.

However, for the spline model, we found that θ2 > 0. Therefore, α > 1 which

means that the spline model falls outside the usual range of parameters considered

for Holt’s method. (We also found that β > 1 when λ∗ > 0.14514.)

This means that Holt’s method and the cubic spline model are both special but

non-overlapping cases of the ARIMA(0,2,2) model.
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6 Empirical comparison of models

Given that the cubic spline model is a special case of an ARIMA(0,2,2) model, it

is interesting to see if the restricted parameter space results in poorer forecasting

performance. We will also compare the forecasts from Holt’s method based on a

different and mutually exclusive subset of the parameter space of the ARIMA(0,2,2)

model.

We compare the three models by applying them to the 645 annual series which

were part of the M3 forecasting competition (Makridakis & Hibon, 2000). For each

series, six observations were withheld at the end of the series for comparisons. The

remaining observations were used for estimation of parameters.

For each series, we estimate the parameters using likelihood methods. We use the

methods described in Sections 3 and 5.2 for the spline model and the state space

model underlying Holt’s method, and for the full ARIMA model we use the exact

likelihood method of Gardner, Harvey and Phillips (1980) as implemented in the ts

library distributed with R 1.5.1.

Then each model is used to forecast the remaining six observations in the series. The

forecasts are compared by computing the Mean Absolute Percentage Error (MAPE)

averaged across all series and the Coverage Percentage (CP) of the (nominally) 95%

prediction intervals computed over all series.

As a further comparision, we also applied the local linear method of Nottingham and

Cook (2001), although this assumed a deterministic trend rather than a stochastic

trend.

The results are given in Tables 1 and 2 and highlight some interesting similarities

and differences between methods.
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Forecast horizon

Method h = 1 h = 2 h = 3 h = 4 h = 5 h = 6

Spline 9.8 23.0 26.8 32.0 37.6 41.9
ARIMA(0,2,2) 8.6 21.6 26.9 30.3 35.9 37.8
Holt 11.0 23.3 25.8 29.1 32.2 36.0
Local linear 11.8 23.1 26.3 28.4 32.6 36.9

Table 1: Mean Absolute Percentage Error for each model, computed by averaging the
absolute percentage error across all 645 annual series.

Forecast horizon

Method h = 1 h = 2 h = 3 h = 4 h = 5 h = 6

Spline 86.4 81.9 77.2 76.6 76.4 78.0
ARIMA(0,2,2) 84.3 80.8 79.1 78.3 77.7 78.9
Holt 80.2 71.3 65.3 60.2 58.9 58.0
Local linear 79.1 64.2 55.7 50.7 48.4 44.5

Table 2: Coverage percent of the nominal 95% prediction intervals computed from each
model. These are the percentage of actual observations within the prediction intervals
across all 645 annual series.

• All four methods have very similar performance for point forecasting. In partic-

ular, the restricted parameter spaces for the spline method and Holt’s method

do not result in much deterioration in forecast performance.

• The spline method and the ARIMA(0,2,2) method are very similar in cover-

age probabilities for prediction intervals. That these are much narrower than

the nominal 95% probability is not surprising—similar results are standard in

forecasting real data (see HKSG, for example).

• Holt’s method does considerably worse than either spline or ARIMA models

in terms of coverage probability. This is somewhat surprising. Comparable

results in HKSG where a larger range of exponential smoothing models were

used for these same data show average coverage probabilities around 82%.

It seems that Holt’s method is not so good as a general all-purpose forecast

method for non-seasonal data.

• The local linear method has smaller coverage probabilities than any of the

other methods. This is not surprising, as the method does not allow for a

stochastically changing trend. Hence, the trend is assumed to be known into

the future, and so the estimated future variation is smaller.
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6.1 Conclusions

We have shown how cubic smoothing splines can be used to obtain local linear

forecasts for a univariate time series. New results include a bound on the smooth-

ing parameter to achieve invertibility, explicit and closed-form expressions for the

point forecasts and prediction intervals, a new method for obtaining the smoothing

parameter, and an empirical comparison with other local linear forecast methods.

Spline forecasts provide an alternative approach to ARIMA(0,2,2) models for local

linear forecasting. The main advantage of the spline approach over the ARIMA

approach is that it is directly associated with a smooth estimate of historical trend.

This can aid interpretation of the historical data as well as provide information

about the trend used in forecasting. For example, the smooth trend through the

beer production data in Figure 1 clearly shows the trend away from beer in Australia

since about 1975 (partly explained by an increase in wine consumption). It also

shows a brief resurgence in beer production in the late 1980s (when Australian beer

exports led to increased production), before the production settled down to the

current level.

A common criticism of nonparametric methods in general, and cubic splines in

particular, is that they can be considered as special cases of more general time

series models (e.g., Brown and de Jong, 2001; and Harvey and Koopman, 2000). The

(usually unstated) implication is that the more general model is better. We have

shown that this restriction does not lead to much reduction in forecast performance,

and so for forecasting purposes, the criticism is not valid.
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Appendix: Proof of Proposition

This result follows directly from the state space formulation except for the form of

Var(g) which we write as λ−1
∗

Σ.

Let Γi(j) = E(αiα
′

i−j), j = 0, 1, . . .. Note αi follows a vector autoregressive model

of order one in (2.2). Thus we obtain the Yule-Walker equations (Reinsel, 1997)

Γ0(0) = 0

Γi(0) = Vi + TiΓi−1(0)T ′

i , i = 1, . . . , n (A.1)

Γi(j) = TiΓi−1(j − 1), j = 1, 2, . . . .

Note that Γi(j) = 0 if j ≥ i. We can use these equations to iteratively calculate the

values of Γi(j) for i = 1, . . . , n and j = 1, 2, . . .. Then the (i, j)th element of λ−1
∗

Σ

is the top left element of Γj(j − i) if i ≤ j and the top left element of Γi(i − j) if

i ≥ j.

Now De Jong and Mazzi (2001) show that for any ti where 0 < ti < ti+1 < 1 for

i = 1, 2, . . . , n− 1, the covariance matrix of ui, which we denote by Vi, has (j, k)th

entry

[Vi]jk = τ 2

∫ ti

ti−1

(ti − u)2−j(ti − u)2−k

(2 − j)!(2 − k)!
du = τ 2

h5−j−k
i

(4 − j − k + 1)(2 − j)!(2 − k)!
.

(A.2)

where hi = ti+1 − ti. Thus, in this special case where hi = h = n−1, we have

Vi = τ 2







h3/3 h2/2

h2/2 h






. (A.3)

By substituting (A.3) into (A.1), we can construct Σ.

First we show by induction that

Γi(0) = τ 2







i3h3/3 i2h2/2

i2h2/2 ih





 . (A.4)
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For i = 0, Γ0(0) = 0, so (A.4) is true. Now assume (A.4) is true for i = k. Then

from (A.1) we obtain

Γk+1(0) = τ 2







h3/3 h2/2

h2/2 h






+ τ 2







1 h

0 1













k3h3/3 k2h2/2

k2h2/2 kh













1 0

h 1







= τ 2







(k + 1)3h3/3 (k + 1)2h2/2

(k + 1)2h2/2 (k + 1)h






.

So (A.4) is true for i = k + 1 and by induction is true for i = 1, 2, 3, . . .. Now from

(A.1) we have

Γi(j) = TΓi−1(j − 1) = T 2Γi−2(j − 2) = T jΓi−j(0), for i ≥ j,

and so Γi(i− j) = T i−jΓj(0). Thus

Γi(i−j) = τ 2







1 (i− j)h

0 1













j3h3/3 j2h2/2

j2h2/2 jh





 =







h3j2(3i− j)/6 jh2(2i− j)/2

j2h2/2 jh





 ,

Thus Σ is symmetric with the (j, k)th element on or above the diagonal given by

Σjk = Σkj = σ2h3j2(3k − j)/6, k ≥ j

and so

Σjk = σ2n−3k2(3j − k)/6

for j ≥ k.
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