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Abstract

Forecasting large numbers of time series is a costly and time-consuming exercise. Before

forecasting a large number of series that are logically connected in some way, we can first

cluster them into groups of similar series. In this paper we investigate forecasting the series in

each cluster. Similar series are first grouped together using a clustering procedure that is based

on a test of hypothesis. The series in each cluster are then pooled together and forecasts are

obtained. Simulated results show that this procedure for forecasting similar series performs

reasonably well.

Keywords: Autoregressive models,  Clustering technique, Mean square forecast error,  Pooled

series,

1. Introduction

Forecasting large numbers of logically connected time series especially in the short term is a

common occurrence in many situations. Some examples are inventory control, stocks and

shares, course enrolments at universities. While there is a vast literature on forecasting

methodologies, very little research has been done on forecasting similar series.

Shah (1997) discusses model selection in univariate time series forecasting. He

mentions that given a number of univariate time series, the forecaster may select one best

model for all series or develop a rule that selects the best forecasting model for each series.
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This rule is based on the classification technique of discriminant analysis. Discriminant analysis

requires known groupings of time series before any further series can be classified.  However in

many situations, known groupings of the time series under consideration are not available.

Similar time series may be grouped together by some conventional clustering technique

(see Everitt 1993). The problem with conventional clustering techniques is its subjective nature.

The analyst must decide upon the number of clusters by selecting the distance at which the

clusters are to be identified. Maharaj (1996, 1997) proposed a method of clustering stationary

time series based on the p-value of a test of hypotheses that there is no difference between the

generating processes of every two series under consideration. This method of clustering is far

less subjective than the conventional clustering techniques. This method can also be

successfully applied to nonstationary time series that can be easily transformed to stationary

series.

In this paper we investigate the forecasting of series in each of the clusters which are

selected using the above-mentioned clustering technique.  Simulated results will show that

when the series in a cluster are pooled together and fitted with an AR(k) model, the individual

series in this cluster now fitted with the pooled model produce on average more accurate

forecasts then when they are fitted with their own models.  We will show theoretically that if

the pooled and individual models are of the same order k, where k = 1 or 2, the mean square

forecast error for the pooled model is less than that for the individual model for one-step ahead

forecasts.

In Section 2 we briefly discuss the clustering technique mentioned above. In Section 3

we show the theoretical results.  The results of the simulation study are given and discussed in

Section 4 and in Section 5 we consider an application to a set of economic time series.

2. Clustering of Time Series

The clustering procedure is based on the following test of hypothesis:
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H0: There is no difference between the generating processes of two stationary series

HA: There is a difference between the generating processes of two stationary series

Truncated AR(∞) models of order k, are fitted to each series and the test statistic which

is based on the difference between the AR(k) estimates is constructed. These estimates are

generalised least squares estimates. The order k can be selected by criteria such as the Akaike's

information criterion (AIC) or the Schwarz's Bayesian information criterion (BIC). A

seemingly unrelated regressions model is used to construct the test statistic which follows a chi-

square distribution (see Maharaj (1997)).

The clustering procedure as given in Maharaj (1997) has the following steps: First

perform the test of hypothesis for every pair of series determining the p-value associated with

the test. Use these p-values in an algorithm that incorporates the principles of hierarchical

clustering but will only group together those series whose associated p-values are greater than

some predetermined significance level (for example  0.05 or 0.01).  Simulation studies have

shown that this clustering procedure performs reasonably well.

3. Theory

For k = 1 and 2 we will show that when m series with equal variance are pooled together and

fitted with an AR(k) model, this model when fitted to each of the m series will produce a

smaller mean square forecast error (MSFE) for the one-step ahead forecast than when each of

the m series is fitted with its own AR(k) model. We assume that the m series are generated from

the same stationary process and hence form a cluster.

Lemma 1

Consider an AR(k) model

tktk2t1tt ayyyy ++++= −−− φφφ K21
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fitted to the time series {yt, t=1,2,…,T}. at is a white noise process with mean 0 and variance

2
aσ . Since this is a lag dependent model and since the AR(k) process is stationary
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is a finite positive definite matrix (see Greene (1993)).

Theorem 1: Assume that m series with equal variance are generated from the same

stationary process and that each series is fitted with an AR(k) model, where k = 1 or 2. Pool the

m series together and assume that this pooled series is also fitted with an AR model of the same

order k. Fit each of the m series with the pooled model. Then for one-step ahead forecasts

MSFEP < MSFEI

where MSFEI  and MSFEP are the mean square forecast errors when a series is fitted with its

own model and with the pooled model respectively.

Proof: (a) k = 1

Consider an AR(1) model fitted to the time series {yt, t=1,2,…,T}

ttt ayy += −11φ (3.1)
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where at is a white noise process with mean 0 and variance  2
aσ . The one step ahead forecast

for yt is

 11 −= tt yˆŷ φ . (3.2)

Hence the forecast error is

( ) ttttt ayˆŷye +−=−= −111 φφ .

The mean square forecast error is
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Now since {yt, t=1, 2, . . . T} is a stationary series
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Thus Equation (3.4) becomes
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We now pool together m stationary time series y1 , y2, . . . , ym,  that are generated for the same

process, where

[ ]Tiii y...yy 21=′
iy

for i = 1, 2, . . . m. Fit the pooled series with an AR(1) model. The model for the pooled series

is now of the form
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Since the series which are pooled together this manner are expected to be logically connected,

we assume that the disturbances are correlated across series. That is

[ ]          IijjtitaaE σ= i, j = 1, 2, . . . , m

where I is a (T-1) × (T-1) identity matrix. Hence the variance of b is
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It is also assume that the observations of the m series are uncorrelated with each other across

time.

As opposed to ordinary least squares estimation of  φ1 in (3.1), P1φ  is now estimated by

generalised least squares. That is

[ ] [ ]ZV WWVW 111 −−− ′′=P
ˆ

1φ .

Premultiplying the model in (3.7) by 21V −  gives

bVWVZV 212121 −−− += P1φ

or

*
P

** bWZ +=/ 1φ

The variance of *b  is
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Hence fitting the pooled AR(1) model to each of the m series gives

ttPt ayy += −11φ .

The one step-ahead forecast  for yt is

 11 −= tPt yˆŷ φ . 

Following through steps similar to those in equations (3.3) to (3.5)

 

( )( )( ) ( )( )

( )( )

( )
( ) .

z
Tm

plim

c

Tmplimc

ˆTmEplimcTmlim

Tm

t

*
t

a

a

∑
+−

=
−

−

=







 ′

−=





 





 −=−−

11

2

2
1

2
a1

1
2

1

2

1PP11
2

P

1-

1
                                                 

1                                                   

1-     MSFE1

σ

σ

φφσ

** WW

As a consequence of Lemma 1

( )
( )

.cqz
Tm

plim
Tm

t

*
t 111

11

2

2
11-

1
==∑

+−

=
−

Thus

( )( )
mcm

c
Tlim aa

a

2

1

2
12

PMSFE1
σσ

σ ==−− . (3.8)

Taking the ratio of  (3.6) to (3.8)

( )
( ) mlim

a

a =
−
−

2
P

2
I

MSFE

MSFE

σ
σ

. (3.9)

Thus

MSFEP < MSFEI
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for large samples, with the mean square forecast error ratio proportional to the number of series

that are pooled together.

b)  k=2

Consider an AR(2) model fitted to the time series {yt, t=1,2,…,T}.

tttt ayyy ++= −− 2211 φφ

where at is a white noise process. The one step ahead forecast for yt is

 2211 −− += ttt yˆyˆŷ φφ . 

Hence the forecast error is
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The mean square forecast error
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Then taking the limit as ∞→T and as a consequence of Lemma 1
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where d1= q11, d2 = q22 , d12 = q12 , 
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Since both d1 and d2 represent the asymptotic variance of the time series, d1 = d2.

Now
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So now if m stationary time series y1, y2, . . . ,ym are generated for the same process and

are pooled together and fitted with an AR(2) model,  it can be shown in a similar manner to that

in case k =1, that when this pooled model is fitted to each of the m series
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So again

MSFEP < MSFEI.

for large samples, with the mean square forecast error ratio proportional to the number of series

that are pooled together.

The results of Theorem 1 can also be extended to series fitted with AR(k) models

giving

( ) ( ) 22
I  MSFE aa kkTlim σσ =−−

( )( )
m

k
kTlim a

a

2
2

P  MSFE
σ

σ =−−

It is clear that as the number of series in a cluster increases the greater the effect of the

pooled model on the mean square forecast error. It should however it noted that for all values of

k, as T increases, the difference between MSFEP and MSFEI decreases.

4. Simulation Study

4.1. Design

The simulation study was carried out in two stages :

(a) Two groups of two series each:Two series were generated from each of an AR(1)

process with φ=0.5 and a MA(1) process with θ = 0.9. Each of the four series were fitted with

AR(k) models. The two series generated from the AR(1) model were pooled together and the
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pooled series was fitted with an AR(k) model. Likewise the two series generated from the

MA(1) model were pooled together and the pooled series was fitted with an AR(k) model.

(b) Two groups of eight series each: Eight series were generated from each of an AR(1)

process with φ=0.5 and a MA(1) process with θ = 0.9. Each of the sixteen series were fitted

with AR(k) models. The eight series generated from the AR(1) model were pooled together and

the pooled series was fitted with an AR(k) model. Likewise the eight series generated from the

MA(1) model were pooled together and the pooled series was fitted with an AR(k) model.

For stage (a) series lengths of T=50 and 200 were taken when it was assumed that the

correlation between the disturbances of each pair of processes from which the series were

generated was in turn 0 and 0.5. For stage (b) series lengths of T=50 and 200 were taken when

it was assumed that the correlation between the disturbances of each pair of processes from

which the series were generated was 0. When it was assumed that the correlation between the

disturbances of each pair of processes from which the series were generated was 0.5, series

lengths of only T 1=50 was taken. One, two and five-step-ahead forecasts were obtained for

each series fitted with their own autoregressive models as well as for each series fitted with the

relevant pooled autoregressive model. Each time the models were fitted to T-h (h=1,2,5)

observations for the individual series and to  m(T-h) observations for pooled series, (m=2,8).

The mean square forecast error for both the pooled and individual models were determined for

the h out of sample values. The Akaike's (AIC) and  the Schwarz's Bayesian (BIC) criteria were

used to select the order of the AR model.  One thousand simulations were carried out for each

series length, selection criterion and h (1,2 5) step ahead forecast, for each of stages (a) and (b).

Average mean square forecast error were determined for the series in each group, when the

series were fitted with their own AR models as well as with the relevant pooled AR model.

95% prediction intervals were also obtained for the forecasts and the average number of times

this interval contained the true value was observed for each group.

                                                       
1 For series length T=200, the simulations were unmanageable because of restrictions on the work space
requirements of the computer program.
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4.2 Discussion

For both uncorrelated and correlated series, it can be seen from Tables 1, 2, 3 and 4, for stage

(a), and from Tables 5, 6 and 7 for stage (b) that the group average mean square forecast error

is always smaller when the series were fitted with the pooled model  than when the series were

fitted with their own models. In most cases the percentage decrease in average mean square

forecast error is greatest for the one-step ahead forecasts. The percentage decrease in average

mean square forecast error in all cases is greater when the series in the group were generated

from  the MA(1)  process with θ = 0.9 than from the AR(1) process with φ = 0.5.

< INSERT  TABLES 1, 2, 3, 4, 5, 6, 7 HERE>

For both stages (a) and (b), the percentage decrease in the group average mean square

forecast error between the individual and pooled models is greater for series length 50 than for

series length 200. Comparing the results for the  uncorrelated and correlated series in Table 1

with 5, 2 with 6 and  3 with 7, it can be seen that the percentage decrease in the group average

mean square forecast error between the individual and pooled models are fairly similar.

Comparing the results of Tables 1, 2 and 3 with that of Tables 5, 6 and 7 respectively, it

is clear that in almost all cases the percentage decrease in the group average mean square

forecast error is greater for groups with eight series each,  than for groups with two series each.

These observations are consistent with the theoretical results in Section 3 even though the

autoregressive models that were fitted to the individual series and to the pooled series within a

group were not necessarily of the same order.

It can also be seen that in almost all cases lower group average mean square forecast

errors were obtained for the pooled model than for the corresponding individual model when

the AIC was used to select the order of the autoregressive model fitted to the series.
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From Tables 8, 9, 10 and 11 for stage (a) and from Tables 12, 13 and 14 for stage (b), it

can be seen that in almost all cases,  the average number of times the 95% prediction interval in

each group contains the true value of the forecast is almost always greater when the pooled

model was fitted to the series.  However, it is mostly for the one-step-ahead forecasts, for the

pooled model cases, that the true value of the forecast lies in the prediction interval close to

95% of the time.

< INSERT  TABLES 8,9,10,11,12,13,14 HERE>

5. Application

Consider the time series of the number of dwelling units financed by all lenders (banks and

other institutions) in the states and territories of Australia from January 1978 to March 1998.

Clearly these series are related since they are all influenced by the same economic factors. The

natural logarithm transformation of each series is shown in Figure 1 from where it is clear the

all these series2 are non-stationary.  Some series appear to have fairly similar patterns.

However one cannot clearly distinguish how similar or how different these patterns are.  First

differencing of each of these series appeared to render them stationary. The algorithm of

clustering procedure of Maharaj (1997) was then applied to these differenced series.

<INSERT FIGURE 1 HERE>

When the level of significance was set at 5% the algorithm produced the following

clusters : (NSW, NT), (OLD, SA, WA), (VIC, ACT) and (TAS). Graphs of the undifferenced

series for each of the three clusters are given in Figures 2 - 4, from where it is quite clear that

the patterns of the series from each cluster are similar.  However it can be seen from these

figures that the series from a particular cluster are not necessarily on the same level. The reason

for this is that while the test of hypothesis on which the clustering algorithm is based

differentiates between stochastic nature of series it does not differentiate between their

corresponding deterministic nature. Hence it is possible for series at different levels but similar

                                                       
2 ACT:Australian Capital Territory,  NSW:New South Wales,  NT:Northern Territory, QLD:Queensland,
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patterns to cluster together.  However this in no way affects any further analysis of the series in

<INSERT FIGURES 2- 4 HERE>

each cluster. For example, forecasts of the original series in a particular cluster will be obtained

by reversing the operation of differencing and any other transformation on the stationary series.

The standardised first difference of the logarithm of each the series excluding the March

1998 value, in each of the clusters (NSW, NT), (QLD, SA, WA), (VIC, ACT), were pooled

together and fitted with the relevant AR(k) model. The residual correlations between the series

in each cluster is given in Table 15, from where it is clear that the series are related.

<INSERT TABLE 15 HERE>

 The forecasts from the pooled and individual models, percentage decrease in the mean square

forecast error between and individual and pooled models of each of the series as well as the

percentage decrease in group average mean square forecast error between the pooled and

individual models for the one-step-ahead forecasts, (that is for March 1998) are given in Table

16. These results were obtained when the BIC was used to select  k. Similar results were also

obtained when the AIC  was used to select k. With the exception of series TAS (which forms its

own cluster), NT and ACT,  all the other series have smaller mean square forecast errors for the

pooled model than for the individual model. On average the mean square forecast error of each

group is smaller for the pooled than for the individual models.

<INSERT TABLE 16 HERE>

Forecasts were then obtained for the original series in each cluster. The results which are

given in Table 17 show that fitting the pooled model to the standardised first difference of the

logarithm of the series, produced on average more accurate one-step ahead forecasts than when

the series are fitted with their own models.

<INSERT TABLE 17 HERE>

Two and five-step ahead  forecasts were also obtained, but the results showed that in

these cases there was no advantage in pooling the series in the clusters.

                                                                                                                                                                 
SA:South Australian, VIC:Victoria, WA:Western Australia,   Source: Australian Bureau of Statistics
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6. Concluding Remarks

From both the theoretical and simulated results, it is clear that fitting a pooled model to all

series in a particular cluster produces more accurate forecasts than when the series are fitted

with their own models. The outcome of the application shows that the results are generally

consistent with the theory.

So while there isn't overwhelming evidence to support the use of a pooled model over

that of an individual model for forecasting, it would appear that it is worthwhile giving some

consideration to forecasting each series in a cluster from the pooled model.
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Table 1: Average mean square forecast error: 2 groups of 2 series, T=50, Corr=0

Generating
Process

Model
Selection
Criterion

Fitted
Model Type

h-step
1 2 5

AR(1) BIC Individual 0.8723 0.9739 1.0011
φ =0.5 Pooled 0.8415 0.9153 0.9810

% decrease
in MSFE

4 6 2

AIC Individual 0.9877 1.1052 1.1220
Pooled 0.8890 0.9793 1.0244
% decrease
in MSFE

10 11 9

MA(1) BIC Individual 0.6680 0.9291 1.0657
θ =0.9 Pooled 0.6035 0.8603 0.9906

% decrease
in MSFE

10 7 7

AIC Individual 0.6618 0.9889 1.1378
Pooled 0.5794 0.8670 1.0074
% decrease
in MSFE

12 12 11

Table 8: Average number of times the 95% prediction interval of the forecast contains
   the true value per group: 2 groups of 2 series, T=50, Corr=0

Generating
Process

Model
Selection
Criterion

Fitted Model
Type

h-step
1 2 5

AR(1)  φ =0.5 BIC Individual 922 967 944 970    949   955    952   951
Pooled 932 977    958 976    955   960    952   952

AIC Individual 932 977    958 976    955   960    952   952
Pooled 933 973    957 981    959   965    962   963

MA(1) θ =0.9 BIC Individual 921 986    958 993    971   960    969   973
Pooled 946 996    969 997    979   971    974   981

AIC Individual 915 987    958 995    974   966    968   974
Pooled 954 997    975 996    984   978    981   983
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Table 2: Average Mean Square Forecast Error: 2 Groups of 2 Series, T=200, Corr=0

Generating
Process

Model
Selection
Criterion

Fitted
Model Type

h-step
1 2 5

AR(1) BIC Individual 0.7687 0.8541 0.9201
φ =0.5 Pooled 0.7679 0.8523 0.9169

% decrease
in MSFE

0.1 0.2 0.3

AIC Individual 0.7968 0.8759 0.9486
Pooled 0.7851 0.8698 0.9383
% decrease
in MSFE

2 0.7 1

MA(1) BIC Individual 0.5752 0.8328 0.9509
θ =0.9 Pooled 0.5590 0.8231 0.9355

% decrease
in MSFE

3 1 2

AIC Individual 0.5621 0.8338 0.9505
Pooled 0.5501 0.8123 0.9336
% decrease
in MSFE

2 3 2

Table 9: Average number of times the 95% prediction interval of the forecast contains
     the true value per group: 2 groups of 2 series, T=200, Corr=0

Generating
Process

Model
Selection
Criterion

Fitted Model
Type

h-step
1 2 5

AR(1)  φ =0.5 BIC Individual 943 985    963 983    972    974    970    969
Pooled 944 986    964 985    971    974    968    969

AIC Individual 939 983    963 986    974    972    971    974
Pooled 944 985    966 987    977    974    975    975

MA(1) θ =0.9 BIC Individual 949 998    983 998    981    983    984    989
Pooled 951 999    987 999    984    985    987    989

AIC Individual 944 999    984 999    982    987    988    991
Pooled 952 999    989 999    986    987    988    990
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Table 3: Average mean square forecast error: 2 groups of 2 series, T=50, Corr=0.5

Generating
Process

Model
Selection
Criterion

Fitted Model
Type

h-step
1 2 5

AR(1) BIC Individual 0.8407 0.9827 0.9962
φ =0.5 Pooled 0.8054 0.9292 0.9537

% decrease in
MSFE

4 5 4

AIC Individual 0.9714 1.1017 1.1151
Pooled 0.8656 1.0032 1.0115
% decrease in
MSFE

11 9 9

MA(1) BIC Individual 0.6496 0.9489 1.0389
θ =0.9 Pooled 0.5979 0.8777 0.9842

% decrease in
MSFE

8 8 5

AIC Individual 0.6682 1.0063 1.1271
Pooled 0.5668 0.8880 1.0085
% decrease in
MSFE

15 12 11

Table 10: Average number of times the 95% prediction interval of the forecast contains
   the true value per group: 2 groups of 2 series, T=50, Corr=0.5

Generating
Process

Model
Selection
Criterion

Fitted
Model
Type

h-step

1 2 5
AR(1) φ =0.5 BIC Individual 933 969   940 975   956   954   953   950

Pooled 944 979   950 980   961   966   957   951
AIC Individual 904 956   923 986   952   956   953   943

Pooled 942 975   947 980   963   970   968   959

MA(1) θ =0.9 BIC Individual 918 987   951 993   975   972   974   974
Pooled 949 995   974 994   982   979   984   984

AIC Individual 915 990   953 993   974   975   972   975
Pooled 956 996   976 996   984    987   986   985
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Table 4: Average Mean Square Forecast Error: 2 Groups of 2 Series, T=200, Corr=0.5

Generating
Process

Model
Selection
Criterion

Fitted
Model Type

h-step
1 2 5

AR(1) BIC Individual 0.8036 0.8443 0.9764
φ =0.5 Pooled 0.8034 0.8414 0.9741

% decrease
in MSFE

0 0 0

AIC Individual 0.8294 0.8682 1.0009
Pooled 0.8202 0.8550 0.9897
% decrease
in MSFE

1 2 1

MA(1) BIC Individual 0.6219 0.6219 0.9540
θ =0.9 Pooled 0.5963 0.5693 0.9407

% decrease
in MSFE

4 4 1

AIC Individual 0.5953 0.8429 0.9627
Pooled 0.5765 0.8166 0.9435
% decrease
in MSFE

3 3 2

Table 11: Average number of times the 95% prediction interval of the forecast contains
     the true value per group: 2 groups of 2 series, T=200, Corr=0.5

Generating
Process

Model
Selection
Criterion

Fitted
Model Type

h-step
1 2 5

AR(1) φ =0.5 BIC Individual 945   977      972 984   972   958   954   959
Pooled 945   980      974 983   974   960   957   962

AIC Individual 936   977      961 986   975   965   959   966
Pooled 942   981      971 987   977   967   964   969

MA(1)  θ =0.9 BIC Individual 940   999      980 999   988   985   987    987
Pooled 945 1000      985 999   990   989   988   989

AIC Individual 942 1000    1000 999   988   985   987   990
Pooled 949   981      986 999   993   989   991   992



22

Table 5: Average mean square forecast error: 2 groups of 8 series, T=50, Corr =0

Generating
Process

Model
Selection
Criterion

Fitted
Model Type

h-step
1 2 5

AR(1) BIC Individual 0.9144 0.9561 1.0110
φ =0.5 Pooled 0.8722 0.9130 0.9808

% decrease
in MSFE

5 5 3

AIC Individual 1.0389 1.0792 1.1448
Pooled 0.9016 0.9302 1.0004
% decrease
in MSFE

13 14 13

MA(1) BIC Individual 0.6744 0.9721 1.0505
θ =0.9 Pooled 0.5617 0.8500 0.9515

% decrease
in MSFE

17 13 9

AIC Individual 0.6764 1.0318 1.1355
Pooled 0.5498 0.8493 0.9536
% decrease
in MSFE

19 18 16

Table 12: Average number of times the 95% prediction interval of the forecast contains
     the true value per group: 2 groups of 8 series, T=50, Corr=0

Generating
Process

Model
Selection
Criterion

Fitted
Model Type

h-step
1 2 5

AR(1) φ =0.5 BIC Individual 915 964   948 970    953    953    952    952
Pooled 931 974   961 978    961    961    960    956

AIC Individual 894 949    932 968    950    951    952    951
Pooled 946 981    970 986    976    976    972    970

MA(1) θ =0.9 BIC Individual 922 988   955 992    971    972    972    975
Pooled 963 997   980 997    986    985    984    984

AIC Individual 918 988    956 993    975    973    972    974
Pooled 970 998    985 998    989    989    987    990
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Table 6: Average Mean Square Forecast Error: 2 Groups of 8 Series, T=200, Corr=0

Generating
Process

Model
Selection
Criterion

Fitted
Model
Type h-step

1 2 5
AR(1) BIC Individual 0.7543 0.8653 0.9456
φ =0.5 Pooled 0.7507 0.8623 0.9451

% decrease
in MSFE

0.5 0.3 0.05

AIC Individual 0.7804 0.8911 0.9729
Pooled 0.7614 0.8729 0.9548
% decrease
in MSFE

2 2 2

MA(1) BIC Individual 0.5766 0.8017 0.9564
θ =0.9 Pooled 0.5423 0.1195 0.9316

% decrease
in MSFE

6 4 3

AIC Individual 0.5577 0.8103 0.9608
Pooled 0.5388 0.7776 0.9606
% decrease
in MSFE

3 4 3

Table 13: Average number of times the 95% prediction interval of the forecast contains
    the true value per group: 2 groups of 8 series, T=200, Corr=0

Generating
Process

Model
Selection
Criterion

Fitted
Model Type

h-step
1 2 5

AR(1)  φ =0.5 BIC Individual 947 981    966 982    967    970    966    967
Pooled 948 980    967 982    970    970    967    970

AIC Individual 942 978    963 982    970    972    970    971
Pooled 947 981    969 988    978    977    975    978

MA(1)  θ =0.9 BIC Individual 950 998    987 998    985    985    989    988
Pooled 961 999    992 999    988    989    991    991

AIC Individual 948 998    987 998    985    986    989    989
Pooled 962 999    992 999    989    989    991    992
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Table 7: Average mean square forecast error: 2 groups of 8 series, T=50, Corr =0.5

Generating
Process

Model
Selection
Criterion

Fitted
Model Type

h-step
1 2 5

AR(1) BIC Individual 0.9144 0.9561 1.0110
φ =0.5 Pooled 0.8594 0.9056 0.9746

% decrease
in MSFE

6 5 4

AIC Individual 1.0389 1.0792 1.1448
Pooled 0.8812 0.9187 0.9904
% decrease
in MSFE

15 15 13

MA(1) BIC Individual 0.6744 0.9720 1.0505
θ =0.9 Pooled 0.5425 0.8400 0.9441

% decrease
in MSFE

20 14 10

AIC Individual 0.6764 1.0318 1.1358
Pooled 0.5171 0.8362 0.9448
% decrease
in MSFE

24 19 17

Table 14: Average number of times the 95% prediction interval of the forecast contains
     the true value per group: 2 groups of 8 series, T=50, Corr=0.5

Generating
Process

Model
Selection
Criterion

Fitted
Model Type

h-step
1 2 5

AR(1) φ =0.5 BIC Individual 915 964   947 969   952   952   952   951
Pooled 934 976   965 979   964   962   960   957

AIC Individual 893 984   931 967   950   950   952   951
Pooled 948 983   975 988   979   976   974   974

MA(1) θ =0.9 BIC Individual 922 987   954 991   971   971   971   974
Pooled 964 998   986 998   990   988   989   990

AIC Individual 918 988   954 993   974   972   972   973
Pooled 976 999   991 999   993   991   992   993
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Table 15: Residual correlations between series in each cluster

Cluster Correlation
1  NSW, NT 0.4854
2  QLD, WA 0.7209
    QLD, SA 0.7333
    WA, SA 0.6964
3  VIC, ACT 0.5844

Table 16:  Forecast statistics for March 1998 of the standardised first difference of the
                   logarithm of the series

Actual value of the
standardised first
difference of the log of
original series

Forecast from
individual model

Forecast from
pooled model

% Decrease in MSFE
between individual and
pooled models

NSW -0.4205 0.3923   0.1699   47
VIC -0.1038 0.2789   0.1977   38
QLD -0.1845 0.1721          -0.0149   77
SA -0.4554 0.4485 -0.0315   78
WA -0.1429 0.2838 -0.0804   98
TAS 0.0372 0.2483  0.2483     0
NT -0.0967 0.1782  0.1825  -  3
ACT 0.5477 0.4251 0.4190  -10

Group %  Decrease in the group average MSFE between the
individual and pooled models

(NSW, NT) 42
(QLD,SA,WA) 81
(VIC,ACT) 33

Table 17  Foreecast statistics for March 1998 of the original series

Actual value of original
series

Forecast from
individual
model

Forecast from
pooled model

% Decrease in MSFE
between individual and
pooled models

NSW 14048         12322       12772            45
VIC 10147           9584         9701            37
QLD   6568           6214         6397            77
SA   3321           2925         3129            77
WA   5491           5154         5440            98
TAS    393             819           819              0
NT    682             366           366              0
ACT    848             694           695              1
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Group %  Decrease in the group average MSFE between the
individual and pooled models

(NSW, NT) 44
(QLD,WA,SA) 83
(VIC, ACT) 35

Figure 1  Number of dwelling units financed from January 1978 to
             March 1998 for all states and territories

Figure 2  Number of dwelling units financed from January1978 to March
                 1998 for New South Wales and the Northern Territory
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Figure 3    Number of dwelling units financed from January 1978 to March 1998
                   for Queensland, South Australia and Western Australia

Figure 4   Number of dwelling units financed from January 1978 to March 1998
                   for Victoria, Australian  Capital Territory and Tasmania
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