

 ISSN 1440-771X
 ISBN 0 7326 1090 7

Using R to Teach Econometrics

Jeff Racine and Rob J. Hyndman

Working Paper 10/2001

2001

DEPARTMENT OF ECONOMETRICS
AND BUSINESS STATISTICS

AUSTRALIA

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Research Papers in Economics

https://core.ac.uk/display/6340716?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Using R to Teach Econometrics

Jeff Racine∗

Department of Economics

University of South Florida

Tampa, Florida, U.S.A., 33620

Rob Hyndman

Department of Econometrics & Business Statistics

Monash University

VIC 3800, Melbourne, Australia

November 2, 2001

Abstract

R, an open-source programming environment for data analysis and graphics, has in only a
decade grown to become a de-facto standard for statistical analysis against which many popular
commercial programs may be measured. The use of R for the teaching of econometric methods
is appealing. It provides cutting-edge statistical methods which are, by R’s open-source nature,
available immediately. The software is stable, available at no cost, and exists for a number
of platforms, including various flavors of Unix and Linux, Windows (9x/NT/2000), and the
MacOS. Manuals are also available for download at no cost, and there is extensive on-line
information for the novice user. This review focuses on using R for teaching econometrics. Since
R is an extremely powerful environment, this review should also be of interest to researchers.

Keywords: econometrics, object-oriented, open-source, statistical software, teaching.

1 R: an overview

There is a wide variety of programs for conducting statistical analysis. Many are powerful com-
mercial products, such as Gauss, Matlab, Minitab, SAS, Shazam, Stata, SPSS, S-PLUS, and TSP.
Unfortunately, commercial software can be costly, sometimes prohibitively so, can involve relatively
long development cycles, and rarely features experimental or cutting-edge statistical methods. For-
tunately, there now exists an open source alternative to commercial statistical programs that is
available for a variety of computing platforms including Windows, MacOS, MacOS X, FreeBSD,
NetBSD, Linux, Irix, Solaris, OSF/1, AIX and HPUX. This software has been developed by a core
team of leading statisticians and programmers. The software is called ‘R’ and is available under the
GNU Public License1. To obtain the software, simply go to the site http://www.R-project.org/

and follow the download instructions.
The syntax of the R language is very similar to that of the S language which underlies S-PLUS.

In fact, you can think of R as ‘GNU S’. The main differences that users familiar with S will notice
are (1) objects are not saved as separate files in a directory but are stored internally; and (2) the

∗The authors would like to thank James MacKinnon, Douglas Bates, and Achim Zeileis for their encouragement
and support. We also offer our heartfelt appreciation and praise to all of those who have contributed to the R project.
The usual caveat applies.

1Readers who are unfamiliar with open source software or the GNU project should visit http://www.gnu.org/.

1

packages available in R are not the same as the libraries available in S-PLUS. However, for most
purposes, programming in R is almost identical to using the command syntax of S-PLUS, and some
recent books attempt to cover both packages. Two of the best full-length books on using R (and
S-PLUS) are Venables & Ripley (1999, 2000).

Cribari-Neto & Zarkos (1999) review a beta version of R. Their review focuses on language
syntax, Monte Carlo experiments, and speed improvements relative to S-PLUS. They conclude by
stating that R “. . . has the potential to become a useful tool . . . for teaching in the econometrics
community.” Since we attempt to avoid repetition of material in their article, we urge readers to
look at it. As of this writing, the current version of R is 1.3.1.

2 Using R for teaching

Unlike many commercial programs, which must first be purchased in order to evaluate them, you
can evaluate R with minimal effort and with no financial outlay required. Why might a reader
consider using R rather than popular commercial software? We briefly list a few other reasons.

Pros:

• Free. Students can have copies at home.

• Portable. Once students invest in learning this program, they can take it with them and
install it again wherever they may end up working.

• Versatile. The software exists for more platforms than virtually any existing commercial
program.

• General. A very large number of statistical/econometric tools are available, so the software
could be used for many (maybe all) subjects.

• Cutting-edge. It includes the very latest methods.

• Programmable. It is easy for students to program new methods or develop modifications of
existing methods.

• Matrix language. The R language handles vectors and matrices directly (as do Gauss, Matlab
and Ox). This makes programming much simpler for students and reinforces the matrix
notation used in class.

• Object-oriented language structure. Students may take a little time to adjust to the object-
oriented way of thinking, but it simplifies things greatly. For example, the plot function and
the summary function can be used on all types of data and fitted models2.

• Great graphics.

• Relatively fast.

2Strictly speaking, R is not object-oriented, it just feels this way due to the manner in which functions can be
constructed.

2

Cons:

• No GUI. Although the command line, which is similar to that of the bash shell, is extremely
powerful and easy to use, some students accustomed to GUI interfaces may find R awkward
to use.

• Missing functions. Some desirable functions have not yet been written (e.g., there is no
function for testing Granger causality). Of course, it is easy to add such functions yourself.

• Inconsistent syntax. Command syntax is not always consistent between packages which do
similar things. For example, the function locpoly from the package KernSmooth is designed
to fit a smooth nonparametric regression curve using local polynomials. The function loess

from the package modreg does the same thing, but it is more robust to outliers. However, the
syntax for specifying the dependent and independent variables is different. Students can find
this confusing.

There is an important difference in philosophy between R and most other statistical packages.
With most packages, a statistical analysis will lead to a large amount of output containing infor-
mation about the estimation, diagnostic tests, etc. In R, a statistical analysis is normally done as a
series of steps, with intermediate results being stored in objects. There is usually minimal output
at each step, but the objects obtained at each step can be interrogated by R functions to obtain
the information required.

At first, this may seem like a disadvantage, as students will not always be able to find the
information they want from an analysis. However, it does teach students the interactive nature of
data analysis (rather than seeing it as the application of “recipes”), and it avoids the confusion
that students often experience in being confronted with pages of output that they cannot interpret.

3 Packages

R functionality is based around the concept of “packages”. A package is a collection of functions
to carry out certain tasks (rather like Gauss modules or Matlab toolboxes). For example, the nls

package does nonlinear regression, the ts package contains a variety of time-series functions, and
so on. The base packages are automatically available with a default installation. Contributed
packages, on the other hand, need to be installed individually. One can obtain these packages by
following the download link on the R home page3.

By its very nature, R is a dynamic, evolving computing environment, and packages are continuing
to be written at a rapid rate. Very often, the capabilities of two or more packages overlap. For
example, both the tseries and ts packages provide procedures for fitting ARMA models.

Some of the packages that may be of interest to econometricians are listed below. Some of these
are installed automatically when you install R, and the others can be downloaded and installed
individually from the R web site.

3The Windows version has a menu which allows the user to select available packages from a menu. The Unix ver-
sions require that one download the appropriate gzipped tar file and then type “R CMD INSTALL packagename.tar.gz”
at the shell level. Alternately, you can use the install.packages() function from within R (also, the update.packages()
is most useful for keeping package versions current).

3

Time series

• ts Time-series functions, including ARIMA modelling, regression with ARMA er-
rors, Box-Pierce and Ljung-Box tests, ACF, PACF, CCF, spectral density estimation,
Phillips-Perron unit root test, STL seasonal decomposition, and kernel smoothing.

• tseries More time series functions, including ARMA modelling, auto mutual infor-
mation function, BDS test, GARCH modelling, Jarque-Bera test, ADF test for a unit
root, Phillips-Ouliaris cointegration test, KPSS test for stationarity, runs tests, and
Teräsvirta’s and White’s neural network tests for nonlinearity.

• dse Dynamic Systems Estimation, including multivariate state space and ARMA and
VAR models.

• fracdiff Fractionally differenced ARIMA(p, d, q) models.

• strucchange Structural change tests based on empirical fluctuation processes.

Regression

• base. The base package (automatically loaded) contains functions for inference using
linear models and extensive regression diagnostics and plots.

• lmtest Breusch-Pagan test, CUSUM test, Durbin-Watson test, Goldfeld-Quandt test,
Harvey-Collier test, Harrison-McCabe test, Ramsey’s RESET test.

• modreg Modern Regression: Smoothing and Local Methods. Includes kernel regression,
local polynomial regression, loess, projection pursuit regression, smoothing splines, and
Friedman’s “super smoother”.

• quantreg Quantile regression as described in Koenker & Basset (1978).

• nlme Linear and nonlinear mixed effects models based on Pinheiro & Bates (2000).

• nls Nonlinear regression. Facilities are included for some specific models including biex-
ponential model, first-order compartment model, four-parameter logistic model, Gom-
pertz growth model, logistic model, Michaelis-Menten model, Weibull growth curve
model.

Inference

• boot Bootstrap functions. Both parametric and nonparametric resampling are available.

• coda Output analysis and diagnostics for MCMC. A menu interface is provided. Many
functions for diagnostics and plots are included.

Panel data

• panel A function to compute the maximum likelihood estimates of the transition pa-
rameters from panel data. The algorithm is discussed in Kalbfleisch & Lawless (1985)
and Gentleman (1994).

Exploratory data analysis

• base The base package contains many graphics functions which are useful for EDA,
including scatterplots, scatterplot matrices, boxplots, histograms, stem-and-leaf plots,
qqplots, sunflower plots and so on.

4

• eda Exploratory Data Analysis based on Tukey (1977). Includes robust line fitting,
median polishing, and median smoothing.

Distributions and tests

• ctest Classical Tests. All the usual tests including various t-tests, F -tests, rank-based
tests, power calculations, tests for homogeneity of variances, χ2 tests, tests of normality,
and many more.

Computation

• Matrix. Provides a number of additional facilities for matrix arithmetic, including Schur
decomposition, LU decomposition, Hilbert matrices, and various tests for symmetry and
orthogonality.

Miscellaneous

• mva Classical Multivariate Analysis including principal component analysis, factor anal-
ysis, canonical correlations, multidimensional scaling and hierarchical clustering.

• xtable This package can be used to create LATEX formatted tables.

4 Web sites

There is a growing number of web sites dedicated to providing information about R and code to be
used with R. Some of the main sites are listed here.

• http://www.R-project.org/

This is the R home page from which you can download the program itself and many R packages.
There are also manuals, other links, and facilities for joining various R mailing lists.

• http://maths.newcastle.edu.au/~rking/R/

Three R mailing lists are archived here.

• http://lark.cc.ukans.edu/~pauljohn/R/statsRus.html

This site provides a large and excellent collection of R tips.

• http://www.vanderbilt.edu/quantmetheval/r.htm

This is a compilation of R resources on the web.

In addition, some of the web sites which provide S-PLUS functions will be of interest to R

users. Most code written for S-PLUS should work in R (although sometimes minor modification is
required). Two sites of interest are given here.

• http://lib.stat.cmu.edu/S/

This is the URL for the large library of S-PLUS code on statlib.

5

• http://www.econ.uiuc.edu/~econ472/routines.html

This page is for an Applied Econometrics class at the University of Illinois at Urbana-
Champaign. It contains S-PLUS functions for SUR, 2SLS, 3SLS, Breusch-Pagan test, ADF
test, Granger causality test, Johansen’s cointegration test, and some additional functions for
panel estimation. They may require minor modification for use in R.

5 Getting started

Having installed and run R, you will find yourself at the > prompt. To quit the program, simply
type q(). To get help, you can either enter a command preceeded by a question mark, as in ?help,
or type help.start() at the > prompt. The latter will spawn your web browser (it reads files
from your hard drive, so you do not have to be connected to the Internet to use this feature).

You can enter commands interactively at the R prompt, or you can create a text file contain-
ing the commands and execute all commands in the file from the R prompt by typing source

("commands.txt"), where commands.txt is the text file containing your commands.
When you quit by entering the q() command, you will be asked whether or not you wish to

save the current session. If you enter Y, then the next time you run R in the same directory it will
load all of the objects created in the previous session. If you do so, typing the command ls() will
list all of the objects. For this reason, it is wise to use different directories for different projects.
To remove objects that have been loaded, you can use the command rm(objectname).

5.1 Reading ASCII data

The two most common functions for reading data from disk files are the functions read.table()

and scan(). The most portable format is simply ASCII column format with observations entered
on separate rows and variables in separate columns. Variable names may be included in the first
row. For instance, if you type data <- read.table(file=’datafilename’, header=TRUE), this
will read the data from the file datafilename and use the first row as the variable names. If you
do not have variable names in the first row, simply omit the header=TRUE statement. Having read
the data into a data frame, you then “attach” the data object with the command attach(data).
This allows individual variables within the data set to be accessed directly.

The scan() command is used to read a single vector into R. For example, to read
the data in datafilename into a vector called “datavec”, issue the command datavec <-

scan(file=’datafilename’).

5.2 Importing other data formats

The foreign package allows you to read data created by different popular programs. To load it,
simply type library(foreign) from within R. Supported formats include

• read.dta – Read Stata binary files

• read.mtp – Read a Minitab Portable Worksheet

• read.spss – Read an SPSS data file

6

• read.xport – Read a SAS XPORT format library

• read.S – Read an S-PLUS binary file

6 Examples

The best way to see how R works is to look at some code and examples for a number of popular
econometric and statistical methods. That is what we do in this section. We will use data sets
included with both the base and contributed packages.

6.1 Linear regression models and the lm() function

We start with the estimation of a linear regression model. By way of example, we use a data set
found in the base package which can be loaded using the command data(cars). For this example
we regress braking distance (dist) on the car’s velocity (speed).

We can estimate the linear model using the lm() function, and we can assign the result to
an object of our choosing, say carfit. To regress dist on a constant and speed, we enter the
command carfit <- lm(dist ∼ speed, data=cars). To view a summary of the fitted model
we type summary(carfit). Here is this sequence of commands and the program output:

> data(cars)

> carfit <- lm(dist ~ speed, data=cars)

> summary(carfit)

Residuals:

Min 1Q Median 3Q Max

-29.069 -9.525 -2.272 9.215 43.201

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -17.5791 6.7584 -2.601 0.0123 *

speed 3.9324 0.4155 9.464 1.49e-12 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 15.38 on 48 degrees of freedom

Multiple R-Squared: 0.6511, Adjusted R-squared: 0.6438

F-statistic: 89.57 on 1 and 48 DF, p-value: 1.49e-12

The object that we named carfit now contains information that can be accessed. For in-
stance, the residuals are retrieved from the object carfit using the ‘accessor’ or ‘extractor’ func-
tion residuals() as in residuals(carfit), the coefficients using coefficients(carfit), and
the fitted values using fitted(carfit). We can see all stored values in such objects by typing
names(carfit) and names(summary(carfit)). To print values stored in the former, we could
use the accessor function or type carfit$objectname, while for those in the latter we could type
summary(carfit)$objectname. In general, to display an object, we simply type its name.

To visualize the fitted line, we can use the following commands.

> plot(speed ~ dist, data=cars)

> abline(carfit)

7

The first command creates a graph with speed on the X axis and dist on the Y axis and plots
the actual data. The second one adds the fitted line to the graph. If we did not want to include a
constant, we might call this model ‘carfitnocst’ and instead type carfitnocst <- lm(dist ∼

speed - 1, data=cars). The effect of the ‘-1’ term is to remove the constant from the model’s
formula.

To compute the covariance matrix s2(X ′X)−1 for the model’s parameters, we can retrieve
sigma (s) and cov.unscaled ((X ′X)−1) and multiply the square of the former times the latter.
For example,

> vcov <- summary(carfit)$sigma^2 * summary(carfit)$cov.unscaled

> vcov

(Intercept) speed

(Intercept) 45.676514 -2.6588234

speed -2.658823 0.1726509

We can retrieve the (1, 2) element of the covariance matrix by typing vcov[1,2].

6.1.1 Transformation of variables in regression models

It is possible to transform one or more variables from within the lm() function. For example, if
you wished to include speed and its square, you would need to use the I() operator to enclose
the transformed variable speed∧2 as in I(speed∧2). To include this transformation, you might
call this model ‘carfitquad’ and would enter carfitquad <- lm(dist ∼ speed + I(speed∧2),

data=cars). Logarithmic and trigonometric transformations are obtained in exactly the same
manner.

6.1.2 Interaction of variables in regression models

In order to include interaction between two variables, you can use the colon operator. In order to
include interaction among a group of variables, you can enclose the variables in parentheses and
use the ∧j command, where j is an integer > 1 that dictates the order of the interactions.

6.1.3 Common F tests in regression models

To perform F tests, you can use the anova() function. For instance, if you wished to compute an F
test for the joint significance of a subset of regressors, you can estimate the restricted model and the
unrestricted model as outlined above, then compare the two using the command anova(nameres,

nameunres) where ‘nameres’ and ‘nameunres’ are the names we have given the respective models.
Consider the following example.

> carfitunres <- lm(dist ~ speed + I(speed^2), data=cars)

> carfitres <- lm(dist ~ speed, data=cars)

> anova(carfitres,carfitunres)

Analysis of Variance Table

Model 1: dist ~ speed

Model 2: dist ~ speed + I(speed^2)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 48 11353.5

8

2 47 10824.7 1 528.8 2.296 0.1364

6.1.4 Tests for serial correlation and heteroskedasticity in regression models

To perform these tests, you will need to install the contributed package lmtest and load this using
the command library(lmtest). To conduct the Breusch-Pagan and Durbin-Watson tests for an
estimated model, you would proceed as follows.

> library(lmtest)

> bptest(carfit)

data: form1 BP = 4.3257, df = 2, p-value = 0.115

> dwtest(carfit)

data: DW = 1.6762, p-value = NA

The accompanying manual states that “the null value depends on X, so the p-value is hardly
tractable, so p-value is NA.”4

6.1.5 Prediction in regression models

We shall use the predict() function. Having estimated a model and called it, say, ‘carfit’, we
then use this model as an argument of predict(). If you use the option interval="confidence",
then this generates confidence intervals for mean predictions, while if you use the command
interval="prediction", this generates prediction intervals for individual predictions which are
stored in the object we have called ‘carpred’. For this example, we print out the first prediction
and its lower and upper prediction interval.

> carpred <- predict(carfit,se.fit=TRUE,interval="prediction")

> carpred$fit[1,]

fit lwr upr

1 -1.849460 -34.49984 30.80092

When desired, you can specify both an estimation data set and an evaluation data set using the
commands data= and newdata= respectively.

6.2 Binary choice models and the glm() function

We can use the ‘generalized linear model’ function ‘glm()’ to estimate binary choice models using
the link = probit or link = logit options, while count models are estimated using the family

= poisson() option. By way of example, we simulate some data from a latent variable specification
and use this to estimate a probit model.

> x <- rnorm(100)

> y <- 1 + x + rnorm(100)

> y <- as.integer(y<0)

> probitfit <- glm(y ~ x, family = binomial(link = probit))

> summary(probitfit)

Coefficients:

4The new release of lmtest will include p-values for the Durbin-Watson test.

9

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.1031 0.2128 5.184 2.17e-07 ***

x 1.3707 0.2740 5.003 5.65e-07 ***

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 112.467 on 99 degrees of freedom

Residual deviance: 62.249 on 98 degrees of freedom

AIC: 66.249

Number of Fisher Scoring iterations: 5

Note that the above listing has been shortened slightly, in part by removing blank lines as have
many of those that follow.

6.3 Selectivity models

Suppose that we wish to compute the inverse Mills ratio based upon a probit model, which might
then be used to correct for selectivity bias. Using the same data and estimated probit model as
above, we can compute f(x′

i
β)/F (x′

i
β) in the following manner:

> index <- probitfit$coef[1] + probitfit$coef[2]*x

> invmills <- dnorm(index)/pnorm(index)

6.4 Least squares estimation of nonlinear models and the nls() function

To estimate nonlinear regression models, we first load the nls library, which is part of the base
package, using library(nls) and then use the nls() function. We write the formula for the
model and specify starting values for the model’s parameters, which can be arguments in the
nls() function, as the following example demonstrates.

> library(nls)

> carfitnls <- nls(dist ~ a + speed^b, start=list(a=1,b=1), data=cars)

> summary(carfitnls)

Parameters:

Estimate Std. Error t value Pr(>|t|)

a -3.35701 4.44957 -0.754 0.454

b 1.39114 0.02971 46.827 <2e-16 ***

Residual standard error: 15.11 on 48 degrees of freedom

6.5 Time series

Time series functions are provided by the ts and tseries packages.

6.5.1 Example: ARIMA model

As an example, we shall consider the monthly totals of car drivers in Great Britain killed or seriously
injured between January 1969 to December 1984. Mandatory wearing of seatbelts was introduced
in February 1983. We fit the seatbelt intervention using a dummy variable with an ARIMA error
structure. We first plot the data, and then its seasonal difference.

10

> library(ts)

> data(UKDriverDeaths)

> plot(UKDriverDeaths)

> diff.1 <- diff(UKDriverDeaths,12)

> plot(diff.1)

It is not clear whether the seasonally differenced series is stationary, so we use the command
adf.test(diff.1) to do an augmented Dickey-Fuller test. The test is significant, so we do no
further differencing. The ACF and PACF of the differenced series can plotted as follows:

> par(mfrow=c(1,2))

> acf(diff.1,lag.max=40)

> pacf(diff.1,lag.max=40)

The par command sets up the graphing window so that both plots appear side-by-side.
An intervention model with an ARIMA(1,0,1)(0,1,1)12 error is fitted as follows.

> seatbelt <- as.matrix(c(rep(0,169),rep(1,23)))

> fit <- arima0(UKDriverDeaths,order=c(1,0,1),seasonal=list(order=c(0,1,1),period=12),

xreg=seatbelt)

> print(fit)

Coefficients:

ar1 ma1 sma1 xreg1

0.9360 -0.6042 -0.8898 -346.9095

Approx standard errors:

ar1 ma1 sma1 xreg1

0.0550 0.1328 0.0117 85.9939

sigma^2 estimated as 16767: log likelihood = -1139.96, aic = 2287.93

The AIC is stored as fit$aic. Some diagnostics can be obtained using arima0.diag(fit).
In fact, this model has the smallest AIC of all models with one seasonal difference. Clearly, the
seatbelt variable is significant (t = −346.9/86.0 = −4.03) and accounts for an average decrease of
346.9 deaths or serious injuries per month.

Predictions can be computed as follows:

> fcast <- predict(fit,n.ahead=12,newxreg=as.matrix(rep(1,12)))

The object fcast now contains point forecasts (fcast$pred) and forecast standard deviations
(fcast$se). Point forecasts and forecast intervals can be plotted using fcast:

> plot(UKDriverDeaths,xlim=c(1969,1986),ylim=c(900,2600))

> lines(fcast$pred,col=2)

> lines(fcast$pred + 2*fcast$se,col=3)

> lines(fcast$pred - 2*fcast$se,col=3)

6.5.2 Example: GARCH model

Facilities for fitting ARCH and GARCH models are provided in the tseries package. Here we fit
a GARCH(1,1) model to the log returns of the daily closing prices of the UK FTSE for 1991–1998.

11

> data(EuStockMarkets)

> ftse <- diff(log(EuStockMarkets))[,"FTSE"]

> ftse.garch <- garch(ftse, order=c(1,1))

> summary(ftse.garch)

Coefficient(s):

Estimate Std. Error t value Pr(>|t|)

a0 8.722e-07 3.083e-07 2.829 0.00467 **

a1 4.532e-02 6.791e-03 6.674 2.49e-11 ***

b1 9.419e-01 1.018e-02 92.478 < 2e-16 ***

Diagnostic Tests:

Jarque Bera Test

data: Residuals

X-squared = 215.3627, df = 2, p-value = < 2.2e-16

Box-Ljung test

data: Squared.Residuals

X-squared = 0.1001, df = 1, p-value = 0.7517

The ARCH effects have been filtered, but conditional normality has been violated. A variety of
diagnostic plots for the fitted model can be obtained using plot(ftse.garch).

6.6 Maximum likelihood estimation

Maximum likelihood estimation is easily accomplished using the nonlinear optimization function
optim(). For example, consider the loglikelihood of a logistic regression with one covariate:

l(β0, β1;y) =
n∑

i=1

[yi log pi + (1 − yi) log(1 − pi)]

where pi = `(β0 + β1x) and `(u) = eu/(1 + eu) is the logistic function. We can write a function in
R to compute the negative loglikelihood:

logitreg <- function(beta,x,y)

{ eta <- exp(beta[1] + beta[2]*x)

p <- eta/(1+eta)

return(-sum(ifelse(y,log(p),log(1-p)))) }

To demonstrate this function, consider the variable identifying which towns within Boston have
a crime rate per capita in the top 20% of towns. We shall seek to model this variable as a function
of the wealth of the locality, where wealth is measured using the median value of owner-occupied
homes in the district. The Boston data are part of the MASS library, so we first need to load that
library.

> library(MASS)

> data(Boston)

> crim <- as.integer(Boston$crim > quantile(Boston$crim,0.8))

> med.value <- Boston$medv

> mle <- optim(c(0,0),logitreg,x=med.value,y=crim,hessian=TRUE)

The object mle contains information about the estimated coefficients. For example, mle$par gives
the estimates and mle$hessian contains the Hessian matrix. Therefore, to compute confidence
intervals, we use

12

> se <- sqrt(diag(solve(mle$hessian)))

> cbind(lower=mle$par - 1.96*se, upper=mle$par + 1.96*se)

lower upper

[1,] 2.1449125 4.0137381

[2,] -0.2896639 -0.1842742

It is often useful for students to visualize the likelihood surface near the maximum. This can
be done as follows.

> a <- seq(-10,15,l=50)

> b <- seq(-1,0.2,l=50)

> L <- matrix(NA,50,50)

> for(i in 1:50)

> for(j in 1:50)

> L[i,j] <- -logitreg(c(a[i],b[j]), med.value, crim)

> par(mfrow=c(1,2))

> contour(a,b,L)

> persp(a,b,L)

The latter two commands give a contour plot and a wire-frame perspective plot, respectively. These
show clearly that the likelihood has a narrow ridge near the optimum, which is why the confidence
intervals of the two parameters have such different widths.

Of course, in the case of logistic regression, there is a built-in function (glm) which estimates
the parameters and provides a variety of other information for inference and diagnostics. However,
it is often useful for teaching purposes for students to see how the solutions can be calculated using
methods that are more generally applicable.

6.7 Programming estimators

The matrix capabilities in R’s base installation are sufficient for programming many estimators.
Common functions needed for matrix manipulation are the solve() function needed for matrix
inversion, the t() function needed for matrix transposition, and the %*% function needed for
matrix multiplication.

As an example, we read in a hypothetical ASCII data set, where Y is in column 1 and X in the
remaining columns, attach a column of 1s to X, and then compute the unrestricted OLS estimator
β̂ = (X ′X)−1X ′Y and the F ratio based upon the restriction matrix R and equality vector r for
the restrictions β2 = β3 = 0. For comparison purposes, we also use the lm() command (linear
model) and the anova() command to conduct an F test.

data <- read.table("data.dat",header=F)

attach(data)

Y <- as.matrix(data[,1])

X <- as.matrix(cbind(1, data[,2:ncol(data)]))

XTX <- t(X) %*% X

XTXINV <- solve(XTX)

XTY <- t(X) %*% Y

betahat <- XTXINV %*% XTY

Xbetahat <- X %*% betahat

13

sigsq <- as.vector(t(Y - Xbetahat) %*% (Y - Xbetahat) / (nrow(X) - ncol(X)))

VCOV <- sigsq * XTXINV

J <- 2

R <- matrix(0:0, J, ncol(X))

r <- matrix(0:0,J,1)

R[1,2] <- 1

R[2,3] <- 1

Rbetahat <- R %*% betahat

F <- t(Rbetahat - r) %*% solve(R %*% XTXINV %*% t(R)) %*% (Rbetahat - r) / (J * sigsq)

Compare with the lm() command (linear regression model)

fitlm <- lm(Y ~ X[,2:ncol(X)])

fitreslm <- lm(Y ~ X[,4:ncol(X)])

anova(fitlm, fitreslm)

7 Conclusion

R is a powerful and well-written open-source statistical software package. The examples provided in
this review merely scratch the surface of its extensive capabilities. We encourage readers to browse
the extensive documentation and to visit the web sites listed in Section 4 to see examples of what
R can do. All code and output files used in this review can be obtained from the JAE Data Archive
(http://www.econ.queensu.ca/jae/).

References

Cribari-Neto, F. & Zarkos, S. G. (1999), ‘R: yet another econometric programming environ-
ment’, Journal of Applied Econometrics 14(3), 319–329.

Gentleman, R. (1994), The use of covariate information in multi-state Markov models, Technical
Report 13, Department of Statistics, University of Auckland.

Kalbfleisch & Lawless (1985), ‘The analysis of panel data under a Markov assumption’, Journal

of the American Statistical Association 80, 863–871.

Koenker & Basset (1978), ‘Regression quantiles’, Econometrica 46, 33–50.

Pinheiro, J. & Bates, D. (2000), Mixed-effects models in S and S-PLUS, Springer, New York.

Tukey, J. (1977), Exploratory data analysis, Addison-Wesley, Reading.

Venables, W. & Ripley, B. (1999), Modern applied statistics with S-Plus, 3rd edn, Springer-
Verlag, New York.

Venables, W. & Ripley, B. (2000), S programming, Springer-Verlag, New York.

14

	ISSN 1440-771X

