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Abstract

This paper presents a new approximation to the exact sampling

distribution of the instrumental variables estimator in simultaneous

equations models. It differs from many of the approximations cur-

rently available, Edgeworth expansions for example, in that it is specif-

ically designed to work well when the concentration parameter is small.

The approximation is remarkable for the simplicity of its final form,

for its accuracy and for its ability to capture those stylized facts that

characterize lack of identification and weak instrument scenarios. The

development leading to the approximation is also novel in that it in-

troduces techniques of some independent interest not seen in this lit-

erature hitherto.     ( JEL  CLASSIFICATION   C16, C30 )

Keywords: concentration parameter, IV estimator, simultaneous equations

model, t approximation, weak instruments.
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1 Introduction

In this paper we present a new approximation to the exact sampling distri-

bution of the instrumental variables (IV) estimator of the coefficients on the

endogenous regressors in a single equation from a linear system of simultane-

ous equations. More specifically we examine the properties of the two-stage

least squares estimator and, as will be seen, the approximation we obtain

is remarkable both for its accuracy and for its ability to capture many of

the stylized facts that constitute the current state of knowledge. Manipula-

tion of our results provides simple demonstrations of many of the qualitative

characteristics that have been obtained under the different paradigms used

to analyze weak identification, the related issue of weak instruments, and

simultaneous equations models more generally.

Recent years have seen much exploration of the consequences of weak

identification and weak instruments for estimation and inference in simul-

taneous equations models. The literature exploring this model reveals a

variety of perspectives from which the problem has been considered, ranging

from exact finite sample theory for totally or partially unidentified models

(Choi & Phillips, 1992, Nelson & Startz, 1990a,b, Phillips, 1989), to local-

to-zero asymptotics for identified (but asymptotically unidentified) models

(Staiger & Stock, 1997, Startz, Nelson, & Zivot, 2000, Wang & Zivot, 1998,

Zivot, Startz, & Nelson, 1998), through to the many-instrument asymptotics

of (Bekker, 1994).1 More recently a body of literature has developed that

seeks to combine the many-instrument asymptotics of Bekker (1994) with the

local-to-zero asymptotics of Staiger & Stock (1997), resulting in many-weak-

instruments asymptotics; see, for example, Chao & Swanson (2002, 2003)

and Stock & Yogo (2003). These asymptotic approaches differ essentially in

the structure of the sequence in which they nest the model of interest and,

although the exact details may differ with the approach, certain stylized facts

emerge from these studies as characterizing the sampling behaviour of IV es-

timators; including (i) sampling distributions that are complicated mixtures

of Normal distributions, typically asymmetric about the parameter of inter-

1Given the close relationship between weak instruments and a lack of identification,
this literature can be traced back through to the work of inter alia Sargan (1983), Sims
(1980) and Basmann (1963). For a more comprehensive treatment of the literature in this
area see the survey by Stock, Wright, & Yogo (2002).
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est, and (ii) non-standard asymptotic results with non-degenerate limiting

distributions.

At the risk of getting ahead of ourselves, we find that certain functions

of the IV estimator can be approximated by various t-distributions.2 Our

approximation provides a framework that goes some way towards unifying

the qualitatively similar but technically distinct results of Staiger & Stock

(1997), Wang & Zivot (1998), Zivot et al. (1998) and Startz et al. (2000),

on the one hand, and Nelson & Startz (1990b), Phillips (1989) and Choi &

Phillips (1992) on the other. For example, t-distributions can be thought of

as mixed-Normal distributions, a feature of many existing results. Similarly,

the asymptotic normality implied by the many-instrument asymptotics of

Bekker (1994) can also be obtained as a special case. Quite apart from its

simplicity and its explanatory power, the approximation is of independent

interest in view of the novelty of its development which, as far as we are

aware, has not appeared in the econometrics literature heretofore.

The remainder of the paper has the following structure. In the next sec-

tion we will introduce the model and establish notation whilst considering

a canonical transformation. Section 3 presents the main theoretical devel-

opments of the paper. In that section we explore a skewed approximation

to the non-central Wishart distribution that is based on the central Wishart

distribution. This skewed approximation then forms the basis of our ap-

proximation to the distribution of the IV estimator. In Section 4 we relate

the magnitude of the concentration parameter to the notion of instrument

relevance or, conversely, weakness and examine how our results are related

to various features that have been observed under different scenarios used

to analyze weak identification/instruments. The quality of the approxima-

tions is then explored in Section 5. Section 6 presents some brief concluding

remarks and discusses the practical implementation of the approximating

distribution.

2It has been known for some time that the distribution of the IV estimator is approxi-
mately multivariate - t; see, for example, Phillips (1980, p.870). However, the approxima-
tions presented here involve different parameterizations and, as we show below, they only
reduce to existing results in certain special cases.
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2 Background

Consider the structural model

y = Yβ + Z1γ + u , u ∼ N(0, σ2
uIT ) (1)

where the endogenous matrix variables y and Y are T ×1 and T ×n, respec-

tively, the matrix of explanatory variables Z1 is T ×K1, and u denotes the

T×1 vector of structural disturbances.3 The vectors of structural coefficients

β and γ are n× 1 and K1× 1, respectively. The corresponding reduced form

model is

[y,Y] = [Z1,Z2]

[
π1 Π1

π2 Π2

]
+ [v,V] . (2)

Here the rows of the T×(n+1) matrix [v,V] are independent normal vectors

with zero mean and common (n + 1)× (n + 1) covariance matrix

Ω =

[
ω11 ω12

ω21 Ω22

]
, (3)

ω11 scalar, so that [v,V] ∼ N(0,Ω ⊗ IT ),4 where [v,V] is partitioned con-

formably with [y,Y]. Note that, by implication, the structural variance

σ2
u = [1,−β′]Ω[1,−β′]′. Defining the T × K matrix Z = [Z1,Z2] to be

of full column rank, where Z2 denotes the matrix of K2 exogenous regres-

sors excluded from equation (1) and where K = K1 + K2, it follows that

[y,Y] ∼ N(ZΠ,Ω ⊗ IT ). The components of the reduced form coefficient

matrix Π — namely π1, Π1, π2 and Π2 — are of dimension K1× 1, K1×n,

K2 × 1 and K2 × n, respectively.

We are interested in the IV estimator

β̂ = (Y′(PZ −PZ1)Y)−1Y′(PZ −PZ1)y, (4)

where for any p× q matrix A of full column rank the notation PA and RA

denotes the symmetric, idempotent matrices A(A′A)−1A′ and RA = Ip −
PA, of rank q and p−q, respectively. The T×T matrix PZ−PZ1 = RZ1−RZ

has rank ν = K2 ≥ n and a spectral decomposition implies that there exists

3As we shall discuss below, although convenient for expository purposes, the normality
assumption is not critical to the development of subsequent results.

4The notation X ∼ N(M,Ω) should be read as vec(X) ∼ N(vec(M),Ω).
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a T ×ν matrix C = RZ1Z
′
2(Z

′
2RZ1Z2)

−1/2 such that PZ−PZ1 = CC′, where

C′C = Iν and C′Z1 = 0. If we pre-multiply by C′, so that [ỹ, Ỹ] = C′[y,Y]

and Z̃2 = C′Z2, then the model becomes

ỹ = Ỹβ + ũ , ũ ∼ N(0, σ2
uIν)

[ỹ, Ỹ] = Z̃2[π2,Π2] + [ṽ, Ṽ] , [ṽ, Ṽ] ∼ N(0,Ω⊗ Iν)

where ũ = C′u and [ṽ, Ṽ] = C′[v,V].

Henceforth we will discuss the transformed system, unless explicitly stated

otherwise, and for notational convenience we will drop the tilde and revert

to generic symbolism for the variables. Thus the IV estimator is now

β̂ = (Y′Y)−1Y′y , (4a)

where [y,Y] ∼ N([m,M],Ω⊗ Iν) with [m,M] = Z2[π2,Π2] and

S = [y,Y]′[y,Y] ∼ Wn+1(ν,Ω, νΩ− 1
2∆Ω− 1

2 ) , (5)

where ∆ = ν−1[m,M]′[m,M] and Ω = Ω
1
2Ω

1
2 , with Ω

1
2 the symmetric

square root of Ω.5 That is, S has a non-central Wishart distribution with

ν degrees of freedom, covariance matrix Ω and non-centrality parameter

νΩ− 1
2∆Ω− 1

2 .6 Further, we have the usual compatibility condition

π2 = Π2β ,

and so

∆ =

[
δ11 δ12

δ21 ∆22

]
= ν−1[β, In]′Π′

2Z
′
2Z2Π2[β, In] ,

5If the spectral decomposition of Ω is H′ΩH = D, where H is an orthogonal matrix
of characteristic vectors of Ω and D = diag[λ1(Ω), . . . , λn+1(Ω)] is the diagonal matrix of
characteristic roots, then Ω

1
2 = HD

1
2 H′ where D

1
2 = diag[λ1(Ω)

1
2 , . . . , λn+1(Ω)

1
2 ]; see,

for example, Searle (1982, Section 11.6).
6In Footnote 3 we made comment about the normality assumption not being crucial to

subsequent developments. We address this point here. First, from an exact distribution
perspective, note that the normality assumption can be relaxed because S will have a
Wishart distribution for any elliptically symmetric distribution on [y Y]. Second, taking a
different perspective, if we briefly revert to [ỹ, Ỹ] to denote the variables in our transformed
space, observe that each of their elements are linear combinations of the original variables
[y Y]. Under reasonably general conditions it follows that the elements of [ỹ, Ỹ] will be
approximately normally distributed and so S will be approximately Wishart. Provided
that this latter approximation is not too coarse, our results will carry over without change.
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where the partition of ∆ occurs after the first row and column. All subse-

quent partitions of matrices will be conformable with that of Ω and ∆ unless

stated otherwise.

Following standard practice we will use Γ22 = νΩ
− 1

2
22 ∆22(Ω

− 1
2

22 )′ to denote

the concentration parameter. We will refer to

µ2 = tr{Γ22} = ν × tr{Ω−1
22 ∆22}

as the concentration coefficient. Noting that the Euclidean norm of A is

‖A‖ =
√

tr{A′A}, we see that the concentration coefficient is simply a nat-

ural measure of the magnitude of the concentration parameter. The im-

portance of the magnitude of the concentration parameter for the sampling

behaviour of β̂ has been well documented in the literature, see, inter alia,

Mariano (1982, Sections 3 and 4) and Phillips (1983, Section 3.6). Rothen-

berg (1984) discusses Edgeworth type expansions of the distribution of the

IV estimator, as in Sargan & Mikhail (1971) and Anderson & Sawa (1973,

1979), and points out that the resulting approximations can be poor if the

concentration parameter is not large. One of the main contributions of this

paper is to provide an approximation to the distribution of β̂ that is designed

to work well when Γ22 is small.

A major stumbling block in the development of exact distribution theory

for the IV estimator in (4), or equivalently (4a), is the implied non-centrality

in the distribution of S. Our approximation, which is developed in a series

of results presented in the following section, exploits a technique used by

Steyn & Roux (1972) to approximate the non-central Wishart distribution

by a central Wishart distribution when the non-centrality parameter ∆ is

small. Once in the central case it proves to be relatively straight-forward to

derive a corresponding approximation to the sampling distribution of β̂. To

relate the magnitude of ∆ to the concentration parameter note that ‖∆‖ ≤
(‖β‖2 + n)‖∆22‖ and ‖∆22‖ ≤ ν−1‖Ω

1
2
22‖2‖Z2Π2(Ω

− 1
2

22 )′‖2 = ν−1‖Ω
1
2
22‖2µ2.

If 0 < Ω < ∞, meaning that the characteristic values of Ω satisfy the

inequalities 0 < λmin(Ω) ≤ λmax(Ω) < ∞, which we can suppose without loss

of generality, then 0 < ‖Ω
1
2
22‖2 < ∞ and small values of the concentration

coefficient µ2 imply that ∆ must also be small. Hence our approximation is

applicable under circumstances that differ significantly from those for which

standard approximations are designed and is complementary to them.
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3 The Approximation

In essence our approximation is obtained by perturbing the covariance matrix

of a central Wishart variate to match moments (to some order of accuracy)

with the non-central Wishart distribution of interest. In order to make these

ideas concrete we begin by presenting a differential equation for the char-

acteristic function of S. Steyn & Roux (1972) originally gave an equivalent

result in terms of the moment generating function of a non-central Wishart

variate; they established the result by using the representation of S in terms

of Normal vectors.

Lemma 1. Let S ∼ Wn+1(ν,Ω, νΩ− 1
2∆Ω− 1

2 ), and let ΦS(T) denote the

characteristic function of S, so that

Φ ≡ ΦS(T) = |Ψ|−ν/2 exp
{
tr

(
iνΩTΨ−1Ω−1∆

)}
,

where i2 = −1, Ψ = In+1 − 2iΩT, and T = {τjk}, with τjk = 1
2
(1 + δjk)ηjk,

ηjk = ηkj, j, k = 1, . . . , n + 1, and δjk is Kronecker’s delta,

δjk =

1, if j = k,

0 otherwise.

Then Φ satisfies the differential equation

∂Φ

∂H
= iν

[
Ψ−1Ω + Ψ−1∆(Ψ−1)′

]
Φ , (6)

where ∂Φ/∂H = {∂Φ/∂ηjk}, j, k = 1, . . . , n + 1.

Proof. The characteristic function Φ is a rearrangement of that given in

Gupta & Nagar (2000, Theorem 3.5.3). The differential equation (6) is given

in Gupta & Nagar (2000, proof of Theorem 3.5.4).

Corollary 1. If S ∼ Wn+1(ν,Ω) then equation (6) reduces to

∂Φ

∂H
= iν(In+1 − 2iΩT)−1ΩΦ . (7)

We now have the following approximation to the non-central Wishart

distribution.
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Theorem 1. Let W ∼ Wn+1(ν,Ω, νΩ− 1
2∆Ω− 1

2 ), where ‖Ω‖ = O(1) and

‖∆‖ = o(1), then f(W) = f(W̃) + O(‖∆‖), where W̃ ∼ Wn+1(ν,Σ) with

Σ = Ω + ∆ and f(·) generically denoting the relevant density functions.

Proof. Our proof parallels that of Steyn & Roux (1972, Section 4) — see

also Gupta & Nagar (2000, pp.125–6) — although we explicitly control the

error of the approximation by reference to the order of magnitude of ‖∆‖.
If W ∼ Wn+1(ν,Ω, νΩ− 1

2∆Ω− 1
2 ) then E[W] = ν(Ω + ∆). Similarly, if

W̃ ∼ Wn+1(ν,Σ) then E[W̃] = νΣ. So a method of moments approximation

suggests choosing Σ = Ω+∆. With this motivation, suppose that we replace

Ω in equation (7) by Σ. This yields

∂Φ

∂H
= iν [In+1 − 2i(Ω + ∆)T]−1 (Ω + ∆)Φ

= iν[In+1 + 2i(Ω + ∆)T + {2i(Ω + ∆)T}2 + . . . ](Ω + ∆)Φ

= iν[Ψ−1 + Ψ−1(2i∆T)Ψ−1 + O(‖∆‖2)](Ω + ∆)Φ

= iν[Ψ−1Ω + Ψ−1∆
{
In+1 + 2iTΨ−1Ω

}
+ O(‖∆‖2)]Φ

= iν[Ψ−1Ω + Ψ−1∆(Ψ−1)′]Φ + O(‖∆‖2)

which is the same as equation (6) except for terms of order O(‖∆‖2). The

latter implies, via inversion of the characteristic function, that the approxi-

mating distribution is accurate to terms of order O(‖∆‖).

The significance of Theorem 1, for our purposes, is that it provides guid-

ance on the construction of a rather stronger result. Set G = [m,M] and

suppose that the ν × (n + 1) matrix N ∼ N(0, Iν(n+1)). Then, by definition,

W = Ω1/2(N + GΩ−1)′(N + GΩ−1)Ω1/2

∼ Wn+1(ν,Ω, νΩ− 1
2∆Ω− 1

2 ) .

Similarly, if Σ = Ω + ∆ then

W̃ = Σ1/2N′NΣ1/2 ∼ Wn+1(ν,Σ) .

From the definitions of W and W̃ it follows that

W = Ω1/2Σ−1/2W̃Σ−1/2Ω1/2 + Ω1/2N′GΩ−1/2

+ Ω−1/2G′NΩ1/2 + νΩ−1/2∆Ω−1/2 .
(8)
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The middle two terms on the right hand side of equation (8) are of order

Op(||G||), since ||AB|| ≤ ||A|| · ||B||, and the final term is of order O(||∆||).
This observation leads to the following result.

Theorem 2. If the matrix W ∼ Wn+1(ν,Ω, νΩ−1/2∆Ω−1/2), where 0 <

Ω < ∞ and ∆ = ν−1[m,M]′[m,M] with [m,M] = o(1), then there exists a

random matrix W̃, defined on the same probability space as W, such that

W = W̃ + Op(||[m,M]||) , (9)

where W̃ ∼ Wn+1(ν,Σ) with Σ = Ω + ∆.

Proof. Since ||∆|| ≤ ν−1||G||2 we can deduce from equation (8) that

W = Ω1/2Σ−1/2W̃Σ−1/2Ω1/2 + Op(||G||) (10)

where, we recall, G = [m,M]. To complete the proof note that a consequence

of Lemma (A.1) is that Ω1/2 = Σ1/2 + O(||∆|| 12 ) and therefore

Ω1/2Σ−1/2 = In+1 + O(||G||) , (11)

which when substituted into equation (10) yields, as required,

W = [In+1 + O(||G||)]W̃[In+1 + O(||G||)] + Op(||G||)

= W̃ + Op(||G||) .

Having reduced the problem to one involving a central Wishart distribu-

tion we are in a position to exploit the following result:

Lemma 2. Suppose that S ∼ Wn+1(ν,Σ). Partition

S =

[
S11 S12

S21 S22

]
and Σ =

[
Σ11 Σ12

Σ21 Σ22

]

conformably, with S22 p× p. If B = S−1
22 S21, then the density function of B

is

f(B) =
Γp

[
ν+n−p+1

2

]
πp(n−p+1)/2Γp

[
ν
2

] |Σ22|−v/2 |Σ11·2|−p/2

× |Σ−1
22 + (B− θ)Σ−1

11·2(B− θ)′|−(ν+n−p+1)/2, (12)
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where θ = Σ−1
22 Σ21 and Σ11·2 = Σ11 −Σ12Σ

−1
22 Σ21. That is, B has a matrix

variate t-distribution with ν−p+1 degrees of freedom and parameters θ, Σ22

and Σ11·2.

Proof. See Kshirsagar (1961, Section 4).7

We now explore the sampling behaviour of the IV estimator β̂ defined in

equation (4), or equivalently equation (4a).

Theorem 3. The estimator β̂ = β̃ + op(1) if [m,M] = o(1) and, by impli-

cation, β̂ converges in distribution to β̃ as ‖∆‖ → 0 where

f(β̃) =
Γ

[
ν+1
2

]
πn/2Γ

[
ν−n+1

2

] |Θ|1/2 [1 + (β̃ − θ)′Θ(β̃ − θ)]−(ν+1)/2 , (13)

with θ = Σ−1
22 σ21 and Θ = (σ11−σ12Σ

−1
22 σ21)

−1Σ22. That is, the distribution

of β̂ is approximately multivariate t with ν−n+1 degrees of freedom, location

parameter θ and scale parameter Θ−1. We shall write

β̂ ∼
a

tn(ν − n + 1, θ,Θ) .

Proof. Let S ∼ Wn+1(ν,Ω, νΩ− 1
2∆Ω− 1

2 ) be as defined in equation (5) and,

as previously, let Σ = Ω + ∆ and G = [m,M]. Partition

S =

[
s11 s12

s21 S22

]

such that s11 is scalar and S22 is n×n. Then β̂ = S−1
22 s21. Now, from Theorem

2 we know that there exists a S̃ ∼ Wn+1(ν,Σ) such that S = S̃ + Op(||G||).
Partitioning S̃ conformably with S, it follows that(

S̃0,22 + Op(||G||)
)

β̂ = s̃0,21 + Op(||G||) . (14)

From (14) we can deduce that β̂ = β̃ + Op(||G||) where β̃ = S̃−1
0,22s̃0,21. The

proof is completed by applying Lemma 2 (with p = n) and rearranging terms,

noting that Γn

(
ν+1
2

)
Γ

(
ν−n+1

2

)
= Γ

(
ν+1
2

)
Γn

(
ν
2

)
.

7A detailed description of the matrix variate t-distribution can be found in Gupta &
Nagar (2000, Chapter 4). An early study of this distribution appears in Dickey (1967).
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Theorem 3 is the key result of the paper and our subsequent results follow

directly from it. It is worth remarking that a t distribution can be thought of

as a mixed Gaussian distribution. Hence, although considerably simpler in

final form than the results of either Choi & Phillips (1992) or Staiger & Stock

(1997), Theorem 3 is qualitatively similar to both in that the distribution of

the IV estimator is approximated by a mixed Gaussian distribution. Some

simplification of both Theorem 3 and subsequent results is available if we

transform the coordinate space.

Corollary 2. Let

r = Θ1/2(β̂ − θ) (15)

then we have the following approximation to f(r), the density function of r:

f(r) ≈
Γ

[
ν+1
2

]
πn/2Γ

[
ν−n+1

2

] (1 + r′r)−(ν+1)/2 .

Proof. In equation (13) make the transformation (15), for which the Jacobian

of transformation is |Θ|1/2. The result follows immediately.

On the basis of Theorem 3 we can approximate the sampling distribution

of a fixed linear combination of the elements of β̂.

Theorem 4. For any fixed vector α

α′β̂ ∼
a

t1(ν − n + 1, ξ, κ2) ,

where ξ = α′θ and κ = (α′Θ−1α)−1/2 > 0. That is, writing η = α′β̂, we

have the following approximation to the density of η:

f(η) ≈
Γ

[
ν−n+2

2

]
π1/2Γ

[
ν−n+1

2

] κ [1 + κ2(η − ξ)2]−(ν−n+2)/2 .

Proof. The result follows directly from Theorem 3 using Slutsky’s theorem

and, for example, Gupta & Nagar (2000, Theorem 4.3.7).

Corollary 3. tα = κα′(β̂ − θ) has (approximately) a t-distribution with

ν − n + 1 degrees of freedom and approximate density function

f(tα) ≈
Γ

[
ν−n+2

2

]
π1/2Γ

[
ν−n+1

2

] (1 + t2α)−(ν−n+2)/2 .

10



Proof. Follows directly from Theorem 4 on making the simple transformation

tα = κ(η − ξ).

We have used ‖∆‖ to control our approximation error and it is clear

that the accuracy of the approximations is contingent on the closeness of ∆

to 0. Indeed, if ∆ = 0, for whatever reason, then our approximations are

exact results. In the next section we explore various circumstances where we

might expect ∆ to be small and examine the consequences for the sampling

behaviour of β̂. Note that, by assumption, T ≥ ν and so there is no conflict

inherent in allowing both these quantities to diverge, as is sometimes done

in what follows. Further, there need be no relationship between the rates

of divergence of ν and T , beyond the fact that the former is bounded from

above by the latter. Moreover, we can also allow for the possibility of T and

ν being small because such events obviously do not preclude ∆ being small.

4 Low Concentration — Weak Instrument —

Scenarios

In what follows we will classify any situation where µ2 is small as being one

involving the use of weak instruments. Since the literature lacks unanim-

ity on the appropriate paradigm for weak instruments we should, perhaps,

motivate this nomenclature, even though the debate is not germane to the

contributions of this paper. Consider the multivariate OLS regression of

the endogenous regressor Y on the instruments in Z2 and, following Hooper

(1959), let

r2 = ν−1tr{(Y′Y)−1Y′PZ2Y} .

The statistic r2 = 0 if Y and Z2 are orthogonal, r2 = 1 if there exists a

coefficient B such that Y = Z2B, and more generally r2

“can be naturally interpreted as that part of the total variance

of the jointly dependent variables that is accounted for by the

systematic part of the reduced form” (Hooper, op. cit., p. 250.)

Now, by way of analogy we have the result that

E[‖Y(Ω
− 1

2
22 )′‖2] = ν(tr{Ω− 1

2
22 ∆22(Ω

− 1
2

22 )′}+ n) = µ2 + νn .

11



Thus µ2 is proportional to the regression mean square in the regression of

Y(Ω
− 1

2
22 )′ on Z2(Ω

− 1
2

22 )′ and is the population counterpart of the explained

sum of squares in the definition of r2. Consequently µ2, as with r2/(1− r2),

may be interpreted as providing a measure of the signal-to-noise ratio in

the reduced form. Hence µ2 provides a natural measure of the strength of

the instruments and µ2 being small clearly delineates situations where the

instruments can be thought of as weak.

In order to further investigate different low concentration (small µ2) -

weak instrument scenarios we will assume that the original (untransformed)

exogenous variables satisfy the following conditions:

1. The matrix D−1
Z Z′ZD−1

Z is nonsingular for all T > K where D2
Z =

diag{Z′Z}, so DZ is a diagonal matrix whose nonzero elements equal

the square roots of the diagonal elements of Z′Z. Moreover, as T in-

creases the lim infT→∞ λmin{D−1
Z Z′ZDZ} > 0 a.s.

2. Let zt i denote the ti’th element of Z, t = 1, . . . , T , i = 1, . . . , K. Then

lim
T→∞

T∑
s=1

z2
s i = ∞ and lim

T→∞
(

T∑
s=1

z2
s i)

−1z2
t i = 0

a.s. for all i = 1, . . . , K and t = 1, . . . , T .

The first condition guarantees that the exogenous regressors are linearly in-

dependent. The second condition implies that the informational content of

each exogenous variable increases unboundedly as T increases whilst no sin-

gle observation can exert an undue influence on the overall sum of squares.

The significance of these conditions is that they ensure that any instrument

weakness associated with low concentration cannot be due to the use of re-

dundant instruments.

If we let ZD = ZD−1
Z then it is relatively straightforward to show that

P = PZ−PZ1 = PZD
−PZ1D

where Z1D = Z1D
−1
Z1

, D2
Z1

= diag{Z′
1Z1}, and

that, in an obvious notation,

∆22 = ν−1Π′
2DZ2 (Z′

2DPZ2D)DZ2Π2 .

Given that Z′
2DPZ2D is positive definite for all T it is plain that the proximity

of µ2, and therefore ∆, to zero depends on the size of ν and the re-scaled

12



reduced form coefficients DZ2Π2.

Suppose that Π2 = 0, the model is commonly said to be completely

unidentified. Then µ2 = 0, ∆ is null, and the above results are exact. In this

case the standardizing transformation of Corollary 2 reduces to

r = Ω1/2(β̂ −Ω−1
22 ω21)/ω, (16)

where ω2 = ω11 − ω12Ω
−1
22 ω21, which is exactly the transformation adopted

in the exact finite sample literature; see Phillips (1983, Section 3.3). In the

special case of n = 1, f(·) is the same density as that given by Phillips (1983,

equation 3.38).8

Examination of equation (15) when Π2 6= 0 makes it clear that the size of

∆ impinges upon both the scale and location of the approximating distribu-

tion. Looking first at the location of the approximation, equation (13) implies

that, to the order of our approximation, the distribution of β̂ is symmetric

about θ. It can be shown that

θ = Σ−1
22 σ21 = β + (Ω22 + ∆22)

−1(ω21 −Ω22β). (17)

Noting that the covariance between the structural and reduced form distur-

bances can be written

cov(vec[Ṽ], ũ) = γ ⊗ IT , where γ = (ω21 −Ω22β) ,

we see that the correlation parameter ρ = Ω
− 1

2
22 γ/σu is a measure of the

extent of simultaneity in the equation of interest. It is well-known that β̂

is unbiased for β in equation (1) if ρ = 0; see Hillier, Kinal, & Srivastava

(1984, p.190) or Mariano (1977, p.493). When ρ 6= 0, θ 6= β, and so the

(approximate) distribution of β̂ is centred at and symmetric about some

point other than β. That is, our approximation reflects the well known fact

that β̂ is asymmetrically distributed about β.

Rewriting equation (17) as

θ = β + (Ω
− 1

2
22 )′(In + ν−1Γ22)

−1ρσu ,

8As observed by Phillips (1982, Footnote 9, Section 3), β is not separately identified
when Π2 = 0, hence it is unnecessary to impose the additional restriction of β = 0 to
obtain this distribution, as was done in Phillips (1983). Throughout we implicitly assume
that ‖β‖ > 0.
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it can also be seen that (i) the direction of the bias in β̂ is the same as that

of ρ and that (ii) the extent to which ∆22 6= 0 will clearly have a substantial

effect on the magnitude of the bias, with bias a decreasing function of µ2 (see

Mariano, 1977, p.494).

The scale factor Θ = (σ11−σ12Σ
−1
22 σ21)

−1Σ22 is somewhat more difficult

to interpret. Note however from (17) that σ11 − σ12Σ
−1
22 σ21 equals

σ11 − θ′Σ22θ = σ11 − β′Σ22β − 2β′(ω21 −Ω22β)

−(ω21 −Ω22β)′Σ−1
22 (ω21 −Ω22β) (18)

and substituting from the relationship Σ = Ω + ∆ into σ11 and Σ22 and

simplifying, recognizing that δ11 = β′∆22β, we find that the first three terms

on the right hand side of (18) equal σ2
u. Similarly, some simple if somewhat

tedious algebra shows that the last term equals −σ2
uρ

′(In + ν−1Γ22)
−1ρ and

hence that

Θ =
Ω

1
2
22(In + ν−1Γ22)(Ω

1
2
22)

′

σ2
u(1− ρ′(In + ν−1Γ22)−1ρ)

.

Thus Θ is an increasing function of ∆22 and the greater is Θ the more

concentrated will be the approximating distribution of β̂ about θ, because

the variance of the distribution in Theorem 3 is (ν − n− 1)−1Θ−1. Thus we

find that the bias and dispersion of β̂ are decreasing functions of our measure

µ2.

Now suppose that Π2 6= 0 but is local to zero as T increases, which

for ν given we define to mean that ‖DZ2Π2‖ → 0 as T → ∞. Then our

limiting distribution leads to the conclusion that the IV estimator is incon-

sistent, in accord with the results of Staiger & Stock (1997). The restriction

‖DZ2Π2‖ → 0 as T →∞ implies that the reduced form coefficients Π2 must

decline to zero faster than the growth rate in the instruments. If we also

allow the number of instruments ν to grow with sample size then, noting

that (ν − n− 1)−1Θ−1 → 0 as ν →∞, we see from equation (17) that

plimT→∞(β̂ − β) = lim
T→∞

(Ω
− 1

2
22 )′(In + ν−1Γ22)

−1ρσu = (Ω
− 1

2
22 )′ρσu . (19)

Thus the IV estimator now converges to a non-random limit. Notice that

the right hand side of (19) equals the probability limit of the OLS estimation

error in the totally unidentified case, cf. Zivot et al. (1998). The IV estimator
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is therefore still inconsistent. These latter results are in line with the findings

of Chao & Swanson (2002, 2003).

Consideration of the case ν → ∞ corresponds to the many-instrument

asymptotics of Bekker (1994). Bekker’s arguments yield Gaussian approxi-

mations to the sampling distribution of β̂, as do the developments in Chao

& Swanson (2002, 2003), and Gaussianity is of course compatible with our

results since as ν → ∞ our approximating t-distribution tends to a Normal

distribution. In contrast to the situation considered here, however, within

the Bekker (1994) framework the reduced form model (2) is allowed to ex-

pand at the same rate as the sample size while holding the structural form

model (1) fixed, so (T − n)−1Π′
2Z

′
2PZ2Π2 is held constant whilst ν and T

tend to infinity such that ν/T → α where 0 ≤ α < 1. Thus, although Bekker

(1994) finds that the IV estimator will be consistent whenever ν grows at a

slower rate than T , we have a situation where µ2 → 0 as ν → ∞ and the

weakness of the instruments leads to the IV estimator being inconsistent.

At the other extreme, suppose that ν is small. It is well known that if

τ ∼ tk then τ possesses only k − 1 moments. In our case k = ν − n + 1

and so Corollary 3 implies that, to our order of approximation, the first two

moments will not exist unless the degree of over-identification of the model

ν − n ≥ 2. Essentially this same result appears in Mariano (1982, equation

4.29). See also Kinal (1980) for more general results on the existence of

moments.

5 Illustrations

We will now illustrate the behaviour of our approximation. To provide a

basis for comparison we have graphed our approximation against the exact

finite sample distribution and we have also plotted the standard asymptotic

normal approximation. We have also selected our basic parameter values

to correspond to those used by Woglom (2001) to illustrate the exact small

sample properties of the IV estimator in the simplest case where n = 1 and

the model is exactly identified. Note that in this case the concentration

parameter and the concentration coefficient are identically equal.

Figure 1 indicates quite clearly that when the sample size T is small and

the concentration coefficient is small relative to T then the t approximation
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can be extremely close to the exact finite sample distribution. Indeed, the

two distributions can be virtually indistinguishable, even when the degree

of endogeneity is quite high, ρ2 = 0.5, as is made plain by the first three

panels of Figure 1 where the exact distribution is almost totally obscured by

our approximation. Increasing the degree of endogoneity (to the extreme)

by setting ρ2 = 0.99, as in Figure 2, introduces bi-modality into the exact

finite sample distribution and one would not expect any symmetric uni-modal

approximation to capture such small sample properties well.9 Nevertheless,

as long as the signal-to-noise ratio in the first stage regression is not too

large, the t approximation appears to mimic the tail behaviour of the exact

finite sample distribution reasonably well.
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Figure 1: Density Functions of ∆β = β̂ − β with T = 20, ρ2 = 0.5, σ2
u = 1

and Ω22 = σ2
V = 2. Concentration coefficient (starting in top left hand panel

and proceeding linearly) µ2 = 0.001T, 0.005T, 0.01T, 0.05T

It is clear from Figures 1 and 2 that the normal approximation is not

9See Woglom (2001) for a detailed discussion of the differing circumstances giving rise
to such finite sample properties.
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working very well whatever the current circumstances. It may be felt that

this is due to the sample size T being small. T only enters the distributions

via its influence on the magnitude of the concentration parameter, however,

and if we imagine a local to zero scenario of the type considered above then

both Figures 1 and 2 will be applicable for any value of T provided that

µ2 = 0.02/T, 0.1/T, 0.2/T, 1.0/T .
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Figure 2: Density Functions of ∆β = β̂ − β with T = 20, ρ2 = 0.99, σ2
u = 1

and Ω22 = σ2
V = 2. Concentration coefficient (starting in top left hand panel

and proceeding linearly) µ2 = 0.001T, 0.005T, 0.01T, 0.05T

To show how increasing sample size effects the distributions we present in

Figure 3 the counterpart to Figure 1, with µ2 = 0.001T, 0.005T, 0.01T, 0.05T

and T = 250. A reduction in asymptotic bias is readily apparent, as is the in-

creased concentration of the distributions about their respective means. But

despite the improvement in the asymptotic approximation, the t approxima-

tion to the exact density is still performing relatively well.

The preceding illustrations have all considered the exactly identified case.

To indicate the impact of increasing the number of instruments Figure 4
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Figure 3: Density Functions of ∆β = β̂ − β with T = 250, ρ2 = 0.5, σ2
u = 1

and Ω22 = σ2
V = 2. Concentration coefficient (starting in top left hand panel

and proceeding linearly) µ2 = 0.001T, 0.005T, 0.01T, 0.05T

presents the three distributions in the moderately endogenous situation ρ2 =

0.5 when µ2 = 0.01T , T = 20 and ν = 2, 4, 8, 16. The relative superiority

of the t approximation over the asymptotic normal approximation in these

circumstances is apparent. Re-interpreting Figure 4 as representing a local-

to-zero scenario, in which µ2 = 0.2/T as T →∞, we can see that the figure

clearly illustrates the inconsistency of the IV estimator discussed above.

Finally, the exact finite sample distribution of the IV estimator has been

known for some time, see Phillips (1980), and in the special case of n = 1 can

be traced back to the work of Richardson (1968). The need for an approxi-

mation is obviously therefore brought into question. When n = 1 the exact

finite sample distribution of the IV estimator can be expressed as a conver-

gent series in confluent hypergeometric functions and can be fairly readily

evaluated, as we have done here.10 When n ≥ 2, however, the density involves

10The computations for this paper have been conducted using MATLAB.
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Figure 4: Density Functions of ∆β = β̂ − β with T = 20, ρ2 = 0.5, σ2
u = 1,

Ω22 = σ2
V = 2 and µ2 = 0.01T . Degree of over-identification (starting in top

left hand panel and proceeding linearly) ν − n = 1, 3, 7, 15

invariant polynomials of matrix argument and the computational burden of

evaluating the exact distribution presents numerical problems which, to the

best of our knowledge, are as yet unresolved. Hence the need for an approx-

imation which (a fortiori - on the basis of the evidence presented thus far)

we can anticipate will work well in various different situations and which can

be applied using standard software.

6 Discussion

A feature of the results presented in this paper is that they are amenable

to straightforward manipulation and inspection, and they provide simple

demonstrations of many of the qualitative properties that have been ob-

tained under various different paradigms used to analyze models with weak

instruments. As we have seen, these range from exact finite sample theory
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through to large sample and many instrument asymptotic results.

Another attraction of the results presented in this paper is their relative

simplicity. This makes them easy to implement for practitioners, clearly the

approximation to the distribution of the IV estimator given here is no more

difficult to employ than are the Normal approximations that arise in much

standard asymptotic analysis. But this raises two practical questions:

• First, how is the practitioner going to ascertain when µ2 is small and

hence when the use of the approximation developed here is appropriate?

• Second, if the use of the approximation is deemed appropriate, how are

the nuisance parameters going to be estimated?

With regard to the latter, whatever the values of Π2 and Γ22, both Ω and

∆ can be consistently estimated from the first stage reduced form regression.

Expressed in terms of the original (untransformed) variables we have

∆̂ = ν−1[y,Y]′RZ1Z2(Z
′
2RZ1Z2)

−1Z′
2RZ1 [y,Y]

and

Ω̂ = (T − ν)−1([y,Y]′(RZ1 −RZ1Z2(Z
′
2RZ1Z2)

−1Z′
2RZ1)[y,Y]

where Z = [Z1,Z2]. The estimates Ω̂ and ∆̂ can clearly be used to construct

“plug in” values for the nuisance parameters that appear in θ and Θ.

As for the first question, Poskitt & Skeels (2002) have recently developed

a multivariate measure of the magnitude of the concentration parameter ide-

ally suited to this task. Their statistic is calculated from the first stage

reduced form regression and uses Wilks’-Λ distribution to construct a prob-

abilistic calibration of Γ22. The statistic can be interpreted as providing a

likelihood ratio test of the null-hypothesis that the endogenous regressors and

the instruments are orthogonal and significantly large values of the statistic

are associated with large values of the parameter ν∆22. Hence the Poskitt

& Skeels (2002) statistic can be used to screen out situations where the

concentration coefficient µ2 appears to be large and use of the approxima-

tion inappropriate, thereby designating situations where the approximation

is likely to work well.
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As a final remark, we recognize that approximating the sampling distri-

bution of the statistic β̂ is, of itself, of secondary importance to the prob-

lem of making inferences about the parameter vector β. The use of our

t-approximation as an inferential tool will be addressed in detail in a com-

panion paper. At this point it is, perhaps, worth pointing out that although

our approximation is based on a t-distribution, it does not follow that infer-

ential procedures based upon it will automatically suffer from the problems

described by Dufour (1997). Consider, for example, constructing a confidence

set for β using quantile points determined from the standard t-distribution

and inverting (15). Since both θ and Θ are functions of β0, the relationship

between r and β0 is non-linear. Consequently, although r has a spherically

symmetric distribution, the confidence sets so formed are neither likely to be,

for example, elliptical, nor need they always be bounded. As such, confidence

regions derived from r are not conventional Wald-type intervals. Indeed, ap-

plication of our t-distribution, in conjunction with the estimated values of Ω

and ∆, as given above, can be viewed as an application of the conditioning

principle for obtaining similar tests based on non-pivotal statistics described

by Moreira (2003). Such issues remain the subject of ongoing research.
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Appendix

Lemma A.1. Let An denote a sequence of symmetric matrices such that

An = A + Bn, where A = A′, 0 < A < ∞, and Bn = O(h(n)) with

h(n) → 0 as n →∞. Then A
1
2
n −A

1
2 = O(h(n)

1
2 )

Proof. Taking the trace of left and right hand sides in the expression

(A
1
2
n −A

1
2 )(A

1
2
n −A

1
2 ) = An −A + (A

1
2 −A

1
2
n )A

1
2 + A

1
2 (A

1
2 −A

1
2
n )

we find that

||A
1
2
n −A

1
2 ||2 = O(h(n)) + 2tr{(A

1
2 −A

1
2
n )A

1
2} .

From the Cauchy-Schwartz inequality it now follows that

||A
1
2
n −A

1
2 ||2 ≤ O(h(n)) + 2||A

1
2
n −A

1
2 || · ||A

1
2 || . (A.1)

Let zn = ||A
1
2
n −A

1
2 ||/||Bn||

1
2 . Then (A.1) implies that

zn ≤
O(h(n)/||Bn||

1
2 )

|(||A
1
2
n −A

1
2 || − 2||A 1

2 ||)|
,

from which we can conclude that ||A
1
2
n − A

1
2 || ≤ O(h(n)

1
2 ), as required,

where the final inequality follows on noting first that ||Bn|| = O(h(n)) by

assumption and second that 0 < |(||A
1
2
n−A

1
2 ||−2||A 1

2 ||)| < ∞ for sufficiently

large n.11.

11This final point follows from the fact that 0 < A < ∞, coupled with a continuity
argument that implies A

1
2
n −A

1
2 → 0 as n →∞ because An −A → 0.
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