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Abstract

A well known property of the Beveridge Nelson decomposition is that the innova-

tions in the permanent and transitory components are perfectly correlated. We use

a single source of error state space model to exploit this property and perform a

Beveridge Nelson decomposition. The single source of error state space approach

to the decomposition is computationally simple, and in contrast to other meth-

ods of performing the Beveridge-Nelson decomposition, it incorporates the direct

estimation of the long-run multiplier.
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1. Introduction

Two stylised facts associated with most macroeconomic time series are that they exhibit

long run growth and recurrent ßuctuations around the growth path. This has often

led to exercises which decompose macroeconomic series into permanent and transitory

components, where the permanent component represents long run growth or the trend

in the economy, and the transitory component is taken to represent the business cycle.

There are many different ways in which this decomposition is undertaken (see Canova

(1998) for a recent survey), and there is considerable debate about which decomposition

(if any) leads to �trends� and �cycles� that best capture the features that economists

typically associate with economic growth and business cycles.

One decomposition that has attracted considerable attention in the applied macro-

economics literature is the one Þrst proposed by Beveridge and Nelson (BN) (1981).

They deÞned the permanent component of an ARIMA (p, 1, q) series as the level of the

long run forecast of a series (minus the deterministic trend, if any), and the transitory

component as the difference between the present level and the permanent component.

This decomposition is based on forecasting considerations, because not only does the BN

permanent component embody the (time t) long run forecast of the series, but the BN

transitory component also embodies the forecastable momentum of the series at each

point in time. A by-product of the BN decomposition is that the innovations in the

permanent and transitory components are perfectly (and often negatively) correlated,

which allows for the possibility that the �BN trend� and �BN cycle� are driven by the

same innovation.

The forecasting literature has a long tradition of decomposing time series into trends

and cycles, and like the macroeconomic literature, there are various ways in which

this decomposition is undertaken and debate about which way is best. One popular

decomposition that is often used in forecasting is the unobserved components (UC)

decomposition advocated by Harvey (1985), in which the innovations in the trend and

cyclical components have zero correlation by assumption. Watson (1986), Stock and

Watson (1988), and Harvey and Koopman (2000) explore some of the properties of this

decomposition. An alternative forecasting approach advocated by Ord, Koehler and
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Snyder (1997) is the class of state space models with a single source of disturbance.

In these latter models, the innovations of the unobserved state components as well

as the observations are all perfectly correlated, because they are driven by the same

disturbance. It is this similarity with the BN property that motivates the use of a single

source of error (SSOE) state space forecasting approach to estimate the permanent and

transitory components of the BN decomposition.

Harvey and Koopman (2000) have observed that the BN permanent and transitory

components for an ARIMA(0, 1, 1) model correspond to those from the UC trend and

cycle decomposition with perfectly correlated disturbances. Here, we generalise this

observation to point out that the SSOE state space forecasting approach can be used

to obtain the BN components for any series with a ARIMA(p, 1, q) process. Previous

literature, including Miller (1988), Newbold (1990) and Morley (2002) has focussed

on overcoming difficulties involved with truncating and estimating the inÞnite sums in

the permanent component deÞned by BN (1982). In contrast, our SSOE state space

forecasting approach focusses on the correlation between the unobserved components,

and it avoids any need for truncation by working with the (equivalent) BN representation

outlined in Stock and Watson (1988).

Features of the SSOE approach are that it incorporates the direct estimation of the

long-run multiplier and it allows a straightforward comparison of the variances of the

innovations for each component. This latter property is potentially useful for macro-

economists, who frequently interpret the BN permanent and transitory components in

(the logarithms) of output as indicators of growth and cyclical behaviour in the economy,

and then use measures of the ratio of the standard deviations of shocks to trends and

output as measures of �persistence in output� (see, eg, Campbell and Mankiw (1987)

and Stock and Watson (1988)).

2. Beveridge Nelson Decomposition

Assume that yt is a I(1) variable with a Wold representation given by

∆yt = µ+ γ (L) εt, (2.1)
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where µ is the long run growth or drift, γ(L) is a polynomial in the lag operator L with

γ(0) = 1 and Σ∞i=0 |γi| <∞, and εt is an iid
¡
0, σ2

¢
one-step-ahead forecast error of yt.

Using the well known identity that γ(L) = γ(1)+ (1−L)γ∗(L), we can rewrite (2.1) as

∆yt = µ+ γ (1) εt + (1− L)γ∗(L)εt, (2.2)

or equivalently as

yt =
µ

(1−L) + γ (1)
εt

(1− L) + γ
∗(L)εt. (2.3)

The Beveridge Nelson permanent component is given by τ t =
µ

(1−L) + γ (1)
εt

(1−L) while

the temporary component is ct = γ∗(L)εt, and it is immediately clear that these two

components are driven by the same innovation so that innovations to τ t and ct are

perfectly correlated. Economists are often interested in the longrun multiplier γ (1) ,

which measures the long-run effect of a shock εt on yt.

It is common to rewrite the expression for τ t as

τ t = µ+ τ t−1 + γ (1) εt, (2.4)

which shows that the permanent component is a random walk with drift µ and a non-

autocorrelated innovation given by γ(1)εt. Further, when γ(L) is an an ARMA(p, q)

process with γ(L) = θ(L)
φ(L) , θ(L) = 1 + θ1L + θ2L

2....θqL
q and φ(L) = 1 + φ1L +

φ2L
2....φpL

p, one can show that

ct =

µ
γ (L)− γ(1)
(1− L)

¶
εt =

µ
θ(L)− γ(1)φ(L)
φ(L)(1− L)

¶
εt =

ψ(L)

φ(L)
εt, (2.5)

where ψ0 = 1− γ(1), and the order of ψ(L) is n with n ≤ max(p − 1, q − 1). Letting
φ∗p(L) = −φ1L − φ2L

2.... − φpLp and ψ∗n(L) = ψ1L + ψ2L
2.... + ψnL

n, the expression

for the transitory component becomes

ct = φ
∗
p(L)ct + ψ

∗
n(L)εt + (1− γ(1))εt, (2.6)

which is used in our SSOE approach below. We use the perfect correlation between the

contemporaneous innovations in equations (2.4) and (2.6) to parameterise our SSOE

state space model. In contrast, Morley�s (2002) state space approach to perform a BN

decomposition is based on a parameterisation of Þrst differenced yt.

4



3. Single Source of Error State Space Models

The linear single source of error state space model proposed by Snyder (1985) is

yt = β
0xt−1 + et (3.1a)

with

xt = Fxt−1 + αet, (3.1b)

where (3.1a) is known as the measurement equation and (3.1b) is known as the system

equation. The k vector xt represents the unobserved state of the underlying process

at the beginning of period t, α is a Þxed k vector of parameters, et is an iid
¡
0, σ2

¢
innovation, β is a Þxed k vector, and F is a Þxed k× k transition matrix. Often both β
and F depend on a set of time invariant parameters. The key feature of this speciÞcation

is that both equations are driven by the same innovation.

Snyder (1985) shows that the likelihood function associated with (3.1a) and (3.1b)

is very simple, so that it is convenient to obtain maximum likelihood estimates of the

parameters using the prediction error decomposition of the likelihood in conjunction

with a suitable version of the Kalman Þlter. Further details relating to estimation are

described in Snyder (1985) or Harvey (1989).

The above state space model is stable if the matrix (F − αβ0), also known as the
discount matrix, has eigenvalues with absolute value less than one (Ord, Koehler, and

Snyder (1997)). Letting (F − αβ0) = D , it can be shown that

xt =
∞X
j=0

Djαyt−j (3.2)

and

yt =
∞X
j=1

β0Djαyt−j + et (3.3)

Hence, when D is strictly stable, Dj −→ 0 when j −→ ∞, and past observations have
a declining effect as one moves further back in time.
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4. Single Source of Error State Space Approach to BN Decomposition

Consider a time series yt with an ARIMA(p, 1, q) process represented by (2.1) with

γ(L) = θ(L)
φ(L) . The I(1) term allows the series to be broken down into its permanent (τ t)

and transitory (ct) components in accordance with the BN decomposition so that

yt = τ t + ct (4.1)

with τ t = µ+ τ t−1 + αεt and ct = φ∗p(L)ct + ψ
∗
n(L)εt + (1− α)εt, (4.2)

where α = γ(1) from equations (2.4) and (2.6).

Substituting (4.2) into (4.1) gives a single source of error measurement equation

yt = µ+ τ t−1 + φ
∗
p(L)ct + ψ

∗
n(L)εt + εt, (4.3)

with the state transition equations given by the two equations in (4.2).

The state transition equations in (4.2), are somewhat similar to the UC decompo-

sitions in Watson (1986), Stock and Watson (1988), and Harvey and Koopman (2000).

However, the two equations are driven by the same innovation and are perfectly corre-

lated, unlike the standard UC decomposition in which the trend and cycle disturbances

have zero correlation. Morley et al (2003) have estimated the correlation between innova-

tions to UC trend and cycle components for an ARIMA(2,1,2) model of (the logarithms

of) US GDP and found it to be -0.91, but this sort of correlation can only be identiÞed

in an ARIMA framework when p > q + 2.

Following the convention of calling the permanent component of the BN decomposi-

tion �the trend� and the transitory component �the cycle�, the parameter of interest in

empirical studies of (the logarithms) of output is typically α, which measures the long

run increase in GDP resulting from a 1% shock in GDP in one quarter. In practice, if

α < 1 then the trend and cycle will have perfect positive correlation and both compo-

nents will share in the variation of the data. However, if α > 1, then the innovations in

the trend and cycle will have perfect negative correlation, and the trend τ t will be more

variable than yt. Some researchers (see eg Proietti, 2002) have questioned whether one

should call τ t a �trend� when it is more volatile than output itself, but as pointed out

by Morley et al (2003) (who observed that α > 1 for real US GDP), a shock to output
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can shift the trend so that output is behind trend until it catches up. Thus it is quite

reasonable for �trend innovations� to be negatively correlated with �cycle innovations�

and for the former innovations to be more variable than output innovations.

5. Applications

We illustrate the use of the single source error state space approach to compute the Bev-

eridge Nelson permanent/transitory decompositions for ARIMA(0,1,1), ARIMA(1,1,0)

and ARIMA(2,1,2) models of the logarithms of real output for the United States, the

United Kingdom and Australia. The US models coincide with those used by Stock and

Watson (1988) in their study of the contribution of the trend component to real US

GNP, and we broaden the scope to include decompositions for UK and Australia to

demonstrate the relative contribution of trends in other countries. We use quarterly

GNP data for the USA (from 1947:1 to 2003:1) , and quarterly GDP data for the UK

and Australia (from 1979:3 to 2003:3). As noted above, our parameter of interest is α,

which is Campbell and Mankiw�s (1987) persistence measure that predicts the long run

increase in output resulting from a 1% shock in output in one quarter. Since researchers

are often interested in the fraction of the variance in the quarterly change in real output

that can be attributed to changes in its stochastic trend, we use our computed BN

trends to calculate Stock and Watson�s (1988) R2 measure of this ratio. The empirical

results are presented in Table 1, and we outline details relating to the SSOE state space

formulation below.

5.1. ARIMA(0,1,1) model

The BN permanent and transitory components for an ARIMA(0, 1, 1) model are

τ t = µ+ τ t−1 + αεt and

ct = (1− α)εt,
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where, in terms of the ARMA coefficients for ∆yt, α = γ(1) = 1 + θ1. These equations

can be cast into single source of error state space form with

yt = µ+
h
1 0

i " τ t−1

ct−1

#
+ εt

as the measurement equation and"
τ t

ct

#
=

"
µ

0

#
+

"
1 0

0 0

#"
τ t−1

ct−1

#
+

"
α

1− α

#
εt.

Forecasts for these state space equations can be computed by using a suitable version of

the Kalman Þlter and the maximum likelihood estimates of the parameters (α and µ)

are obtained using the prediction error decomposition of the likelihood function. Note

that it is α, rather than the MA(1) parameter that is directly estimated. The eigenvalues

of the discount matrix (F − αβ0) (from equation 3.1) need to be within the unit circle

to ensure stability, and this condition is satisÞed for each of the three decompositions

undertaken here.

The estimated αs and implied variance ratios for USA, UK and Australian output

are shown in Table 1. Here it is interesting to note that while α > 1 for the USA

and Australia, implying that innovations to the �trend� and �cycle� are negatively

correlated, the same is not true for the UK. Turning to the R2 measures of the fraction

of the variance in the quarterly change in real output that can be attributed to changes

in its stochastic trend, we see that trend makes a relatively lower contribution in the

USA and Australia, than it does in the UK.

The implied transitory components are illustrated in the left hand side graphs in

Figure 1, together with reference recessions published by the NBER and the ECRI.

While there are often pronounced declines in the transitory components around the

NBER/ECRI peak to trough episodes, there are also clear differences between BN-

cycles based on ARIMA(0,1,1) models of output and conventional business cycles. This

is hardly surprising, given that each type of cycle has been constructed to serve different

purposes, and has been based on quite different information sets.
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5.2. ARIMA(1,1,0) model

For an ARIMA(1, 1, 0) model the permanent trend component is the same as above,

although in this case α = 1
1+φ1

in terms of the ARMA coefficients for ∆yt. The cycle

component is given by

ct = −φ1ct−1 + (1− α)εt.

Arranging the model into state space form, the measurement equation is

yt = µ+
h
1 −φ1

i " τ t−1

ct−1

#
+ εt

and the transition equation is"
τ t

ct

#
=

"
µ

0

#
+

"
1 0

0 −φ1

#"
τ t−1

ct−1

#
+

"
α

1− α

#
εt.

Estimation of the state space model imposes the identity that φ1 =
1−α
α (which arises

from the observation that α = 1
1+φ1

), and provides a direct estimate of α. As above,

appropriate stability conditions (in terms of the eigenvalues for the discount matrix) are

satisÞed for each country. Results are provided in Table 1 and the implied transitory

components are illustrated in the center graphs of Figure 1. As for the ARIMA(0,1,1)

model, α > 1 for the USA and Australia, while α < 1 for the UK. Also, the implied

R2 for the USA and Australia are much smaller than that for the UK, reßecting a

comparatively less noisy transitory component in the latter country.

5.3. ARIMA(2,1,2) model

The ARIMA(2,1,2) model of output has been used by Morley et al (2003) for US GDP,

and if one restricts attention to just ARIMA(0,1,1), ARIMA(1,1,0) and ARIMA(2,1,2)

models, it is the model chosen by AIC for both the USA and the UK. (AIC chooses the

ARIMA(1,1,0) for Australia). As usual, the permanent component is given by the Þrst

equation in (4.2), while the transitory component is given by

ct = −φ1ct−1 − φ2ct−2 + θ1εt−1 + (1− α)εt.
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In this case α = 1+θ1+θ2
1+φ1+φ2

in terms of the ARMA coefficients for ∆yt, although this

relationship does not affect the following estimation.

The model can be cast into a single source of error state space form with

yt = µ+
h
1 −φ1 −φ2 θ1

i

τ t−1

ct−1

ct−2

εt−1

+ εt
being the measurement equation, and

τ t

ct

ct−1

εt

 =

µ

0

0

0

+

1 0 0 0

0 −φ1 −φ2 θ1

0 1 0 0

0 0 0 0




τ t−1

ct−1

ct−2

εt−1

+


α

1− α
0

1

 εt
being the transition equation.

Table 1 reports the estimation results and Figure 1 illustrates the implied transitory

components. As above, appropriate stability conditions (in terms of the eigenvalues for

the discount matrix) are satisÞed for all countries. In the UK case, bθ1 is statistically

insigniÞcant and is set to zero. The reported results are similar to those in Sections

5.1 and 5.2, excepting that the estimated α for the UK is now greater than one. Once

again, the results suggest that the permanent component in the US and Australian

decompositions are relatively less volatile than the corresponding component in the UK

decompositions.

6. Conclusion

In this paper a single source of error state space approach has been proposed to exactly

compute the permanent and transitory components of the BN decomposition, in accor-

dance with the original BN property that the two components are perfectly correlated.

This approach offers a simple and straight forward formulation of both components in

state space form to Þt a given ARIMA model, and it allows direct inference on the

long-run multiplier α as opposed to indirect inference based on the ARIMA coefficients.
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Table 1

Measures of the importance of trend in real log GNP/GDP

Univariate

Statistical

Model

Long-run change in GNP

predicted from a 1% shock change

in GNP in one quarter (α∗)

Variance ratios

R2

US GNP Data from 1947:I to 2003:I

ARIMA(0,1,1)

ARIMA(1,1,0)

ARIMA(2,1,2)

1.2701
(0.0552)1

1.5226
(0.0.1464)

1.2653
(0.1459)

0.9339

0.8817

0.8458

UK GDP Data from 1960:I to 2003:I

ARIMA(0,1,1)

ARIMA(1,1,0)

ARIMA(2,1,2)

0.9945
(0.0724)

0.9940
(0.0759)

1.2267
(0.1587)

0.9999

0.9999

0.9686

Australia GDP Data from 1979:1 to 2003:3

ARIMA(0,1,1)

ARIMA(1,1,0)

ARIMA(2,1,2)

1.3000
(0.0878)

1.4942
(0.0110)

1.3733
(0.0460)

0.9175

0.8882

0.8822

1std. error in parenthesis

∗estimates of α. Estimates of other coefficients can be requested from the authors

The R2 statistic is obtained by regressing the quarterly change in GNP against the change in the BN trend
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Figure 1: Transitory components for ARIMA models for the USA, UK and AUSTRALIA

Note: The shaded areas on the graphs indicate peak to trough episode (recessions)
recorded by the NBER (for the USA) and the ECRI (for the UK and Australia)
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