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Abstract

When the unobservable Markov chain in a hidden Markov model is stationary the marginal
distribution of the observations is a finite mixture with the number of terms equal to the
number of the states of the Markov chain. This suggests estimating the number of states
of the unobservable Markov chain by determining the number of mixture components in
the marginal distribution. We therefore present new methods for estimating the number of
states in a hidden Markov model, and coincidentally the unknown number of components in
a finite mixture, based on penalized quasi-likelihood and generalized quasi-likelihood ratio
methods constructed from the marginal distribution. The procedures advocated are simple
to calculate and results obtained in empirical applications indicate that they are as effective
as current available methods based on the full likelihood. We show that, under fairly general
regularity conditions, the methods proposed will generate strongly consistent estimates of
the unknown number of states or components.

Some key words: finite mixture, hidden Markov process, model selection, number of states,
penalized quasi-likelihood, generalized quasi-likelihood ratio, strong consistency.
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1 Introduction

Hidden Markov models, also known as Markov regime switching models, have become a
widely used tool for modelling sequences of dependent random variables. Given a model
structure with a known number of regimes, efficient and sophisticated estimation and fore-
casting schemes have been successfully developed and applied in a variety of fields including
speech recognition, Juang & Rabiner (1990), DNA composition, Churchill (1989), neuro-
biology, Chung, Moore, Xia, Premkumar & Gages (1990) and Fredkin & Rice (1992a,b),
the analysis of business cycles, Hamilton (1989) and modelling stock market and asset re-
turns, Turner, Startz & Nelson (1990). In these applications, the correct specification of the
number of states of the Markov chain has both theoretical and practical significance. The
construction of realistic models that describe the gating mechanism of ion channels requires
knowledge of the number of elementary channels, or states, contributing to the observed
current fluctuations in the cell membrane, for example, whilst in economics the unobserved
Markov chain is used to model the underlying states of the economy, the number of states
corresponding to the number of qualitative categories into which the economy is classified.

Techniques currently available for choosing the number of states of a Markov chain are,
however, somewhat incomplete and often difficult to apply. The conventional likelihood
ratio test breaks down if one tries to fit a k state model when the true process has k0 < k
states since under the null hypothesis k0 = k′ < k the parameters that describe the k state
model are unidentified. Hansen (1992, 1996) proposed a procedure that avoids this problem
but his technique only gives bounds for the likelihood ratio statistic and requires extensive
computation involving large scale simulation and optimization over a three-dimensional grid.
Using a similar approach Hamilton (1996) has also developed a variety of misspecification
tests. Leroux & Puterman (1992) and Rydén (1995) have studied the use of model selection
criteria and the latter established that criteria such as AIC and BIC will not underestimate
the true number of states. Consistency of BIC for the number of states of a Markov chain
has been recently established by Csiszar & Shields (2000). An alternative approach to
the selection of the number of states exploits the relationship of the autocovariances of
these processes to those of ARMA structures. Poskitt & Chung (1996) showed that, given
appropriate assumptions, a k-state Markov chain process embedded in noise will posses an
autocovariance function corresponding to that of an ARMA(k−1, k−1) process and Zhang
& Stine (2001) have extended their results to the case of a vector switching autoregression.
Both papers proposed estimating the number of states of the Markov model by determining
the order of its ARMA representation.

In this paper we exploit the fact that the marginal distribution of a hidden Markov
model is a finite mixture and use the number of estimated mixture components to determine
the order of the hidden Markov model. The following section of the paper reviews the
techniques and ideas that form the background to the development of our methodology
whilst introducing our notation. Section 3 discusses two estimators of the number of states
of the Markov chain that are based on the maximization of a penalized quasi-likelihood in
which the full likelihood is approximated using the finite mixture marginal distribution. In
Section 4 we show that both estimators are strongly consistent under fairly general regularity
conditions. Section 5 presents a two step procedure based on a generalized quasi-likelihood
ratio. This generates two further estimators that are also shown to be strongly consistent.
Illustrations of the application of the proposed methodology in the context of both finite
mixture and hidden Markov models are presented in Section 6. We close in Section 7 with
a brief conclusion. Proofs of the basic results are assembled in an appendix.
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2 Notation and Background

To begin, let f(· | θ) denote densities on Y ⊆ Rd with respect to a measure µ, parameterized
by θ ∈ Θ ⊆ Rq, and suppose that Yt ∼ f(y | θSt), t = 1, . . . , T , where θs = ϑ(s), ϑ : S → Θ,
S = {σ1, . . . , σk}, and {St} is a k-state Markov chain process with state space S and k × k
transition matrix P = [pij ]. Now set Ψk = Closure{

⋃

P} where the union is taken over all
stochastic matrices P of order k such that the Markov chain is irreducible and aperiodic. For
each k this set is compact. Furthermore, let us assume Θ is compact and set Φk = Ψk ×Θk

so that Φk is the parameter space for the model with a k-state Markov chain. (If Θ is not
compact the compactification technique suggested by Rydén (1995) can be used to show that
the results presented in the sequel will still hold.) We call k the dimension or order of the
process. Given k the model dimension ϕk = dim(Φk).

If φk ∈ Φk the joint density of Y T = (Y1, Y2, . . . , YT ) with respect to the product measure
µT associated with µ is

p(Y T | φk) =
∑

s1,...,sT

πs1f(Y1 | θs1) · ps1s2f(Y2 | θs2)

· · · · · · · · · psT−1sT f(YT | θsT ), (2.1)

where
∑

s1,...,sT
denotes that the summation is taken over all possible paths st, t = 1, . . . , T ,

of the Markov chain. The marginal distribution p(y | φk) of Yt has a much simpler form
however, namely,

p(y | φk) =
k
∑

i=1

πif(y | θσi), (2.2)

a k component finite mixture where the mixing distribution (π1, π2, . . . , πk) is given by the
stationary distribution of the Markov chain. In general the mapping ϑ : S → Θ could be
many to one: It is possible that ion channels could have different open-closed states with the
same conductance levels and the number of components will be determined by the observed
conductance levels and not the different physical states of the channel dynamics, see Fredkin
& Rice (1992b). Thus the number of unique components in (2.2) can be less than the order
of the chain: k′ = inf{κ : p(y | φk) =

∑κ
i=1 πif(y | θσi)} ≤ k. If ϑ(s) is one-to-one, however,

then there is a direct correspondence between the number of components in the mixture and
the number of states. Thus we can contemplate estimating k, or at least k′, by ascertaining
the number of components in the marginal distribution of Yt.

Finite mixture models have been extensively studied in statistics and have found ap-
plication in various fields. Comprehensive treatments of the subject can be found in the
monographs by Titterington, Smith & Markov (1985), McLachlan & Basford (1988) and
Lindsay (1995). Basing inference in the hidden Markov model on finite mixtures is not
in itself new. Lindgren (1978) showed under mild regularity conditions that the estimator
φ̂k obtained by maximizing the following quasi-likelihood function based on the marginal
distributions

Lm(Y T | φk) =
T
∏

t=1

p(Yt | φk) (2.3)

would be consistent and asymptotically normal. Leroux & Puterman (1992) also suggested
that fitting a finite mixture model was an effective strategy for obtaining parameter estimates
suitable for the initiation of the iterative calculations required for the evaluation of the exact
maximum likelihood estimates of a hidden Markov model.
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From our perspective, the advantages of working with (2.3) are twofold. First, the com-
binatorial calculations associated with investigating (2.1) theoretically make its analysis ex-
tremely difficult. The structure of Lm(Y T | φk), on the other hand, is far simpler and
facilitates the application of appropriate limiting arguments. Second, there are substantial
computational gains that derive from using (2.3). Not only does the efficient evaluation of
(2.1) involve O((2k2 + k)T + 2k − 1) operations compared to O(2kT − 1) for (2.3) but the
maximization of (2.1) presents a far more complicated task than the optimization of (2.3) be-
cause of the presence of the unobserved states. See Lindgren, and Leroux and Puterman op.

cit. as well as Böhning, Schlattmann & Lindsay (1992) for some discussion of the numerical
issues raised here.

Generally speaking, there are three different approaches that have been taken to esti-
mating the number of components of a finite mixture:

(i) The first involves the construction of estimators that minimize some charaterisation
of the distance between the true distribution and the fitted or empirical distribution.
Henna (1985) and Chen & Kalbfleisch (1996) show that this approach will yield consis-
tent estimates under appropriate regularity conditions but the methods advocated are
not readily implementable since, as noted by Chen and Kalbfleisch, issues associated
with the choice of distance measure and the construction of effective algorithms remain
unresolved.

(ii) The second considers the application of hypothesis testing procedures using the likeli-
hood ratio principle, as in Feng & McCulloch (1996). It is widely known, however, see
Hartigan (1985), that the null distribution of the likelihood ratio statistic for testing
k0 = k − 1 components versus k0 = k components does not converge to that of the
conventional Chi-squared variate and Feng and McCulloch propose a remedy based
on using bootstrapped likelihood ratios. Heckman, Robb & Walker (1990) develop an
alternative test statistic based upon the method of moments and a recent contribution
that we include here, but which should perhaps be given a separate heading of its
own, is that of Richardson & Green (1997), who consider a Bayesian analysis based on
Markov chain Monte Carlo methods.

(iii) The third approach considers the use of model selection devices based on penalized
likelihood methods and is exemplified by the work of Leroux (1992) and Dacunha-
Castelle & Gassiat (1997).

It is the latter approach that we follow in this paper. Our work differs from that of previ-
ous authors, however, in that our methodology incorporates aspects of all three approaches
and we develop four alternative estimators of k. We are also able to show that these estima-
tors will yield strongly consistent estimates of the true order k0 under regularity conditions
that allow for both independent and Markov dependent processes.

3 Order Estimation Based on Finite Mixtures

We propose two types of estimate based on the quasi-likelihood Lm(Y T | φ̂k) calculated from
the finite mixture in (2.3). The first is defined in terms of the penalized quasi-likelihood
function

∆T (k) = logLm(Y T | φ̂k)− dkT (3.1)

3



and is defined as
k̂I = min{κ : ∆T (κ) = max

k∈{1,...,K}
{∆T (k)}}, (3.2)

where K is prescribed by the practitioner and dkT > 0 is a penalty term which depends on
both the order of the fitted model and the sample size T and is such that d(k+1)T > dkT given
T . Two common choices for the penalty term are dkT = ϕk and dkT = (ϕk/2) log T . The
model dimension ϕk = dim(Φk) = k(k−1)+kq if the individual components of the transition
matrix P are to be counted, as in the evaluation of the full likelihood, and k− 1+ kq if only
the marginal distributions are considered, as in (3.2).

The estimator k̂I is similar in spirit to that proposed by Rydén (1995). He based his
estimator on maximizing the split data likelihood function defined by

LS(Y T | φk) =
N
∏

j=1

pM (YM(j−1)+1, · · · , YMj | φk), (3.3)

where T =MN and pM (YM(j−1)+1, · · · , YMj | φk) is the M -dimensional joint density of the
variates YM(j−1)+1, · · · , YMj defined as in (2.1). Rydén (1995) advocated using M > 2k in
(3.3) and showed that his estimator would not underestimate k0 in the limit. Compared to
the approach of Rydén (1995) or the use of penalized likelihood methods based on evaluation
of the full likelihood, however, the estimator k̂I is much easier to implement and it can be
shown to be strongly consistent.

If K < k0, so that the upper bound on the number of states considered is chosen too
small, then the proof of consistency given below indicates that k̂I = K as T →∞ if dkT /T
approaches zero as T increases. Suppose then that K = KT , an increasing function of T .
Eventually we must have KT > k0 for any k0 < ∞ and k̂I ≥ k0 with probability one.
Thus the possibility of underestimating the number of states is circumvented, but the rate of
increase of KT is unknown and the problem of selecting an upper bound for the true order
is, to this extent, unresolved.

An alternative solution is to consider a procedure that avoids the need to make an a-

priori selection of K altogether. The second estimator, k̂′I , is defined by the requirement
that

k̂′I = 1 if ∆T (1) ≥ ∆T (2) and
k̂′I = k′ if ∆T (k) < ∆T (k + 1), 1 ≤ k < k′, and

∆T (k
′) ≥ ∆T (k

′ + 1), k′ = 2, 3, . . . . (3.4)

This estimator locates the right-hand end-point of the interval on which ∆T (k) is strictly
increasing. The rationale behind k̂′I is illustrated in Figure 1. For T sufficiently large the

average support, T−1 logLm(Y T | φ̂k), will be an increasing function of k whenever k < k0
but it will remain roughly constant once the fitted order exceeds the true one. This leads
us to the conclusion that the first local maximum of ∆T (k) in the range 1 ≤ k < ∞ will
occur at k = k0 and that k̂′I ≥ k0 if dkT /T → 0 as T →∞. In fact, k̂′I will yield a consistent

estimate of k0 under the same conditions as for k̂I .
We have adopted the notation k̂′I rather than the more obvious k̂II for the second esti-

mator so as to preserve the later notation for the two step estimator presented below. The
estimator k̂II shares a similar rationale to k̂′I but is based on the incremental value in the

quasi-likelihood ratio rather than the imposition of a penalty term. The details of k̂II are
given in Section 5, after some asymptotic properties of k̂I and k̂′I are presented in the next
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Figure 1: Hypothetical Log Quasi-Likelihood� �������	� 
��� �����
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section.

4 Theoretical Bounds for k̂I and k̂′I

First we will establish that the estimators k̂I and k̂′I will not underestimate the true order
asymptotically if the penalty term is chosen so that dkT /T → 0 as T →∞. To achieve this
we note that k̂I coincides with Rydén’s estimator if M = 1 in (3.3) and Rydén’s derivations
are independent of the value of M . Thus, a similar argument to that employed by Rydén
(1995), which builds on the methodology of Leroux (1992), can be used to show that our
estimators will behave as claimed.

We now introduce our regularity conditions. These conditions follow those commonly
employed in the analysis of maximum likelihood estimation and correspond more or less
to those given in Leroux (1992) and Rydén (1995). In what follows φ0k0

∈ Φk0
will denote

the true parameter value where k0, the true order, is assumed to be minimal, that is, there
does not exist a parameter value φk ∈ Φk with k < k0 such that φk and φ0k0

generate

identical probability laws for Y T with p(yT | φk) = p(yT | φ0k0
) almost everywhere. Unless

stated otherwise, all probability statements are assumed to obtain under the true probability
measure νφ0

k0

induced by φ0k0
.

C1. The process {St} is a stationary and ergodic Markov chain.

C2. For each fixed k the family of finite mixtures
∑k

i=1 πif(y | θσi) is identifiable up to a
permutation of the indices.

C3. The density function f(y | θ) is continuous on Y ×Θ and twice continuously differen-
tiable with respect to θ.

C4. For each compact set C ⊆ Y and ε > 0 there is a compact set Cε ⊆ Θ such that
f(y | θ) ≤ ε on C × (Θ\Cε).

C5. There is a set Z ⊆ Y and a set Ω ⊆ Θ such that µ(Z) > 0, f(y | θ) = 0 on Z × (Θ\Ω),
and f(y | θ) > 0 on Y × Ω.
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C6. For all θ ∈ Θ the integral
∫

p(y | φ0k0
)(log f(y | θ))−µ(dy) < 0 where (·)− denotes the

negative part of the argument and there is a continuous function h : Y → R such that
f(y | θ) ≤ h(y) and

∫

p(y | φ0k0
)| log h(y)|µ(dy) <∞.

We will also suppose:

C2’ Let Int{Φk} denote the interior of Φk. There exist m < ϕk affinely independent,
continuous functions ri(φk), i = 1, . . . ,m, such that r(φk) = (r1(φk), . . . , rm(φk))

′ = 0
for all φk that lie on the boundary Φk\Int{Φk}.

C3’. The first and second order partial derivatives of log f(y | θ) satisfy |∂ log f(y | θ)/∂θu| <
hu(y) and |∂

2 log f(y | θ)/∂θu∂θv| < hu,v(y), 1 ≤ u, v ≤ q, where
∫

p(y | φ0k0
)hu(y)µ(dy) <

∞ and
∫

p(y | φ0k0
)hu,v(y)µ(dy) <∞.

C6’ There exits a δ > 0 such that
∫

‖y‖2+δf(y | θ)µ(dy) <∞ for all θ ∈ Θ.

Leroux and Rydén op. cit. show that assumptions C2-C6 hold for various families of
probability distributions, including Poisson and Gaussian mixtures of the type considered
in the applications below. To motivate C2’ consider a finite mixture process of order k
with density as in (2.2) where f(y | θ) is chosen such that C2 is satisfied. Then φk =
(π1, . . . , πk−1, θ1, . . . , θk)

′ and Φk consists of the cartesian product of the simplex 0 ≤ πi ≤ 1,
i = 1. . . . , k − 1,

∑k−1
i=1 πi ≤ 1, and the k fold reproduction of Θ. The boundary Φk\Int{Φk}

contains all those parameterizations corresponding to processes of order k ′, 1 ≤ k′ < k.
Modulo a permutation of the indices, these can be represented by the restrictions ri(φk) =

πk′+i = 0, i = 1, . . . ,m − 1, rm(φk) =
∑k′

i=1 πi − 1 = 0, m = k − k′. Bickel, Ritov &
Rydén (1998), pages 1618-1619, illustrate the application of conditions essentially equivalent
to C1-C6 and C3’ to hidden Markov models such as those described in Fredkin & Rice
(1992a,b). The application of C6’ to finite mixtures and hidden Markov models involving
Poisson, binomial, exponential or mean-translated Gaussian distributions is obvious.

In order to proceed let us define the distance between the true distribution p(y | φ0k0
)

and p(y | φk) as the Kullback-Leibler divergence

K(φ0k0
, φk) =

∫

p(y | φ0k0
) log

p(y | φ0k0
)

p(y | φk)
µ(dy) , (4.1)

where p(y | φk) is the marginal distribution of Yt as defined in (2.2). Now set

K(φ0k0
,Φk) = inf

φk∈Φk

{K(φ0k0
, φk)} . (4.2)

and let Φ0k = {φk : K(φ0k0
, φk) = K(φ0k0

,Φk)}. If the fitted order k < k0 then there
is no parameter which is observationally equivalent to φ0k0

and therefore we must have
K(φ0k0

,Φk) > 0. The following lemmas give formal content to this idea.

Lemma 1 If conditions C3, C4, and C6 hold then for each k there exists a φ0k ∈ Φk such

that K(φ0k0
, φ0k) = K(φ0k0

,Φk).

Lemma 2 Assume that conditions C2-C4 and C6 hold. Then K(φ0k0
,Φk) > 0 if k < k0 and

K(φ0k0
,Φk) = 0 if k ≥ k0. Moreover, K(φ0k0

,Φk+1) < K(φ0k0
,Φk) for all k < k0.

At this point we note that both k̂I and k̂
′
I can be viewed as being derived via a succession

of quasi-likelihood ratio tests. The test statistic is given by log{Lm(Y T | φ̂k′)/L
m(Y T | φ̂k)}
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and the null hypothesis HN : k0 = k is rejected in favor of the alternative hypothesis
HA : k0 = k′ if the test statistic exceeds (dk′T − dkT ). The estimator k̂I corresponds to
calculating all 1

2K(K − 1) likelihood ratios for every pair of values k and k′ in the set
{1, . . . ,K}, k 6= k′, and choosing the value that is accepted against all others. The estimate
k̂′I is the first value of k for which the null hypothesis is accepted when testing in sequence
HN : k0 = k against HA : k0 = k′ = k + 1 starting at k = 1. The implied noncentrality
parameter T{K(φ0k0

, φ0k)−K(φ0k0
, φ0k′)} is positive for k < k′ ≤ k0 and consequently neither

test procedure will select an order less than k0 if the critical value cT = (dk′T −dkT ) is chosen
such that cT /T → 0 as T → ∞. This result is stated formally in Theorem 1 immediately
below and is contingent on the following lemma.

Lemma 3 If conditions C1-C6, C3’ and C6’ obtain then for all k

lim
T→∞

1

T
logLm(Y T | φ̂k) =

∫

p(y | φ0k0
) log p(y | φ0k)µ(dy) (4.3)

and

lim
T→∞

1

T

∂2 logLm(Y T | φk)

∂φk∂φ
′
k

= −
∂2K(φ0k0

, φk)

∂φk∂φ
′
k

=

∫

p(y | φ0k0
)
∂2 log p(y | φk)

∂φk∂φ
′
k

µ(dy) (4.4)

with probability one.

Theorem 1 Assume conditions C1-C6, C3’ and C6’ hold and suppose that limT→∞dkT /T =
0. Then limT→∞ k̂I = K if K < k0 and limT→∞k̂I ≥ k0 if K ≥ k0, furthermore,

limT→∞k̂
′
I ≥ k0 with probability one.

Whereas Theorem 1 establishes that k0 provides the infimum of k̂I and k̂
′
I , we now demon-

strate additional constraints on the growth rate of dkT as a function of T that will guarantee
that the limit supremum of k̂I and k̂

′
I is also k0. These constraints are dependent on the order

of magnitude of the logarithm of the quasi-likelihood ratio log{Lm(Y T | φ̂k)/L
m(Y T | φ̂k0

)}.
The next two lemmas serve to set a bound on the growth rate of this latter statistic.

Lemma 4 Suppose that the regularity conditions C1-C6, C2’, C3’ and C6’ hold, then for

each k there exits a φ0k ∈ Φ0k such that

logLm(Y T | φ̂k)− logLm(Y T | φ0k) = O(log log T ) .

Lemma 5 Under the same assumptions as for Lemma 4 we have

limT→∞

{

log
Lm(Y T | φ0k)

Lm(Y T | φ0k0
)
− 2M log log T − 2 log T

}

< 0

with probability one for all k 6= k0 and all M > 1.

We are now in a position to give conditions on dkT that will avoid overestimation in the
limit.
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Theorem 2 Suppose assumptions C1-C6, C2’, C3’ and C6’ obtain and that the penalty

term dkT can be written as dkT = g(T ) · h(k) where g and h are increasing functions of T
and k that satisfy

{

limT→∞ g(T )/ log T ≥ 1 and

h(k′)− h(k) ≥ 2, k′ > k .
(4.5)

Then limT→∞k̂I = k0 and limT→∞k̂′I = k0 with probability one.

At first sight Theorem 2 may seem curious. For the mixture likelihood (2.3) dim(Φk) =
ϕk = k(q + 1) − 1 and each increment in k increases the value of ϕk by q + 1. Thus the
theorem indicates that the value of the penalty term need not reflect the overall number of
parameters to be estimated. This is explicable, however, because asymptotically it is the
number of densities f(· | θ) that have been fitted to the data that is critical in determining
the behaviour of the criterion irrespective of the value of q and q + 1 ≥ 2 for all densities
containing at least one parameter. Hence the restriction on h(k).

Theorem 2 yields restrictions on dkT which when taken in conjunction with Theorem 1
ensure that both k̂I and k̂′I are consistent. Thus, if in practice we set dkT = ϕk log T , then
dkT = g(T ) · h(k) where g(T ) = log T and h(k) = ϕk. Clearly limT→∞ dkT /T = 0 and the
penalty term satisfies (4.5) since (ϕk −ϕk0

) = (k− k0)(1 + q) ≥ 2 for all k > k0. Combining
Theorems 1 and 2 we have the following result.

Corollary 1 Assume the conditions of Theorems 1 and 2 hold. If the penalty term dkT =
ϕk log T then k̂I and k̂′I converge to k0 almost surely.

5 A Two Step Estimator

To simplify the presentation of the two step estimator let us first introduce the generalized
quasi-likelihood ratio

R(Y T , k) =
1

T
{log

Lm(Y T | φ̂k)

Lm(Y T | φ̂k−1)
+ log

Lm(Y T | φ̂k+1)

Lm(Y T | φ̂k)
}, k = 1, 2, . . . , (5.1)

where, by definition, Lm(Y T | φ̂1)/L
m(Y T | φ̂0) ≡ 1. Let KT (k̂I) = {k ∈ {1, . . . ,K} : k ≤

k̂I and R(Y T , k) > ηT } where ηT > 0 is a non-increasing function of T , yet to be prescribed.
The two step estimator k̂II is defined as

k̂II = max{k ∈ KT (k̂I)} (5.2)

and k̂′II is defined in a completely analogous way by simply replacing KT (k̂I) by KT (k̂
′
I) =

{k ∈ {1, 2, . . .} : k ≤ k̂′I and R(Y T , k) > ηT }.
The idea underlying the two step estimator is to recognize that if dkT satisfies the con-

ditions of Theorem 1 then ultimately both k̂I and k̂′I are likely to exceed k0. The behaviour

of T−1 logLm(Y T | φ̂k), as exhibited in Figure 1, can then be exploited to ascertain the
extent to which either k̂I or k̂′I needs to be reduced. This is done by examining the two

step increment in T−1 logLm(Y T | φ̂k) between k − 1 and k + 1. For T sufficiently large
this increment will be positive whenever k ≤ k0 and arbitrarily small when k > k0. For
example, for the preschool health status data considered below the values of R(Y 602, k), to
two decimal places, are 1671.12, 1743.96, 92.58, 19.74, 0.0 and 0.0, for k = 1, . . . , 6, providing
reasonably strong evidence in favour of k0 = 4 in this case.
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Theorem 3 Assume that the conditions of Theorem 1 obtain and suppose that K ≥ k0
where k0 < ∞. If ηT → 0 as T → ∞ such that R(Y T , k)/ηT → 0 almost surely for all

k > k0, then the two step estimators k̂II and k̂′II are both strongly consistent for k0.

To construct k̂II or k̂′II the practitioner will have to select values for ηT . If ηT = η where

η is a predetermined positive constant chosen such that η < K(φ0k0
, φ0k0−1

) then k̂II and k̂′II
will be strongly consistent because R(Y T , k) will be arbitrarily close to zero for T sufficiently
large when k > k0 whereas R(Y T , k0) will converge to K(φ0k0

, φ0k0−1
) and hence eventually

k0 will be the largest k in either KT (k̂I) or KT (k̂
′
I). Since K(φ0k0

, φ0k0−1
) is unknown the

inequality ηT < K(φ0k0
, φ0k0−1

) can be achieved asymptotically by choosing ηT such that
ηT → 0 as T →∞. But, as indicated in Theorem 3, the magnitude of ηT must not decrease
too quickly otherwise the condition required to maintain consistency, R(Y T , k) < ηT for
k > k0, cannot be ensured. These arguments intimate that small values of ηT will decrease
the chance of underestimation while larger values will decrease the chance of overestimation.
Lemmas 4 and 5 shed some additional light on the choice of ηT since they imply that
R(Y T , k) is at most O((log log T +log T )/T ) when k > k0 and in view of this result we could
in practice set ηT = 1

2{(log T )
5/4/T}, for example, and achieve the conditions of Theorem 3.

It is unlikely, however, that any one choice of the tuning parameter ηT will be optimal, in
the sense of maximizing the probability of correctly selecting k0, over all possible structures,
parameterizations and sample sizes.

6 Empirical Illustrations

6.1 Finite mixture models

Böhning et al. (1992) have employed several data sets available in the literature to demon-
strate the use of finite mixture models and here we will illustrate the application of the
techniques described above to this data. Computer software and the data sets can be ac-
cessed at: http://ftp.ukbf.fu-berlin.de/sozmed/caman.html. Note that for finite mixture
models logLm(Y T | φ̂k) gives the exact likelihood function and in what follows ∆T (k) based
on the exact likelihood function with dkT = ϕk and dkT = (ϕk/2) log T will be labelled AIC
and BIC respectively, BIC2 = logLm(Y T | φ̂k)− ϕk log T .

The first example relates to a study from northeast Thailand in which the health status
of 602 preschool children was checked every 2 weeks from June 1982 until September 1985.
The data consists of the number of occurrences of fever and/or cough symptoms recorded
during the study period and is described in more detail in Schelp, Vivatanasept, Sitaputra,
Sormani, Pongpaew, Vudhivai, Egormaiphol & Böhning (1990). Fitting a finite Poisson
mixture model with eight components produces the maximum likelihood estimate of the
distribution as plotted in Figure 2. Böhning et al. (1992) argued that there is clear evidence
of separation into three groups, those who were often sick, those who were frequently sick
and those who were rarely, if ever, sick, these groups comprising about 5%, 30% and 65% of
the children respectively. They also suggested that the last group might be separated further
into those children who were seldom sick and those who were never sick.

To illustrate our methods we list in Table 6.1 the values of the log-likelihood, AIC, BIC
and BIC2 for up to 8 components. One can clearly see that logLm(Y T | φ̂k) increases
monotonically with k for k < 4 but becomes flat thereafter, c.f. Figure 1. AIC, BIC and
BIC2 all choose a four-component model and the second step modification k̂II also yields
k = 4. Both k̂I and k̂′I give the same result. Thus we would suggest that a four-component
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Figure 2: Maximum likelihood estimates. Eight component Poisson mixture for preschool
health status data
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Table 1 Log likelihood, LLm = logLm(Y T | φ̂k), AIC, BIC and BIC2 for preschool health
status data

k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8

LLm -3317.39 -1646.27 -1573.43 -1553.69 -1553.69 -1553.69 -1553.69 -1553.68
AIC -3318.39 -1649.27 -1578.43 -1560.69 -1562.69 -1564.69 -1566.69 -1568.68
BIC -3320.66 -1656.10 -1589.81 -1576.62 -1583.18 -1589.73 -1596.29 -1602.83
BIC2 -3323.79 -1665.47 -1605.43 -1598.49 -1611.29 -1624.09 -1636.89 -1649.29

model provides a good representation of this data.
Böhning et al. (1992) also fitted translated standard normal mixtures to the anthropo-

metric measurements of 708 preschool children who were examined for subclinical malnour-
ishment. They found a two-component model to be appropriate and this was confirmed by
the results from k̂I , k̂

′
I , k̂II and k̂′II .

The second example concerns a study of the number of occurrences of sudden infant death
syndrome (cot deaths) in 100 North Carolina (U.S.A) counties over a 4-year period. Symons,
Grimson & Yuan (1983) used a two-component Poisson mixture to model this data with
f(y | θs) = exp(−θs)(θs)

y/y! s = 1, 2 where y denotes the number of deaths and θs = βsN
with βs representing the incident rate per birth with N the number of live births. The two
components were interpreted as representing normal and high-risk categories. Böhning et al.
(1992), however, suggested using a four-component model based on the nonparametric max-
imum likelihood estimate of the mixing distribution. The values of the fitted log likelihood
for k from 1 to 5 are -255.57, -237.28, -234.40, -233.36 and -233.35 respectively. AIC with
K = 5 chooses a four-component model, although the second step modification k̂II reduces
the order to two, which is the same order chosen by BIC and BIC2. The parameter estimates
for the two-component model are π̂1 = 1 − π̂2 = 0.75 with β̂1 = 0.0016 and β̂2 = 0.0035
while a four component model yields the mixing probabilities (0.322, 0.515, 0.152, 0.011) with
rates of incidence (0.0012, 0.0021, 0.0037, 0.0090). These estimates indicate that it may be
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reasonable to combine the first two adjacent components and trim the last component in the
four-component structure to form a two-component model, as is suggested by the selection
criteria.

6.2 Hidden Markov models

Hidden Markov chains are one of the many tools used to analyze DNA sequences, see
Churchill (1989). In these models the DNA is assumed to be composed of homogeneous
segments belonging to a small number of distinct compositional classes and the probability
of observing a base yt ∈ {C, T,A,G} at a given site t on the molecule depends on the type
of segment in which it lies. An underlying organization of the DNA is supposed in which
switching from one segment to the next follows an unobserved Markov chain, the states of
the hidden process indicating the type of segment. Thus the number of states of the hidden
Markov chain corresponds to the number of distinct segments and has an important influ-
ence on the probability of observing different bases. Churchill (1992) used BIC based on the
full likelihood function to choose the number of states and here we will illustrate the use of
penalized quasi-likelihood methods based on finite mixtures.

The first data set contains the simian virus 40 genome, which is a circular double-stranded
DNA molecule of 5243 bass-pairs, and the second consists of the complete genome of the
bacteriophage lambda, a double-stranded circular DNA molecule of 48,502 base pairs. (The
data is available at http://www.ncbi.nlm.nih.gov/.) The results are listed in Table 2. In this
table AICm and BICm indicate the number of states chosen by the criterion ∆T (k) with
dkT = ϕk and dkT = (ϕk/2) log T respectively and, as previously, AIC and BIC indicate the
values obtained using penalized likelihood methods based on the exact likelihood function.
The final column gives the number of states determined by the pattern identification method
described in Zhang & Stine (2001).

Table 2 Estimated number of homogeneous segments of DNA sequence

DNA AIC AICm(k̂II) BIC BICm Pattern

SV40 4 4(3) 2 2 2
Lambda 4 4(4) 3 4 4

For simian virus 40, the pattern method indicates that the temporal dependence of
neighbouring bases is characterized by an ARMA(1, 1) process, which implies that at least
two states are needed to capture the structure of the sequence. BIC and BICm choose a two-
state model, but AIC and AICm select a four-state model and the second step modification
of AICm, AICm(k̂II), gives a three-state model. From the theoretical results presented
above we can anticipate that AIC and AICm will have a tendency to overestimate k0 and
although k̂II can be used to reduce the chance of over estimation BIC and BICm seem likely
to produce a more accurate estimate of the true number of states. In fact it is known,
Reddy et al. (1978), that the expression of simian virus 40 genes is regulated by two major
transcripts and, as shown by Churchill (1992), these transcripts are apparent in the data,
the two states reflecting regions of distinct dinucleotide composition. Thus it seems sensible
to believe in a simple two-state model for simian virus 40 as suggested by BIC and BICm.

For bacteriophage lambda the BIC criterion chooses a three-state model while the other
criteria, AIC, AICm, k̂II and BICm, choose a four-state model. The pattern method also
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suggests a hidden Markov chain of at least four states is needed to describe the temporal de-
pendence between neighbouring bases. Based on other analyses, Churchill (1992) concluded
that compositional variation in bacteriophage lambda does not fall into a small number of
distinct states, which seems to be the conclusion reached by the methods considered here.

7 Conclusion

In this paper we have developed four estimators for the number of components in a finite
mixture. By interpreting the mixture likelihood as a quasi-likelihood we have also suggested
how these estimators can be employed to determine the number of states in a hidden Markov
chain process. Strong consistency of the estimators under suitable regularity, including
Markov dependency, has been established.

Empirical illustrations indicate that the application of our techniques to real world data
sets produces outcomes that are both heuristically understandable and scientifically expli-
cable. The observed behaviour of the methods is also in close accord with what might be
expected from theoretical considerations, with all four estimates being coincident more of-
ten than not. The results suggest that little if anything may be lost in terms of statistical
performance by using our methods whilst considerable gains may be achieved in terms of
computational speed and simplicity, particularly when the sample size is large. This is espe-
cially relevant here because in the analysis of DNA sequences and ion channel records, two
areas of application where hidden Markov models are becoming of increasing importance,
data sets in excess of 10,000 observations are not uncommon.
Acknowledgments: The authors are extremely grateful to Professor Gary Churchill for
sharing his C-code and data sets. The second author would also like to thank Professor
Robert Stine for his support and guidance during the production of this work and Professor
Peter Hall and his colleagues for the warm hospitality he received at The Australian National
University where the major part of the research was carried out.

Appendix: Proofs

Proof of Lemma 1: See the proof of Lemma 2 in Rydén (1995).
Proof of Lemma 2: By Lemma 1 Φ0k ⊂ Φk and Φ0k 6= ∅. When k < k0, there is no
φk ∈ Φk such that p(y | φk) = p(y | φ0k0

) and by a standard application of Jensen’s inequality
K(φ0k0

, φk) ≥ 0 with equality holding if and only if p(y | φ0k0
) = p(y | φk) and therefore

K(φ0k0
,Φk) > 0. When k ≥ k0 there exists a φk ∈ Φk such that p(y | φk) = p(y | φ0k0

)
and hence K(φ0k0

,Φk) = 0 for k ≥ k0 by the same argument. The monotone structure of
K(φ0k0

,Φk) for k < k0 follows directly from Lemma 3 of Leroux (1992).
Proof of Lemma 3: Both (4.3) and (4.4) are examples of the strong law of large numbers
applied to mixing processes. In the case of (4.3), for example, it is clear that the expected
value of log p(Yt | φk) equals

∫

p(y | φ0k0
) log p(y | φk)µ(dy) and from Lindgren (1978) page

87 we know {Yt} is a stationary and ergodic process that is strongly mixing at a geometric
rate. By Theorem 14.1 of Davidson (1994) log p(Yt | φk) is also α-mixing at a geometric
rate and therefore, by Davidson (1994) Theorem 20.19 or Theorem 5 of Oodairia & Yoshi-
hara (1971), T−1 logLm(Y T | φk) converges to

∫

p(y | φ0k0
) log p(y | φk)µ(dy) almost surely.

Moreover, by Assumption C3 T−1 logLm(Y T | φk) is continuously differentiable on Φk for
all T and therefore by Theorem 21.10 of Davidson (1994) it follows that the function se-
quence T−1 logLm(Y T | φk), T = 1, 2, . . ., is stochastically equicontinuous and hence the
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convergence is uniform, see Davidson (1994), §21.4, for details.
Since Φk is compact every sequence of estimates {φ̂k} contains at least one cluster point

φ∗k ∈ Φk. Let {φ̂k,T } = {φ̂k : T = T1, T2, . . .} denote a subsequence converging to φ∗k. By
continuity and uniform convergence

lim
T→∞

T−1| logLm(Y T | φ̂k,T )− logLm(Y T | φ∗k)| = 0 and

lim
T→∞

|T−1 logLm(Y T | φ∗k)−

∫

p(y | φ0k0
) log p(y | φ∗k)µ(dy)| = 0

with probability one. By definition, however,
∫

p(y | φ0k0
) log{p(y | φ0k)/p(y | φ

∗
k)}µ(dy) ≥ 0

and logLm(Y T | φ̂k) ≥ logLm(Y T | φ0k) for all T , leading to the conclusion that
∫

p(y |
φ0k0

) log{p(y | φ0k)/p(y | φ
∗
k)}µ(dy) = 0. It follows that φ∗k belongs to the coset Φ0k, but this

is true for all cluster points φ∗k, giving (4.3).
Readers are referred to Leroux (1992), Lemma 1 and Theorem 1, and Rydén (1995),

Lemma 3 for results whose content and proof is closely analogous to that of (4.3). The result
in (4.4) follows directly from Theorem 20.19 of Davidson (1994) or Theorem 5 of Oodairia
& Yoshihara (1971) since φk is fixed and ∂2 log p(Yt | φk)/∂φk∂φ

′
k is α-mixing at a geometric

rate, the interchange of the operations of differentiation and integration being allowed by
virtue of the integrability conditions C3’.
Proof of Theorem 1: First consider k̂′I . Clearly k̂

′
I ≥ 1; suppose therefore that k0 > 1. To

show that k̂′I ≥ k0 as T →∞ if limT→∞dkT /T = 0 observe that by Lemma 3

lim
T→∞

logLm(Y T | φ̂k+1)− logLm(Y T | φ̂k)

T
= K(φ0k0

, φ0k)−K(φ0k0
, φ0k+1) (A.1)

almost surely. In view of Lemma 2 the right hand side of equation (A.1) is positive for all
k < k0 and this implies that limT→∞ T−1{∆T (k)−∆T (k + 1)} < 0, k = 1, . . . , k0 − 1, with
probability one since limT→∞(d(k+1)T − dkT )/T = 0. Hence k̂′I ≥ k0 almost surely. This

result also leads to the conclusion that limT→∞ k̂I = K if K < k0 and that lim infT k̂I ≥ k0
when k0 ≤ K, as required.
Proof of Lemma 4: From Lemma 3 we know that if φ∗k is a cluster point of {φ̂k} then

φ∗k ∈ Φ0k and since this is true for all subsequential limit points it follows that φ̂k → Φ0k almost
surely as T →∞ where convergence is defined relative to the quotient norm inf{‖φk − φ

0
k‖ :

φ0k ∈ Φ0k} on Φ0k. Let {φ̂k,T } = {φ̂k : T = T1, T2, . . .} denote a subsequence converging to the
element φ0k of Φ0k.

If φ0k ∈ Int{Φk} then there exists an ε > 0 such that Bε(φ
0
k) = {φk : ‖φk − φ0k‖ < ε} ⊂

Int{Φk} and the event φ̂k,T ∈ Bε(φ
0
k) will occur infinitely often with probability one. Thus

φ̂k,T will be a critical point of logLm(Y T | φk) and a second order Taylor series expansion

of logLm(Y T | φ0k) about logL
m(Y T | φ̂k,T ) yields

logLm(Y T | φ̂k,T )− logLm(Y T | φ0k) =
T

2
(φ̂k,T − φ

0
k)

′HT (φ̂k,T )(φ̂k,T − φ
0
k) +R2,T (φ̂k,T , φ

0
k)

(A.2)
where HT (φk) = −T−1∂2 logLm(Y T | φk)/∂φk∂φ

′
k and |R2,T (φ̂k,T , φ

0
k)| = o(‖φ̂k,T − φ0k‖

2),
see Remark 1 following the proof of Theorem 6.10 of Marsden (1974). Similarly, using
the Mean Value Theorem for vector-valued functions, see Theorem 6.7 of Marsden (1974)
or Apostol (1974) Theorem 12.9, we can express the gradient of logLm(Y T | φk) at φ0k,
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∇LmT (φ
0
k) = ∂ logLm(Y T | φ0k)/∂φk, as

∇LmT (φ
0
k) = THT (φ̄

0
k,T )(φ̂k,T − φ

0
k) (A.3)

where φ̄0k,T = φ0k + λ ¯ (φ̂k,T − φ0k), the sum of φ0k and the Hadamard product of λ =

(λ1, . . . , λϕk
)′, 0 ≤ λi ≤ 1, i = 1, . . . , ϕk, with φ̂k,T − φ0k. The Hessian matrix HT (φ̄

0
k,T )

converges to H0
k = ∂2K(φ0k0

, φ0k)/∂φk∂φ
′
k with probability one because ‖HT (φ̄

0
k,T ) −H0

k‖ ≤

‖HT (φ̄
0
k,T )−HT (φ

0
k)‖+‖HT (φ

0
k)−H

0
k‖ and the first term on the right hand side approaches

zero by continuity and the fact that ‖φ̄0k,T − φ0k‖ ≤ ‖φ̂k,T − φ0k‖ → 0 as T → ∞ and the

second converges to zero by Lemma 3. Substituting HT (φ̄
0
k,T ) = H0

k + ∆0Ĥk in (A.3) and

using H0†
k to denote the Moore-Penrose inverse of H0

k we find, after some straightforward
algebra, that

∇LmT (φ
0
k)

′H0†
k ∇L

m
T (φ

0
k) = T 2(φ̂k,T − φ

0
k)

′[H0
k +∆0Ĥk]

′H0†
k [H0

k +∆0Ĥk](φ̂k,T − φ
0
k)

= T 2
{

(φ̂k,T − φ
0
k)

′H0
k(φ̂k,T − φ

0
k) + o(‖φ̂k − φ

0
k‖
2)
}

. (A.4)

The expression in (A.4) derives first, from the equality H0
kH

0†
k H

0
k = H0

k , and second, from

the fact that ∆0Ĥk = o(1) implies that the quadratic form

(φ̂k,T − φ
0
k)

′(H0
kH

0†
k ∆0Ĥk +∆0ĤkH

0†
k H

0
k +∆0ĤkH

0†
k ∆0Ĥk)(φ̂k,T − φ

0
k)

is o(‖φ̂k−φ
0
k‖
2). Writing λmax(H

0†
k ) for the largest eigenvalue of the matrixH0†

k and applying
the Rayleigh-Ritz theorem to the left hand side of (A.4) leads to the conclusion that

T 2
{

(φ̂k,T − φ
0
k)

′H0
k(φ̂k,T − φ

0
k) + o(‖φ̂k,T − φ

0
k‖
2)
}

≤ λmax(H
0†
k )‖∇LmT (φ

0
k)‖

2 .

But (φ̂k,T −φ
0
k)

′H0
k(φ̂k,T −φ

0
k) = (φ̂k,T −φ

0
k)

′HT (φ̂k,T )(φ̂k,T −φ
0
k) + o(‖φ̂k,T −φ

0
k‖
2) because

HT (φ̂k,T ) = H0
k + o(1). Therefore we can bound log{Lm(Y T | φ̂k,T )/L

m(Y T | φ0k)} ≥ 0 by

1

2Tλ+min(H
0
k)
‖∇LmT (φ

0
k)‖

2 + o(‖φ̂k,T − φ
0
k‖
2) (A.5)

where λ+min(H
0
k) denotes the smallest nonzero eigenvalue of H0

k .
To establish the order of magnitude of (A.5) observe that

‖∇LmT (φ
0
k)‖

2 =

ϕk
∑

r=1

|
T
∑

t=1

∂ log p(Yt | φ
0
k)

∂φkr
|2 .

Now, as in the proof of Lemma 3 we can show that {∂ log p(Yt | φ
0
k)/∂φkr} is a zero mean,

geometrically α-mixing process, the zero mean arising because φ0k is by definition a critical
point of

∫

p(y | φ0k0
) log p(y | φk)µ(dy) and hence, by C3’, E[∂ log p(Yt | φ

0
k)/∂φkr] = 0. It

follows that |
∑T

t=1 ∂ log p(Yt | φ
0
k)/∂φkr| obeys the law of the iterated logarithm. Apply-

ing this bound in (A.3) leads us to the conclusion that (λ+min(H
0
k) + o(1))2‖φ̂k,T − φ0k‖

2 =
O(log log T/T ), from which we can conclude that (A.5), and hence (A.2), is O(log log T ).

If φ0k lies on the boundary Φk\Int{Φk} then φ̂k,T and φ0k need no longer correspond
to stationary points of logLm(Y T | φk) and E[log p(Yt | φk)], respectively, and the above
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derivation must be appropriately modified. In this case set Rε(φ
0
k) = Bε(φ

0
k)∩ (Φk\Int{Φk}),

ε > 0, and let φ̂Rk,T = argmaxφk∈Rε(φ0
k
) logL

m(Y T | φk). Then ‖φ̂k,T − φ0k‖ < ε for T

sufficiently large and the difference logLm(Y T | φ̂k,T ) − logLm(Y T | φ0k) equals the sum of

logLm(Y T | φ̂k,T ) − logLm(Y T | φ̂Rk,T ) ≥ 0 and logLm(Y T | φ̂Rk,T ) − logLm(Y T | φ0k) ≥ 0.
We will establish below that both of these terms are O(log log T ).

First consider logLm(Y T | φ̂Rk,T )− logLm(Y T | φ0k). By assumption C2’, if φk ∈ Rε(φ
0
k)

then r(φk) = (r1(φk), . . . , rm(φk))
′ = 0 where m < ϕk. Using the Implicit Function Theorem

and following the argument used by Apostol (1974) pages 381-383 to justify Langrange’s
method of constrained optimization, we know that there exists a continuous reparameterisa-
tion of the form φk = h(%n), %n ∈ R

n, n = k−m, such that logLm(Y T | φ̂Rk,T ) = logLm(Y T |

h(%̂n,T )) ≥ logLm(Y T | h(%n)) for all % ∈ Bη(%
0
n) where φ

0
k = h(%0n) and % ∈ Bη(%

0
n) implies

that φk ∈ Rε(φ
0
k). Similarly,

∫

p(y | φ0k0
) log p(y | h(%n))µ(dy) has a local interior maximum

at %n = %0n. Using a repetition of the derivation employed previously when φ0k ∈ Int{Φk} we
can deduce that logLm(Y T | h(%̂n,T ))− logLm(Y T | h(%0n)) = O(log log T ).
Aside: To illustrate the constructions used in the previous two paragraphs, suppose that
a k component mixture is fitted to data from a process of order k0 < k where p(y |
φ0k0

) =
∑k0

i=1 π
0
i f(y | θ

0
i ). Then φ̂k,T converges to the parameter set Φ0k where Φ0k =

{φk ∈ Φk : φk = (π01, . . . , π
0
k0
, 0, . . . , 0, θ01, . . . , θ

0
k0
, θ∗k0+1

, . . . , θ∗k)} where θ∗k0+1
, . . . , θ∗k de-

note arbitrary points in Θ. The restrictions that define Rε(φ
0
k) are ri(φk) = πk0+i = 0,

i = 1, . . . ,m − 1, rm(φk) =
∑k0

i=1 πi − 1 = 0, m = k − k0, and the restricted estimate

φ̂Rk,T = (π̂1,T , . . . , π̂k0,T , 0, . . . , 0, θ̂1,T , . . . , θ̂k0,T , θ
∗
k0+1,T

, . . . , θ∗k,T ) where π̂1,T , . . . , π̂k0,T and

θ̂1,T , . . . , θ̂k0,T are the unrestricted estimates obtained from the k0 component model. The
reparameterisation induced by the restrictions yields %n = (π1, . . . , πk0−1, θ1, . . . , θk) where
n = ϕk−k+k0. The maximizing value %̂n,T = (π̂1,T , . . . , π̂k0−1,T , θ̂1,T , . . . , θ̂k0,T , θ

∗
k0+1,T

, . . . , θ∗k,T ),

and the maximized log-likelihood equals
∑T

t=1 log{
∑k0

i=1 π̂i,T f(yt | θ̂i,T )}. The Lagrangians
associated with the constrained optimum are

`i =

T
∑

t=1

(

f(yt | θ
∗
ko+i,T

)− f(yt | θ
∗
k,T )

∑k0

i=1 π̂i,T f(yt | θ̂i,T )

)

, for i = 1, . . . ,m− 1, and

`m =

T
∑

t=1

(

1−
f(yt | θ

∗
k,T )

∑k0

i=1 π̂i,T f(yt | θ̂i,T )

)

.

in this example.
Now consider logLm(Y T | φ̂k,T ) − logLm(Y T | φ̂Rk,T ). By Lemma 6 of this appendix

this term is O(T‖∇LmT (φ
0
k)/T‖

2). To evaluate the order of magnitude of ‖∇LmT (φ
0
k)/T‖ it is

sufficient to observe, from the Chain-Rule, that

∂ logLm(Y T | h(%0n))

∂%n
=
∂h′(%n)

∂%n

∂ logLm(Y T | h(%n))

∂φk

∣

∣

∣

∣

%n=%0n

and therefore

‖∇LmT (φ
0
k)/T‖ ≤ ‖

(

∂h(%0n)

∂%′n

∂h′(%0n)

∂%n

)†
∂h(%0n)

∂%′n
‖ · ‖

∂ logLm(Y T | h(%0n))

T∂%n
‖

=

(

tr

(

∂h(%0n)

∂%′n

∂h′(%0n)

∂%n

)†
)

1
2

· ‖
∂ logLm(Y T | h(%0n))

T∂%n
‖ .
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Since we can show that {∂ log p(Yt | h(%
0
n))/∂%nr} is a zero mean process, α-mixing at a

geometric rate, it follows that ‖∇LmT (φ
0
k)/T‖ = O(

√

log log T/T ) and that logLm(Y T |

φ̂k,T )− logLm(Y T | φ̂Rk,T ) = O(log log T ), as required.

Finally, if the sequence {φ̂k} converges, then {φ̂k} = {φ̂k,T } and we are finished. Oth-

erwise, Φ0k must contain at least two cluster points of {φ̂k}. Let {φ
0(1)
k , . . . , φ

0(N)
k } denote a

finite collection of subsequential limit points chosen together with N and ε > 0 such that
⋃N
n=1 Bε(φ

0(n)
k ) forms a uniform cover of Φ0k, which is possible by the Heine-Borel Cover-

ing Theorem. Let {φ̂
(n)
k,T } = {φ̂k : T = T1, T2, . . .} denote a subsequence converging to

φ
0(n)
k . Then ‖φ̂

(n)
k,T − φ

0(n)
k ‖ < ε for T > Tε, Tε sufficiently large, and since φ̂k → Φ0k

almost surely φ̂k ∈ BεTε (φ
0(n)
k ) where εTε = ‖φ̂

(n)
k,Tε

− φ
0(n)
k ‖ for at least one n and some

T > T ′ ≥ Tε. Hence | logLm(Y T | φ̂k)− logLm(Y T | φ̂
(n)
k,T )| = O(log log T ) by Lemma 6. But

logLm(Y T | φ̂
(n)
k,T )− logLm(Y T | φ

0(n)
k ) = O(log log T ) for all n and the triangular inequality

now yields logLm(Y T | φ̂k)− logLm(Y T | φ
0(n)
k ) = O(log log T ).

Proof of Lemma 5: For any E ⊆ YT let νmφk(E) =
∫

E L
m(yT | φk)µ

T (dyT ), νφk(E) =
∫

E p(y
T | φk)µ

T (dyT ) and consider the event AT = {Y T : 1
2 log{L

m(Y T | φ0k)/L
m(Y T |

φ0k0
)} ≥M log log T+log T}. Clearly we haveAT = {Y T : Lm(Y T | φ0k) ≥ T 2(log T )2MLm(Y T |

φ0k0
)} and therefore νm

φ0
k0

(AT ) ≤ νm
φ0
k

(AT )/T
2(log T )2M ≤ (1/T 2(log T )2M ). Thus the series

∑

T ν
m
φ0
k0

(AT ) is convergent and so by the Borel-Cantelli lemma limN→∞ νm
φ0
k0

(
⋃∞
T=N AT ) = 0.

If YT is the sample space of a simple random sample of observations from a finite mixture
with density p(y | φ0k0

) then we are finished because p(yT | φ0k0
) =

∏T
t=1 p(yt | φ

0
k0
) = Lm(yT |

φ0k0
) and νφ0

k0

= νm
φ0
k0

. Otherwise, observe that

νφ0
k0

(E) =

∫

E
p(yT | φ0k0

)µT (dyT )

=

∫

E
ψ(yT | φ0k0

)Lm(yT | φ0k0
)µT (dyT )

=

∫

E
ψ0(y

T )νmφ0
k0

(dyT ) (A.6)

where the likelihood ratio ψ0(y
T ) = p(yT | φ0k0

)/Lm(yT | φ0k0
) and ψ0(·) : Y

T → [0,∞)∪{∞}.

Fix b > 0 and set BT = {Y T : ψ0(Y
T ) < bT (log T )M}. By virtue of equation (A.6) and the

definitions of AT and BT we have the inequalities

νφ0
k0

(AT ∩BT ) < bT (log T )Mνmφ0
k0

(AT ∩BT ) ≤ bT (log T )Mνmφ0
k0

(AT ) ≤ b/T log TM .

Applying Markov’s inequality to ψ0(Y
T ) we can also bound νφ0

k0

(BT ) by γ/bT (log T )
M where

γ =
∫

YT ψ0(y
T )νφ0

k0

(dyT ). It follows from the inequality νφ0
k0

(AT ∩BT ) ≤ νφ0
k0

(BT ) that

νφ0
k0

(AT ) = νφ0
k0

(AT ∩BT ) + νφ0
k0

(AT ∩BT )

≤
b2 + γ

bT (log T )M
.

Given M > 1 we can conclude that
∑

T νφ0
k0

(AT ) < ∞ and hence, using the Borel-Cantelli

lemma once again, νφ0
k0

(AT i.o.) = 0 and the lemma is proved.
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Proof of Theorem 2: By definition

∆T (k)−∆T (k0) = log
Lm(Y T | φ̂k)

Lm(Y T | φ̂k0
)
− g(T )(h(k)− h(k0))

and it suffices to show that for k > k0 we will eventually have ∆T (k)−∆T (k0) ≤ 0. Dividing
by log T we find

limT→∞(log T )−1[∆T (k)−∆T (k0)] ≤ limT→∞(log T )−1 log
Lm(Y T | φ̂k)

Lm(Y T | φ̂k0
)

− limT→∞(
g(T )

log T
)(h(k)− h(k0))

and under the presumption that limT→∞ g(T )/ log T ≥ 1 the desired inequality translates
into the condition that

(h(k)− h(k0)) ≥ limT→∞(log T )−1 log
Lm(Y T | φ̂k)

Lm(Y T | φ̂k0
)
.

By Lemmas 4 and 5, however,

limT→∞(log T )−1 log
Lm(Y T | φ̂k)

Lm(Y T | φ̂k0
)

= limT→∞(log T )−1

[

log
Lm(Y T | φ̂k)

Lm(Y T | φ0k)
+

log
Lm(Y T | φ0k)

Lm(Y T | φ0k0
)
− log

Lm(Y T | φ̂k0
)

Lm(Y T | φ0k0
)

]

(A.7)

is less than or equal to two with probability one. Equation (A.7) indicates that the require-
ment that ∆T (k)−∆T (k0) ≤ 0 is assured whenever (h(k)−h(k0)) ≥ 2, which completes the
proof.
Proof of Theorem 3: Consider k̂II . Theorem 1 implies that for all ε > 0 there exists a
Tε < ∞ such that k̂I ≥ k0 for all Y T ∈ YT \AT where the events AT ⊂ Y

T have measure
νφ0

k0

(
⋃∞
T=N AT ) < ε, N > Tε. Similarly, from the expression for R(Y T , k) we see that

Lemmas 2 and 3 imply that with probability one limT→∞R(Y T , k) = 0 if k > k0 and
limT→∞R(Y T , k) = {K(φ0k0

, φ0k−1)−K(φ0k0
, φ0k)}+{K(φ0k0

, φ0k)−K(φ0k0
, φ0k+1)} > 0 if k ≤ k0.

This means that if ηT → 0 as T → ∞ such that R(Y T , k) = o(ηT ) for k > k0 then there
exists sets BT ⊂ YT such that for every Y T ∈ YT \BT R(Y T , k) > ηT if 1 ≤ k ≤ k0 and
R(Y T , k)/ηT < δ, δ > 0, if k0 < k < K, where νφ0

k0

(
⋃∞
T=N BT ) < ε whenever N > T ′

ε, T
′
ε

sufficiently large. By the definition of KT (k̂I) we therefore have that k ∈ KT (k̂I) if and only if
k ≤ k0 on the set (YT \AT ∩Y

T \BT ) and νφ0
k0

(
⋃∞
T=N{AT

⋃

BT }) < 2ε for N > max{Tε, T
′
ε}.

Since ε > 0 is arbitrary we can conclude that k̂II converges to k0 almost surely. The proof
that k̂′II converges to k0 is identical and is therefore omitted.

Lemma 6 Let {φ̂k,T } = {φ̂k : T = T1, T2, . . .} denote a subsequence converging to φ0k ∈

Φ0k. Then for T sufficiently large the bound logLm(Y T | φ̂k,T ) − logLm(Y T | φk) =

O(‖∇LmT (φ
0
k)‖

2/T ) applies for all φk ∈ Bε(φ
0
k), ε ≤ ‖φ

0
k − φ̂k,T ‖.

Proof: A first order Taylor series expansion of logLm(Y T | φ̂k,T ) about logLm(Y T | φk)
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and the Cauchy-Schwartz inequality yield the result that

log{Lm(Y T | φ̂k,T )/L
m(Y T | φk)} = (φ̂k,T − φk)

′∇LmT (φk) + o(‖φ̂k,T − φk‖)

≤ 2‖φ̂k,T − φ
0
k‖ · ‖∇L

m
T (φk)‖+ o(‖φ̂k,T − φ

0
k‖)(A.8)

since for T sufficiently large ‖φ̂k,T−φ
0
k‖ < δ for any δ > 0 and ‖φ̂k,T−φk‖ ≤ 2‖φ̂k,T−φ

0
k‖. But

by Assumption C3 and Theorem 12.9 of Apostol (1974) there exists a constant 0 < C1 <∞
such that T−1‖∇LmT (φ

0
k)−∇L

m
T (φk)‖ ≤ C1‖φk − φ

0
k‖ ≤ 3C1‖φ̂k,T − φ

0
k‖, implying that

‖T−1∇LmT (φk)‖ ≤ ‖T
−1∇LmT (φ

0
k)‖+O(‖φ̂k,T − φ

0
k‖) . (A.9)

The inequalities (A.8) and (A.9) produce the upper bound

logLm(Y T | φ̂k,T )− logLm(Y T | φk) ≤ O(max{‖φ̂k,T − φ
0
k‖ · ‖∇L

m
T (φ

0
k)‖, T‖φ̂k,T − φ

0
k‖
2}) .

As in (A.3), however,

∇LmT (φ̂k,T )−∇L
m
T (φ

0
k) = THT (φ̄

0
k,T )(φ̂k,T − φ

0
k) . (A.10)

Let uT denote a unit vector perpendicular to∇LmT (φ̂k,T ), that is, ‖uT ‖ = 1 and u′T∇L
m
T (φ̂k,T ) =

0. Then φ̂0k,T = φ̂k,T + (u′Tφ
0
k) ·

∣

∣

∣
1− |u′T φ̂k,T |/|u

′
Tφ

0
k|
∣

∣

∣
· uT is the projection of φ0k onto the

plane that passes through φ̂k,T perpendicular to ∇LmT (φ̂k,T ). Note that ‖φ̂k,T − φ̂0k,T ‖ =
∣

∣

∣
|u′Tφ

0
k| − |u

′
T φ̂k,T |

∣

∣

∣
≤ ‖φ̂k,T − φ0k‖ and ‖φ̂0k,T − φ0k‖ ≤ 2‖φ̂k,T − φ0k‖. Multiplying (A.10) by

(φ̂k,T − φ̂
0
k,T )

′/T gives

(φ̂0k,T − φ̂k,T )
′(∇LmT (φ

0
k)/T ) = (φ̂k,T − φ̂

0
k,T )

′HT (φ̄
0
k,T )(φ̂k,T − φ

0
k) . (A.11)

The right hand side of (A.11) equals

(φ̂k,T − φ
0
k)

′HT (φ̄
0
k,T )(φ̂k,T − φ

0
k)− (φ̂0k,T − φ

0
k)

′HT (φ̄
0
k,T )(φ̂k,T − φ

0
k) . (A.12)

Applying the Rayleigh-Ritz theorem to the first term and using the Cauchy-Schwartz inequal-
ity together with the submultiplicative property of the Euclidean norm and the inequality
‖φ̂k,T − φk‖ ≤ 2‖φ̂k,T − φ

0
k‖ on the second we can bounded (A.12) below by

λmin(HT (φ̄
0
k,T ))‖φ̂k,T − φ

0
k‖
2 − ‖HT (φ̄

0
k,T )‖ · ‖φ̂k,T − φ

0
k‖
2 .

Thus the right hand side of (A.11) is bounded below by a term O(‖φ̂k,T − φ0k‖
2). The left

hand side of (A.11), on the other hand, is bounded above by

‖φ̂0k,T − φ̂k,T ‖ · ‖∇L
m
T (φ

0
k)/T‖ = O(‖φ̂k,T − φ

0
k‖ · ‖∇L

m
T (φ

0
k)/T‖) .

Thus we can conclude that ‖φ̂k,T − φ0k‖ = O(‖∇LmT (φ
0
k)/T‖) and that logLm(Y T | φ̂k,T ) −

logLm(Y T | φk) is of order at most T‖∇LmT (φ
0
k)/T‖

2.
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