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Abstract

This paper studies linear and nonlinear autoregressive leading indicator models of

business cycles in G7 countries. The models use the spread between short-term and

long-term interest rates as leading indicators for GDP, and their success in capturing

business cycles is gauged by non-parametric shape tests, and their ability to predict

the probability of recession. We Þnd that bivariate nonlinear models of output and

the interest rate spread can successfully capture the shape of the business cycle in

cases where linear models fail. Also, our nonlinear leading indicator models for USA,

Canada and the UK outperform other models of GDP with respect to predicting

the probability of recession.
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1. Introduction

Modeling the cyclical behavior of the aggregate output has always been an important

question for macroeconomists, who often want to classify past and present patterns into

particular phases of the business cycle, and forecast future turning points. There are

lively debates about how to deÞne and measure cycles in output, how to model them,

and how to predict features such as turning points and recessions. Detrending issues fuel

many of these debates (see e.g. Canova (1998)), but other important issues include the

possible nonlinearity in business cycles (see e.g. Hamilton (1989)), and which variables

are most useful for predicting output (Stock and Watson (1989) and (2001)).

The forecasting literature has often emphasized the ability of Þnancial variables to

predict various features of business cycles. In particular, Zellner and Hong (1989),

Zellner et al (1991) and Zellner and Min (1999) show that adding (lags of) monetary

and Þnancial variables to univariate autoregressive models of output growth improves

forecasts of turning points in many countries. These authors call their models �autore-

gressive leading indicator� (ARLI) models, a term that we use from now on. Related

to forecasts and ARLI models is a large set of macroeconomic papers that document

and explain why speciÞc Þnancial variables have leading information for the business

cycle1. In their comprehensive review of this work, Stock and Watson (2001) conclude

that �there is evidence that the term spread is a serious candidate as a predictor of out-

put growth and recessions. The stability of this proposition in the U.S. is questionable,

however, and its universality is unresolved�. We interpret the lack of stability in the

output growth/term spread relationship as evidence of nonlinearity, and this motivates

our nonlinear approach to modeling output and the spread.

Almost all bivariate analyses of output and the spread are based on linear speciÞca-

tions. However, the empirical Þnance literature presents statistically signiÞcant evidence

that the drift in the term structure of interest rate is nonlinear (see e.g. Aït-Sahalia

1996), and this suggests that a satisfactory bivariate model of output and the spread is

likely to be nonlinear. Also, the apparent decline in the variance of output growth in the

United States since the mid eighties (see e.g. Kim and Nelson (1999) and McConnell

and Perez-Quiros (2000)) has led to a belief that it is necessary to include an exogenous
1A representative sample of this literature includes Davis and Fagan (1997), Estrella and Mishkin

(1998), Friedman and Kuttner (1998), Gertler and Lown (1999), Hamilton and Kim (2002) and Kwark

(2002).
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structural break in models of output growth. However, it is possible that a self exciting

nonlinear propagation mechanism can adequately generate changes in the important

features of cycle characteristics, without any need for a structural break in the variance

of shocks.

In this paper we develop linear and nonlinear autoregressive leading indicator models

of output growth in G-7 countries. Our models use the spread between short-term and

long-term interest rates as leading indicators for growth in GDP, and their success in

capturing business cycles is gauged Þrstly by the non-parametric procedures developed

by Harding and Pagan (2002), and then by their ability to forecast the probability of

a recession (as in Fair (1993)). This contrasts with Teräsvirta and Anderson (1992),

Clements and Krolzig (1998) and Jansen and Oh (1999), who used mean squared errors

of one step ahead forecasts to evaluate various univariate nonlinear models of output.

Our primary aim is to develop time series models that can predict important pre-

speciÞed events such as �recessions� and other salient features of business cycles. We

are particularly interested in assessing the predictive ability of nonlinear speciÞcations

relative to linear speciÞcations, and where applicable, relative to linear models that

incorporate a structural break.

We build on the work in Anderson and Vahid (2001), who extended the class of lin-

ear autoregressive leading indicator (ARLI) models to include nonlinear autoregressive

speciÞcations (called NARLI models). NARLI models allow for differences in behav-

ior over different phases of the business cycle, and they also allow for asymmetries in

how the indicator leads output. In line with results of Stock and Watson (1989), Davis

and Fagan (1997), Kozicki (1997), Friedman and Kuttner (1998), Estrella and Mishkin

(1998) and others, we use yield spreads as our leading indicators. The predictive power

of the spread is well established, but most research on this issue has stayed within the

conÞnes of conventional linear models of output and the spread. Notable exceptions

include Estrella and Mishkin (1998), Karunaratne (1999) and Birchenhall et al (2000)

who use a logit/probit model to explain a binary recession indicator, Galbraith and

Tkacz (2000) who test for and Þnd asymmetries in the link between the yield spread

and output in G7 countries, and De Long and Summers (1988), Cover (1992), Kar-

ras (1996), Choi (1999) and Weiss (1999), who model asymmetries in the relationship

between monetary policy and output.

We Þnd that bivariate nonlinear models of output and the interest rate spread can

predict the characteristic features of the business cycle in almost all cases where linear
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models fail. They can capture the amplitude and duration of both peak to trough

states, and they can also capture the curvature in transition from trough to peak states.

Linear leading indicator models of GDP fail to reproduce these properties for the US,

Canada and the UK, as do univariate nonlinear models. Thus, the nonlinearity in a

bivariate framework appears to be important. Our forecasting statistics are broadly

consistent with our model evaluations. Relative to the linear models, our bivariate

nonlinear speciÞcations for US, Canada and the UK can predict the probability of

recessions more accurately. Interestingly, for the USA and the UK, where a decline in

volatility is observed, Þxed parameter bivariate nonlinear models perform no worse than

linear models with structural break. This provides evidence that the apparent decline

in volatility may just be an implication of a nonlinear propagation mechanism in the

conditional mean of output growth. For the other countries, the nonlinearity in the

bivariate framework offers some improvement compared to univariate models, but only

a small improvement relative to bivariate VARs.

The next section of this paper provides a description of our modelling methodology

and develops the linear and nonlinear models that we use in our analysis. Then, in

Section 3, we discuss the model evaluation techniques that we use and apply these

evaluation techniques to our models. The paper concludes in Section 4 with a summary

of our Þndings and some directions for future research.

2. Modeling methodology

2.1. Data

Our data consists of quarterly time series of real output (gross domestic product), short

term interest rates and long term interest rates for the United States, Canada, the United

Kingdom, France, Italy, Germany and Japan. We provide detailed information on data

sources, our samples, and precise descriptions of our raw series in Appendix 1, and we

base our benchmark analyses of business cycle characteristics on the natural logarithms

of real GDP. Our spread variables are calculated by taking the difference between the

interest rates on the long-term bond and the short term bond, and the variables in our

parametric models are output growth (calculated as 100×the differenced logarithms of
real GDP) and the spread. We use the notation yt to denote output growth (which we

will call output) and st to denote the interest rate spread. Graphs of all variables are

also provided in Appendix 1.
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2.2. Linear and Nonlinear model speciÞcation

We develop our models, one country at a time, to make sure that we account for country

speciÞc characteristics. In each case, we estimate a univariate autoregressive speciÞca-

tion, and then a VAR in output and the spread to provide a baseline bivariate model.

We use AIC to guide our lag-length choices, but eliminate lagged variables if they are

statistically insigniÞcant and their removal does not lead to serially correlated residuals.

We estimate our restricted VARs both equation by equation (with OLS), and as a SUR,

but there is never much difference between the two and we only report the latter. The

output equation in the restricted VAR is an autoregressive leading indicator (ARLI)

model. We also estimate random walk models for each country, so that later we can

compare the simulated properties of the data and random walk models with other lin-

ear models, and thereby assess how the lag structure and the Þnancial indicator in each

ARLI model can account for ability to capture business cycle characteristics.

We develop our nonlinear models by conducting speciÞcation tests on each equation

in the VAR model. The nonlinear alternatives that we consider are threshold autore-

gressive (TAR) and logistic smooth transition autoregressive (LSTAR) models. We Þnd

these models attractive because they incorporate regimes that can easily be interpreted

as recessionary and expansionary states, and changes between regimes depend on an ob-

served transition variable, rather than on an unobservable state. A univariate LSTAR

model of order p is deÞned by

yt = (π10+π
0
1wt)+(π20+π

0
2wt)F (yt−d)+ut, with F (yt−d) = [1 + exp[−γ(yt−d − c)] ]−1 ,

for wt = (yt−1, . . . , yt−p)0, yt−d ∈ wt, πj = (πj1, . . . , πjp)0 for j = 1, 2, and ut ∼ nid. A
TAR model is the limiting case of an LSTAR model when γ →∞. It is straightforward
to generalize these models to bivariate models.

We use the Tsay (1989) test against the TAR alternative, and three tests by Luukko-

nen et al (1988) and Teräsvirta (1994) for evidence of STAR behavior. All of these

tests require specifying the transition variable in advance. The Tsay (1989) test orders

the data matrix (dependent and lagged variables) according to the transition variable,

recursively estimates the model, and then tests whether the recursive residuals are or-

thogonal to the regressors. The three tests proposed by Luukkonen et al (1988) are

all tests for omitted nonlinear terms. The simplest of these, which we call the �Þrst

order test�, takes the cross product of the transition variable and all regressors to be

the omitted variables. The �augmented Þrst order test� adds the third power of the
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transition variable to the list of cross products considered by the Þrst order test, and

the �third order test� uses the cross products of the Þrst, second and third powers of the

transition variable with all the regressors. Luukkonen at al (1988) discuss the relative

merits of these tests and note that the augmented Þrst order test often can account for

shortcomings associated with the other two tests. As suggested by these authors, we

use F-test versions of the tests to account for the relatively small sample size.

Table 1: Evidence of Nonlinearity

USA Canada UK France Germany Italy Japan

Univariate - - - - y∗t−1 FAST y∗t−3 AST yt−4 T

Models of yt−2 FAST y∗t−5 T

Output yt−3 FAST

yt−4 S

Bivariate st−1 FAST y∗t−1 FST yt−1 S - y∗t−1 FAST y∗t−3 AS y∗t−4 S

Models of s∗t−2 FAST st−1 FT y∗t−2 FAST yt−2 FAS st−1 AT st−1 S

Output st−3 FAST st−2 F yt−3 FS yt−3 FAST st−2 FA

st−1 S

st−2 S

Bivariate yt−1 FAST y∗t−1 ST yt−2 FA yt−1 FAST yt−2 S yt−3 S yt−2 S

Models of yt−2 FAST st−1 ST yt−2 FAST y∗t−3 FAST s∗t−1 S st−1 S

Spread yt−3 FAST st−2 S s∗t−1 FAST st−1 T s∗t−4 FAS

s∗t−1 FAST st−2 FAST st−2 FAST st−5 T

st−2 FAST st−3 FAS

st−3 FAST st−4 FA

Entries in the table relate to rejections of the null hypothesis of linearity (at the 5%

signiÞcance level). See the text for descriptions of the tests.

We consider each lag of output and the spread as a possible transition variable and

perform nonlinearity tests for each country. The results are summarized in Table 1.

For each country, this table shows if there is evidence of nonlinearity in the univariate

autoregressive model of output, in the output equation of a bivariate model of output

and the spread, and in the spread equation of the bivariate model. An entry like yt−2
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means that the null of linearity was rejected at the 5% level of signiÞcance when the

transition variable was yt−2. After the transition variable, we report which test or tests

rejected linearity. The letters �F�, �A�, �S� and �T� stand for Þrst order, augmented Þrst

order, third order and TAR tests respectively. Finally, the transition variable that we

have selected for our Þnal speciÞcation for each equation is marked by a star superscript.

The null of linearity is not rejected in the univariate autoregressive models of output

for the US, Canada, UK and France. This is consistent with work in Anderson and

Vahid (2001), who show that the force-Þtting of univariate nonlinear autoregressive

models to US output growth does not improve model performance, relative to an AR

model. However, in the bivariate setting, we Þnd signiÞcant evidence of nonlinearity in

both output and spread equations, in all cases except the French output equation.

We use the results of the nonlinearity tests to guide our speciÞcation for each equa-

tion, and as above, we remove statistically insigniÞcant explanators from equations

provided that their removal does not lead to serially correlated residuals. If evidence

of nonlinearity is found for more than one transition variable, we Þt separate nonlinear

models for each transition variable, and then choose the model with best Þt. Since TAR

models are special cases of STAR models when γ → ∞, we begin by Þtting a STAR
model in all cases where nonlinearity is found, but we monitor the likelihood function,

and switch to a TAR speciÞcation if the global maximum seems to occur when the

transition parameter is very large.

It is well-known that nonlinearity tests are sensitive to �outliers� (see van Dijk, et

al (1997)), and that it is appropriate to disregard evidence of nonlinearity that arises

because of recording errors or one time exogenous events. However, if outliers are not

generated by errors or rare events, then they will be very important for the identiÞcation

of the nonlinear propagation mechanism. We attend to the potential outlier problem by

restricting the sorts of STAR models that we are willing to entertain (we require at least

10% of observations to lie on each side of the transition threshold c) and we monitor the

maximization of the likelihood function. If the likelihood function is maximized when

the parameter c is on our imposed boundary and γ implies threshold behavior, then we

classify this as nonlinearity due to outliers, and we switch back to a linear speciÞcation.

We choose the nonlinear speciÞcation in all other cases. In particular, when c is on a

boundary but the transition function is smooth, we choose the nonlinear speciÞcation.

In this case observations on both sides of c contribute to the estimation of parameters

in both regimes. This decision rule is illustrated in the Figure 1, and we have found
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that it leads to stable nonlinear models that do not explode in repeated simulations.

Figure 1
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The estimated models for each country are presented in Appendix 2. For each

country, a random walk with drift model, a univariate linear autoregressive model (if

different from the random walk), a univariate non-linear autoregressive model, a bivari-

ate linear model of output and the spread and a bivariate nonlinear model of output

and the spread are reported. Non-linear models are Þtted only if tests of linearity reject

the linear autoregressive models and if non-linear models allow for sufficient number of

observations in each regime as discussed above. As discussed above, we also present

univariate autoregressive models with a structural break for the US and UK. Residual

tests indicate that none of the dynamic models have serially correlated residuals (ac-

cording to Lagrange multiplier tests), but many of the linear speciÞcations show strong
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evidence of heteroskedasticity (according to White tests and ARCH tests), structural

change (according to Ramsey reset tests) and nonlinearity as indicated in Table 1.

3. Model Evaluation

We evaluate our models according to their ability to capture and predict business cycle

characteristics. This places a direct focus on the likely requirements of model users,

who will typically want to study and forecast business cycles. Given that relatively

long samples are needed to reveal business cycle characteristics, we have chosen eval-

uation techniques that track model performance over the entire sample, rather than

over a short post-sample evaluation period. This avoids the possibility that an out-

of-sample evaluation period is uneventful, or does not contain sufficient information to

allow evaluation to be meaningful. Our entire sample for each G7 country contains

several recessionary and expansionary periods, so that the evaluation of performance

with respect to a particular business cycle characteristic is based a sufficient number of

relevant data points.

3.1. Predicting Business Cycle Characteristics (BCCs)

Harding and Pagan (2002) point out the gap between policy makers� focus on turning

points in the levels of output and academic interest in modeling the moments of de-

trended data. They advocate using a cycle dating algorithm to identify the turning

points in the levels, and measuring various business cycle characteristics (BCCs) based

on these turning points. These BCCs include the duration and amplitude of a cycle

from peak to trough and from trough to peak, as well as cumulative movements and

asymmetries within these phases. We follow their suggested techniques for dating cycles

and measuring eight BCCs, and then we evaluate our models by comparing the BCCs in

our samples with the BCCs predicted by our models. This model evaluation technique

can be seen as a test for model admissibility, in the sense that it tells us if a model

cannot produce a feature that is actually observed in the data. A brief summary of this

procedure is provided below.

The cycle dating algorithm is an adaptation of the Bry-Boschan (1971) algorithm,

and it identiÞes turning points when

logGDPt > (<) logGDPt±k for k = 1, 2 quarters,
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provided that each phase of a cycle lasts at least two quarters and the whole cycle lasts

at least Þve quarters. This algorithm is applied to both raw data, and data series that

have been generated using DGPs implied by our estimated models.

Figure 2 illustrates the measurement of four BCCs over a peak to trough phase,

while the economy moves along the curved path from point X to point Y. The length

of the line XZ shows the duration of the phase, i.e. how long it takes (in quarters) for

the phase to be completed, while the length of the line YZ shows the amplitude of the

phase, i.e. the total change in output as the economy moves from X to Y. We convert

the latter into a percentage change. The shaded area labeled �cumulation� measures

the impact of the recession, by approximating the total accumulated loss in output as

the economy moves from peak to trough. We convert this measure to a percentage.

The Þnal BCC (labeled �excess� in the right hand diagram in Figure 2) measures the

difference between the cumulated output loss and a crude triangle approximation (given

by triangle XYZ) to this loss. This measures the curvature of the phase of the cycle.

We divide this measure by the duration and convert it to a percentage.

Figure 2: Calculation of Business Cycle Characteristics
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The above measures relate to a single recession, but one can summarize the business

cycle characteristics of a given series by calculating the means of each BCC for all peak-

to-trough and all trough-to-peak phases. These eight summary statistics (calculated

without any prior detrending of the series) provide a natural benchmark for evaluating

a business cycle model, because a good model should imply the same BCCs as those

that in the data. Parametric models are, of course, typically modelling detrended data.
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However, this doesn�t prevent the simulation of detrended data and then the integration

of the simulated series to obtain an analogue of the original data together with its BCC

measures. For each parametric model, we undertake 10000 simulations in order to

estimate the empirical density functions for each of the eight characteristics of interest,

and then we compare these densities with the relevant characteristics in the original

data. If an observed BCC lies in the upper 5% or lower 5% tails of the simulated

density, then this provides evidence against the parametric model.

3.2. Forecasting Recessions

In line with previous work done by Neftçi (1982), Diebold and Rudebusch (1989), Zellner

at al. (1991) and Fair (1993), we evaluate models according to their ability in predict

business cycle events. Prediction is based on simulation, since some of our models are

nonlinear and taking expectations is not straightforward. The technique for predicting

the probability of an event involves deÞning the event of interest as a property of a

sequence of multi-step ahead predictions, classifying each predicted sequence from the

Monte Carlo as either having or not having that property, and then setting the estimated

probability equal to the proportion of Monte Carlo sequences that have the property.

See Fair (1993) for further details.

We use Fair�s (1993) two deÞnitions of a recession, which are:

A: At least two consecutive quarters of negative growth in real GDP over the next

Þve quarters; and

B: At least two quarters of negative growth in real GDP over the next Þve quarters.

As noted in Fair, the Þrst of these deÞnitions is in common use. The other deÞnition is

broader, and allows us to assess how predictions might change, as we change the event

that we are trying to predict. Neither deÞnition coincides with the peak to trough phases

identiÞed via the cycle dating algorithm, but one could usefully adapt the Monte Carlo

simulations to focus on an event such as reaching a peak, or completing a peak to trough

phase, if one wanted to. We take lagged observations and our estimated parameters as

given for each observation in our sample, and then use the simulation process to estimate

the probabilities of events A and B. This leads to series of probabilities (Pt), which can

be compared against indicator variables (Dt) for events A and B, where each of Pt and

Dt relate to an event over the Þve quarter period between (t) and (t + 4), and Pt is

predicted from the information set at time (t− 1).
It is useful to note the similarities and differences between our probability predic-
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tions, and others. Firstly, we deÞne a recession as an observable event. Therefore,

we do not need to make inference about an unobservable state, as is done in Markov

Switching models. Also, since our deÞnition of recession is directly related to one to Þve

period ahead forecasts of output, an appropriate model for forecasting the probability of

recession is one that delivers the one to Þve period ahead predictive density of output.

In this context, binary dependent variable models are problem speciÞc, and if there is

interest in estimating the probabilities associated with other events, then the dependent

variable needs to be redeÞned in each case, and the model needs to be re-estimated.

We evaluate our probability forecasts using Brier�s (1950) quadratic probability

scores (QPS) and log probability scores (LPS), which are respectively deÞned by

QPS =
1

T

TX
t=1

2(Pt −Dt)2 (0 < QPS < 2), and

LPS = − 1
T

TX
t=1

[(1−Dt) ln(1− Pt) +Dt lnPt] (0 < LPS <∞).

for a sample of T forecasts. QPS provides a probability analogue to the usual mean

squared error criterion, while LPS penalizes large mistakes more than QPS. Like the

mean squared error measure, low QPS and low LPS imply accurate forecasts. See

Diebold and Rudebusch (1989) for further discussion on these evaluation criteria.

Our forecasts about recessions are not genuine out-of-sample forecasts, but the QPS

and LPS criteria differ from the loss functions that are minimized when the parameters

are estimated. These criteria are not independent of the in-sample sum of squared

errors, but there is little reason to believe that they necessarily improve with the Þt of

the model. Indeed, our results show that larger models do not necessarily outperform

more parsimonious models.

3.3. Results

Summary statistics of the business cycle characteristics for each of our log(GDP) series

are provided in Table 2. Here, it is clear that each characteristic varies from country

to country, and that the characteristics of the peak-to-trough phase are quite different

from those of the trough-to-peak phase. Of course, given that the log(GDP) series have

a positive trend and that the table shows the characteristics of the actual series (as

opposed to the detrended series), it is not surprising that the trough-to-peak duration

and amplitude of the cycles are much larger than the peak-to-trough ones. One striking
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observation is the small trough-to-peak characteristics, in particular the cumulative

gain, of Japanese business cycles relative to other countries. We attribute this to the

clear break in the trend in the Japanese GDP since 1990. As we will discuss below, we

cannot reproduce this break endogenously with a nonlinear self-exciting model.

Summary tables of performance of different models in reproducing the business cycle

characteristics for each of the G-7 countries are reported in Panel 1. Similarly, Panel

2 contains summary tables reporting the performance of different models in predicting

the probability of recessions for each country. We highlight the main Þndings for each

country below.

Table 2: Benchmark Business Cycle Characteristics

USA Canada UK∗ France Germany Italy Japan

Time Span 61:1-00:4 61:4-00:3 60:1-00:2 70:4-98:4 61:2-99:4 71:3-99:4 71:2-99:4

Duration

PT 3.8 4.0 4.4 3.0 4.5 2.8 3.6

TP 20.4 16.0 25.5 32.5 19.2 14.8 8.0

Amplitude

PT -2.1 -3.2 -3.2 -1.6 -2.3 -1.5 -1.9

TP 22.9 17.2 21.5 21.3 20.1 11.5 4.9

Cumulation

PT -4.2 -6.6 -9.6 -2.0 -5.3 -3.0 -6.3

TP 342 257 381 358 253 130 19

Excess

PT -0.1 0.3 -0.1 0.0 0.1 -0.1 -0.1

TP 1.4 1.4 -0.5 -0.3 0.8 0.3 -0.1

Note: The UK Þgures relate to a cycle with a minimum length of 4 quarters rather than 5.

This makes our analysis comparable to Harding and Pagan (2002)

The United States: As previously documented by Harding and Pagan (2002), linear

autoregressive models fail to reproduce the curvature of the cycles in the US. The linear

ARLI model fails this test as well, whereas the bivariate NARLI model passes this data

admissibility test. Allowing for a break in the variance and the autoregressive structure

in 1984:2 also produces a data admissible model. However, the probability forecast
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scores in the US table in Panel 2 show that all univariate models, including the model

with a break at 1984:2, do worse than the bivariate models of output and the spread.

This is particularly interesting because in the forecasting exercise with the break model

we assume that the break is recognized as soon as it happens, an assumption that gives

an informational advantage to the break model. These results lead us to conclude that

the bivariate nonlinear leading indicator model for the US Þts the characteristics of the

US business cycles without any need for an exogenous structural break.

Given the recent recession in the US, we also used our estimated models to produce

genuine out-of-sample predictions of the probability of recession. As for the estimation

period, bivariate models of output and the spread performed much better than the

univariate models in predicting this recession. Both bivariate models began to predict

a higher than average probability of a recession two periods before 2001:1, which is the

Þrst quarter of negative growth in the out of sample period. The bivariate nonlinear

model predicted a higher probability of Event A than the bivariate linear model only one

period before 2001:1, but it predicted a higher probability for Event B from two periods

before 2001:1. This is particularly interesting, because the ability of the spread to

predict recessions was questioned after many models of output and the spread �missed�

the 1990 recession.

Canada: The Canadian results are qualitatively similar to the US case. In the bivariate

models of output and the spread, signiÞcant nonlinearity is found in each equation.

Unlike the US case where the transition variables are lags of spread, in the Canadian

models the Þrst lag of output is the transition variable in each equation. This opens

up the possibility of common nonlinearity in these equations, but a test for common

nonlinearity suggested by Anderson and Vahid (1998) rejects this hypothesis. As in the

US model, the transition function in the spread equation is much smoother than the

transition function in the output equation. All models but the bivariate NARLI model

fail to produce the shape of Canadian business cycles. In predicting recessions, those

models that include the spread perform much better than the univariate models, and

the bivariate NARLI model has the best scores. As in the US case, we conclude that

the bivariate NARLI model Þts the characteristics of the Canadian business cycles, and

that it is well suited for predicting recessions.

United Kingdom: As in the previous two cases, no nonlinearity is found in the

univariate model of UK output, but signiÞcant nonlinearity is found in the bivariate

models of output and spread. However, using the procedure described in Section 2, we
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conclude that the evidence of nonlinearity in the spread equation is due to just a few

outlying observations. Therefore, we use a linear model for the spread. We also estimate

a univariate autoregressive model with an exogenous break estimated at 1990:4. As in

the previous cases, univariate autoregressive models and the linear ARLI model fail to

capture the shape of the business cycle. Interestingly, the autoregressive model with

a single structural break also fails this task. The bivariate NARLI model is the only

model that can reproduce the shape of UK business cycles. This model also does best

in predicting the probability of recessions, although the improvement in the scores is

not as dramatic as in the US and Canadian cases.

France: The French case is the only case where no nonlinearity is found in either the

univariate output equation or in the ARLI model of output. Unlike the previous cases,

the univariate autoregressive model of output can capture the shape of the business

cycles in France. However, the univariate autoregressive model scores worse than the

random walk model in predicting the probability of recessions. The bivariate ARLI

model of output and the spread also passes the data admissibility tests, and scores

much better than the univariate models in predicting the probability of recessions. The

bivariate NARLI model, in which only the spread equation is nonlinear, does not perform

better than the bivariate linear model.

Germany: This is the Þrst case where the univariate autoregressive model of output

shows signiÞcant signs of nonlinearity, and hence we have also estimated a univariate

LSTAR model for output. However, the univariate nonlinear model does not produce

better probability forecasts than the univariate linear autoregressive model. All models

(except the random walk model) pass the data admissibility test. Bivariate models

score better in predicting the probability of recessions, with bivariate NARLI model

improving the scores only slightly over the bivariate linear model.

Italy: As in the German case, linearity is rejected even in the linear autoregressive

model of output, and all estimated models capture the shape of the business cycle.

Unlike the German case however, the univariate nonlinear model of output scores con-

siderably better than the univariate linear model in predicting recessions. Unlike all

previous cases, the contribution of the spread to the output equation is quite weak.

Even though the coefficient of the lag of the spread in the output equation is signiÞ-

cantly different from zero, the estimated standard errors of the univariate autoregressive

model of output and that of the output equation in the linear bivariate model are equal.

Indeed, if we had allowed for Þve lags in the bivariate model, we would have ended
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up with no spread variable in the output equation. The forecast accuracy measures

conÞrm that the addition of the spread does not help predict recessions in Italy and the

univariate nonlinear model does best.

Japan: The Japanese case is unique in the sense that without allowing for an exogenous

structural break, all models fail to capture the shape of the business cycles in Japan.

We attribute this to the fact that in Japan there has been a signiÞcant decline in the

output trend, unlike the US or the UK cases where the evidence of a break is in the

variance and the persistence of output growth. We estimate the break date to be 1991:2.

Linear models with the break can capture the shape of the business cycles in Japan. The

ARLI model with break produces the best forecasts for the probability of recessions. We

emphasize again that in the forecasting exercise, we assume that the structural break is

recognized immediately after it happens. We conclude from our analysis that a bivariate

time series model of output and the spread is not rich enough to explain the important

features of the business cycles in Japan.

4. Conclusion and Directions for Further Research

In this paper we ask if bivariate nonlinear autoregressive models of output growth

and the term spread can explain and forecast important features of business cycles in

G-7 countries. We evaluate our models by assessing whether or not they imply the

cyclical features that are present in the observed data, and how well they can forecast

the probability of well deÞned events such as �two consecutive quarters with negative

growth in the next Þve quarters�. For the US, Canada and the UK, we Þnd that the

bivariate nonlinear leading indicator model of output and the spread is the only model

that can capture the shape of the business cycles without any need for exogenous time

variation (i.e. structural breaks). In these cases, the bivariate NARLI models are also

clearly the best models for predicting recessions. For France, Germany and Italy we

found that all autoregressive models of output could capture the shape of the business

cycles. Addition of the term spread improves the probability forecasts for France and

Germany, but not for Italy. We found no model of output and term spread that could

explain the important characteristics of the Japanese business cycles without recourse

to a structural break in the mean.

Relative to other research that has looked at the link between yield spreads and

output, the distinctive feature of our work is that we explicitly model nonlinearities in
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output and the spread. We follow a stepwise procedure for developing our models which

starts from Þnding the best linear model and then moves to nonlinear models only if

nonlinear models are warranted by the data. The procedures that we follow to decide

between threshold or smooth transition models, and between �genuine� nonlinearity or

�outlier� behavior are likely to be of interest in other applications.

The apparent reduction in the variance of output growth in the US has attracted

a lot of attention lately, and similar declines in the variance of output growth in many

other industrial countries will doubtless motivate further parallel research on this topic.

Our results show that for the US and the UK, one cannot rule out the possibility that the

post-war data have been generated by a Þxed parameter self-exciting nonlinear model

of output and the spread. That is, there is no need to look beyond the information set

containing output and the spread, and no need to allow for exogenous structural breaks

to explain the salient features of the business cycles in these countries.

Some researchers have advocated the use of error correction terms from models of

Þnancial markets in models of real variables, and we think that this insight is important.

The yield spread is, of course a valid error correction term in modeling the bond market,

and as such, it summarizes many features of the bond sector. Recent related work by

Sensier et al (2002) provides evidence of the usefulness of short-term interest rates in

Germany for predicting recession in Italy and France. We believe that further research

that uses carefully chosen error correction terms from international Þnancial markets as

predictors for output within a multivariate nonlinear framework, may lead to superior

models for capturing the shape and the turning points of business cycles.
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APPENDIX 1: DATA

Precise descriptions of the raw series that we use in this analysis are given below. Unless

otherwise stated, we have drawn all data for the Þrst four countries from the OECD

portion of the DX database (Australia), and we have extracted all data for the last

three countries from the data Þles available on Mark Watson�s web page. We use the

logarithms of real GDP when we undertake our benchmark analysis, and our models

are functions of output growth (yt = 100 × ∆ ln(GDP )) and the interest rate spread
(st = Long-term interest rate - Short-term interest rate). The effective samples used for

analysis are shorter than the raw series because of lagged variables in the models.

USA (1960:1 to 2000:4)

Output: Real Gross Domestic Product: (Billions of Chained 1996 Dollars, seasonally

adjusted at annual rates, from the U.S. Department of Commerce, Bureau of Economic

Analysis).

Short-Term Interest Rates: 3-Month Treasury (Secondary) Bill Market Rates (Averages

over business days expressed as a percentage, H15 Release from the Federal Reserve

Board of Governors).

Long-Term Interest Rates: 10-Year Treasury Bond Constant Maturity Rates (Averages

over business days expressed as a percentage, H15 Release from the Federal Reserve

Board of Governors).

The effective sample consisted of 160 observations, dating from 1961:1 to 2000:4.
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CANADA (1961:1 to 2000:3)

Output: Real Gross Domestic Product (seasonally adjusted in constant 1992 prices,

series CAN.NAGVTT01.NCALSA).

Short-Term Interest Rates: Interest rates on 90 day deposit receipts. (expressed as a

percentage pa, series CAN.IRT3DR01.ST).

Long-Term Interest Rates: Yields on long term government bonds (>10 Years). (ex-

pressed as a percentage pa, series CAN.IRLGV06.ST).

The effective sample consisted of 156 observations, dating from 1961:4 to 2000:3.
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UNITED KINGDOM (1960:1 to 2000:2)

Output: Real Gross Domestic Product (seasonally adjusted in constant 1995 prices,

series GBR.NAGVTT01.NCALSA).

Short-Term Interest Rates: 3 Month Treasury Bill Rates. (expressed as a percentage

pa, series 11260C..ZF... from the IFS portion of the DX database).

Long-Term Interest Rates: Yields on 10 Year Government Bonds (expressed as a per-

centage pa, series GBR.IRLTGV02.ST).

The effective sample consisted of 158 observations, dating from 1961:1 to 2000:2
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FRANCE (1970:1 to 1998:4)

Output: Real Gross Domestic Product (seasonally adjusted in constant 1980 prices,

series FRA.NAGVTT01h.NCALSA).

Short-Term Interest Rates: Interest Rate on 3 Month PIBOR (expressed as a percentage

pa, series FRA.IRT31B01.ST).

Long-Term Interest Rates: Interest Rates on 10 year Bonds when issued (expressed as

a percentage pa, series FRA.IRLTOT02.ST).

The effective sample consisted of 113 observations, dating from 1970:4 to 1998:4.
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GERMANY (1960:1 to 1999:4)

Output: Real Gross Domestic Product, (seasonally adjusted, series I 199bv&r@c134,

originally from the IFS data base).

Short-Term Interest Rates: Overnight Interest Rate (expressed as a percentage pa, series

I 160c@c134, from the IFS data base).

Long-Term Interest Rates: Interest rate on a long term Government bond (expressed

as a percentage pa, series I 161@c134, from the IFS data base).

The effective sample consisted of 155 observations, dating from 1961:2 to 1999:4.
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ITALY (1971:4 to 1998:4)

Output: Real Gross Domestic Product, (seasonally adjusted, series I 199bv&r@c136,

originally from the IFS data base).

Short-Term Interest Rates: Overnight Interest Rate (expressed as a percentage pa, series

I 160c@c136, from the IFS data base).

Long-Term Interest Rates: Interest Rate on a Long Term Government Bond (expressed

as a percentage pa, series I 161@c136, from the IFS data base).

The effective sample consisted of 110 observations, dating from 1972:3 to 1998:4.
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JAPAN (1969:4 to 1999:4)

Output: Real Gross Domestic Product, (seasonally adjusted in 1990 prices, series I

199bv&r@c158, originally from the IFS data base).

Short-Term Interest Rates: Overnight Interest Rate (expressed as a percentage pa, series

I 160b@c158, from the IFS data base).

Long-Term Interest Rates: Interest Rate on a Long Term Government Bond (expressed

as a percentage pa, series I 161@c158, from the IFS data base).

The effective sample consisted of 113 observations, dating from 1971:2 to 1999:4.
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APPENDIX 2: MODELS OF OUTPUT AND SPREAD

A. USA: 1961:1 - 2000:4

(Standard errors are in brackets)

Random walk model of output:

byt = 0.87
(0.07)

�σMLE = .87

AR(2) model of output without a break:

byt = 0.53
(0.10)

+ 0.26
(0.08)

yt−1 + 0.13
(0.08)

yt−2 �σMLE = .82

AR model of output with a break at 1984:2:

yt = 0.64
(0.14)

+ 0.29
(0.10)

yt−1 + �εt �σMLE = 1.02 for 1961:1 to 1984:1

yt = 0.44
(0.13)

+ 0.23
(0.12)

yt−1 + 0.22
(0.12)

yt−2 + �εt �σMLE = 0.48 for 1984:2 to 2000:4

ARLI model of output and spread:

�yt = 0.33
(0.11)

+ 0.18
(0.08)

yt−1 + 0.12
(0.07)

yt−2 + 0.20
(0.05)

st−2 �σMLE = 0.79

�st = 0.26
(0.08)

− 0.15
(0.05)

yt−2 + 1.06
(0.08)

st−1 − 0.35
(0.11)

st−2 + 0.18
(0.08)

st−3 �σMLE = 0.55

Bi-NARLI model of output and spread:

�yt = −0.52
(0.23)

yt−1 + 0.49
(0.24)

yt−2 + 0.50
(0.29)

yt−3 − 0.66
(0.26)

st−1 + 1.37
(0.36)

st−2 +

fyt × (0.81
(0.16)

+ 0.71
(0.24)

yt−1 − 0.43
(0.25)

yt−2 − 0.57
(0.29)

yt−3 + 0.73
(0.29)

st−1 − 1.40
(0.37)

st−2)

fyt = (1 + exp {−14 (st−2 − 0.024)})−1 �σMLE = 0.71

�st = 0.45
(0.09)

− 0.24
(0.08)

yt−2 + 1.19
(0.13)

st−1 − 0.56
(0.14)

st−2 +

fst × (0.21
(0.25)

yt−2 − 0.11
(0.07)

yt−3 − 0.47
(0.13)

st−1 + 0.35
(0.20)

st−2 + 0.34
(0.09)

st−3)

fst = (1 + exp {−6.79 (st−1 − 1.24)})−1 �σMLE = 0.49
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B. Canada: 1961:4 - 2000:3

(Standard errors are in brackets)

Random walk model of output:

byt = 0.91
(0.07)

�σMLE = .91

AR(1) model of output:

byt = 0.63
(0.10)

+0.31
(0.08)

yt−1 �σMLE = .87

ARLI model of output and spread:

�yt = 0.55
(0.10)

+ 0.19
(0.08)

yt−1 + 0.20
(0.06)

st−2 �σMLE = 0.82

�st = 0.23
(0.09)

− 0.12
(0.07)

yt−1 + 1.02
(0.08)

st−1 − 0.16
(0.08)

st−2 �σMLE = 0.76

Bi-NARLI model of output and spread:

�yt = 0.37
(0.16)

+ 0.64
(0.20)

yt−2 + 0.42
(0.11)

st−1 + 0.13
(0.04)

st−2 +

fyt × (0.21
(0.21)

+ 0.22
(0.08)

yt−1 − 0.64
(0.20)

yt−2 − 0.42
(0.11)

st−1)

fyt = (1 + exp {−41.69 (yt−1 + 0.042)})−1 �σMLE = 0.76

�st = 2.37
(0.73)

+ 1.68
(0.89)

yt−1 − 0.61
(0.38)

yt−2 + 0.56
(0.15)

st−2 +

fst × (−2.37
(0.73)

− 1.68
(0.89)

yt−1 + 0.61
(0.38)

yt−2 + 1.14
(0.09)

st−1 − 0.79
(0.17)

st−2)

fst = (1 + exp {−4.72 (yt−1 + 0.32)})−1 �σMLE = 0.70
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C. UK: 1960:1 - 2000:2

(Standard errors are in brackets)

Random walk model of output:

byt = 0.60
(0.08)

�σMLE = 1.03

AR(1) model of output:

yt = 0.61
(0.11)

+�εt �σMLE = 1.16 for 1960:1 to 1990:4

yt = 0.22
(0.08)

+ 0.67
(0.11)

yt−1 + �εt �σMLE = 0.31 for 1991:1 to 2000:2

ARLI model of output and spread:

�yt = 0.38
(0.10)

+ 0.16
(0.08)

yt−3 + 0.12
(0.05)

st−2 �σMLE = 1.01

�st = 0.20
(0.07)

− 0.16
(0.05)

yt−3 + 1.15
(0.07)

st−1 − 0.27
(0.08)

st−2 �σMLE = 0.67

Bi-NARLI model of output and spread:

�yt = 0.26
(0.11)

+ 0.22
(0.11)

yt−2 + 1.10
(0.47)

st−1 − 1.30
(0.61)

st−2 + 0.75
(0.36)

st−3 +

fyt × (0.77
(0.26)

yt−1 − 0.39
(0.15)

yt−3 − 1.70
(0.78)

st−1 + 2.11
(1.03)

st−2 − 1.21
(0.65)

st−3)

fyt = (1 + exp {−1.44 (yt−2 − 0.38)})−1 �σMLE = 0.94

�st = 0.20
(0.07)

− 0.16
(0.05)

yt−3 + 1.15
(0.07)

st−1 − 0.27
(0.08)

st−2 �σMLE = 0.67
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D. France: 1970:4 - 1998:4

(Standard errors are in brackets)

Random walk model of output:

yt = 0.61
(0.06)

+�εt �σMLE = 0.64

AR(2) model of output:

yt = 0.36
(0.09)

+ 0.21
(0.09)

yt−1+ 0.18
(0.09)

yt−2+�εt �σMLE = 0.61

ARLI model of output and spread:

�yt = 0.35
(0.08)

+ 0.19
(0.09)

yt−2 + 0.13
(0.04)

st−2 �σMLE = 0.58

�st = 0.22
(0.10)

+ 0.80
(0.06)

st−1 �σMLE = 0.91

Bi-NARLI model of output and spread:

�yt = 0.34
(0.08)

+ 0.19
(0.09)

yt−2 + 0.14
(0.04)

st−2 �σMLE = 0.58

�st = −1.64
(0.38)

+ 0.58
(0.49)

yt−2 +

(st−1 > −0.33)×
µ
2.18
(0.41)

− 0.58
(0.49)

yt−2 + 1.01
(0.10)

st−1 − 0.38
(0.09)

st−2

¶
�σMLE = 0.78
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E. Germany: 1961:2 - 1999:4

(Standard errors are in brackets)

Random walk model of output:

yt = 0.67
(0.10)

+�εt �σMLE = 1.32

AR(4) model of output:

yt = 0.55
(0.12)

− 0.17
(0.07)

yt−1+ 0.33
(0.07)

yt−4+�εt �σMLE = 1.23.

STAR(4) model of output:

�yt = 2.32
(0.38)

yt−3+(1+exp {−1.52 (yt−1 + 1.26)})−1×
µ
0.51
(0.13)

− 2.57
(0.43)

yt−3 + 0.28
(0.08)

yt−4

¶
�σMLE = 1.07.

ARLI model of output and spread:

�yt = 0.26
(0.14)

− 0.23
(0.07)

yt−1 + 0.30
(0.07)

yt−4 + 0.23
(0.06)

st−3 �σMLE = 1.17

�st = 0.36
(0.10)

+ 0.82
(0.06)

st−1 + 0.24
(0.09)

st−3 − 0.29
(0.08)

st−4 �σMLE = 0.87

Bi-NARLI model of output and spread:

�yt = 0.99
(0.42)

yt−2 + 1.80
(0.35)

yt−3 + 0.18
(0.06)

st−1 + (1 + exp {−0.90 (yt−1 + 1.4)})−1 ×µ
0.50
(0.16)

− 1.21
(0.54)

yt−2 − 2.24
(0.42)

yt−3

¶
�σMLE = 1.06

�st = 0.81
(0.07)

st−1 + 1.43
(0.68)

st−2 − 1.17
(0.58)

st−4 + (1 + exp {−1.41 (yt−3 + 0.90)})−1 ×µ
0.33
(0.12)

− 1.59
(0.72)

st−2 + 0.21
(0.10)

st−3 + 1.06
(0.62)

st−4

¶
�σMLE = 0.78
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F. Italy: 1971:3 - 1999:4

(Standard errors are in brackets)

Random walk model of output:

yt = 0.59
(0.11)

+ �εt �σMLE = 0.86

AR(5) model of output:

yt = 0.45
(0.10)

+ 0.46
(0.08)

yt−1 − 0.22
(0.08)

yt−5 +�εt �σMLE = 0.73

STAR(5) model of output:

yt = −0.77
(017)

yt−3 +
1

1 + exp(−2.04(yt−3 − 0.61)) ×µ
1.87
(0.43)

+ 0.85
(0.16)

yt−1 − 0.41
(0.15)

yt−5

¶
+�εt �σMLE = 0.65

ARLI model of output and spread:

�yt = 0.36
(0.08)

+ 0.43
(0.08)

yt−1 + 0.09
(0.03)

st−2, �σMLE = 0.73

�st = 0.48
(0.16)

+ 0.87
(0.09)

st−1 − 0.30
(0.12)

st−2 + 0.17
(0.09)

st−3 − 0.49
(0.15)

yt−1 − 0.40
(0.15)

yt−3, �σMLE = 1.25

Bi-NARLI model of output and spread:

�yt = 0.43
(0.08)

+ 0.35
(0.10)

yt−1 + (1 + exp{−6.56 (yt−3 − 1.40)})−1 ×µ
0.81
(0.29)

yt−1 − 0.37
(0.15)

yt−3 + 0.30
(0.09)

st−2

¶
�σMLE = 0.65

�st = 0.39
(0.17)

+ 0.78
(0.09)

st−1 − 0.32
(0.11)

st−2 + 0.18
(0.08)

st−3 − 0.48
(0.14)

yt−1 − 0.57
(0.16)

yt−3 +

(1 + exp {−7.47 (st−1 − 2.0)})−1 ×
µ
7.63
(2.13)

− 2.85
(0.80)

st−1 + 0.82
(0.41)

yt−3

¶
�σMLE = 1.13
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G. Japan: 1971:2 - 1999:4

(Standard errors are in brackets)

Random walk model of output:

yt = 1.06
(0.10)

− 0.80
(0.18)

Dt +�εt �σMLE = 0.87

AR(5) model of output:

yt = 1.07
(0.12)

− 0.79
(0.18)

Dt + 0.19
(0.10)

yt−3 − 0.20
(0.09)

yt−5 + �εt �σMLE = 0.84

TAR model of output:

yt = 0.41
(0.15)

+0.51
(0.11)

yt−3+0.24
(0.14)

yt−4−0.16
(0.12)

yt−5+(yt−4 ≥ 1.061)
µ
0.26
(0.15)

yt−2 − 0.51
(0.11)

yt−3

¶
+�εt �σε = 0.84

ARLI model of output and spread:

�yt = 1.04
(0.15)

− 0.90
(0.19)

Dt + 0.15
(0.09)

yt−3 − 0.18
(0.08)

yt−5 + 0.15
(0.06)

st−1 �σMLE = 0.82

�st = 0.14
(0.08)

+ 0.89
(0.06)

st−1 − 0.17
(0.05)

st−4 �σMLE = 0.75

Bi-NARLI model of output and spread:

�yt = 0.47
(0.11)

+ 0.29
(0.08)

yt−3 + 0.21
(0.08)

yt−4 + 0.22
(0.11)

st−1 − 0.19
(0.09)

st−2 +

fyt ×
µ
−1.10

(0.53)
+ 0.85

(0.41)
yt−2 − 0.93

(0.28)
st−4

¶
bfyt = (1 + exp {−12.69 (yt−5 − 2.00)})−1 �σMLE = 0.77

�st = 0.14
(0.08)

+ 0.89
(0.06)

st−1 − 0.17
(0.05)

st−4 �σMLE = 0.75
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PANEL 1

Performance of Different Models in
Capturing the Shape of Business Cycles

The values in parentheses are bounds of 90% confidence intervals derived from the
simulated distributions. The asterisks highlight those sample statistics whose 90%

bounds do not contain the observed cycle characteristic.

A. USA

Raw RW + AR(2) AR(2)+ ARLI Bi
Data Drift Break NARLI

Duration
PT 3.8 2.4∗

(2.0,3.4)
3.1

(2.0,4.5)
3.0

(2.0,4.5)
3.3

(2.2,5.0)
2.9

(2.0,4.0)

TP 20.4 36.5
(13.0,80.0)

31.0
(15.0,64.5)

24.2
(10.6,47.7)

27.6
(14.3,49.3)

37.0
(17.3,73.0)

Amplitude
PT −2.1 −1.0∗

(−1.7,−0.5)
−1.4

(−2.3,−0.7)
−1.7

(−2.8,−0.8)
−1.5

(−2.5,−0.8)
−1.7

(−3.1,−0.7)

TP 22.9 34.2
(12.2,75.6)

30.9
(15.0,64.5)

25.7
(11.1,50.9)

27.0
(13.3,50.3)

35.5
(16.6,69.9)

Cumulation
PT −4.2 −1.4∗

(−2.7,−0.5)
−2.6

(−6.0,−0.7)
−3.0

(−7.2,−0.8)
−3.2

(−7.4,−0.9)
−2.8

(−6.2,−0.7)

TP 342 1025
(97,3451)

865
(156,2649)

562
(82,1678)

655
(136,1841)

1107
(195,3254)

Excess
PT −0.10 0.00

(−0.15,0.15)
0.00

(−0.16,0.16)
−0.00

(−0.20,0.19)
0.00

(−0.16,0.17)
0.02

(−0.21,0.27)

TP 1.36 0.05
(−1.43,1.58)

−0.00∗
(−1.40,1.34)

0.21
(−1.07,1.64)

0.04∗
(−1.12,1.28)

0.08
(−1.20,1.38)



B. Canada

Raw RW + AR(1) ARLI Bi
Data Drift NARLI

Duration
PT 4.0 2.4∗

(2.0,3.4)
2.8

(2.0,4.0)
2.9

(2.0,4.0)
3.7

(2.0,6.0)

TP 16.0 36.4
(12.6,82.0)

27.6
(12.5,56.0)

27.6
(12.1,58.0)

36.9
(10.0,89.0)

Amplitude
PT −3.2 −1.1∗

(−1.8,−0.5)
−1.4∗

(−2.2,−0.7)
−1.4∗

(−2.3,−0.7)
−2.5

(−5.8,−0.7)

TP 17.2 35.9
(12.3,79.8)

28.8
(12.4,60.0)

28.5
(11.8,60.0)

39.0
(9.5,95.6)

Cumulation
PT −6.6 −1.4∗

(−2.9,−0.5)
−2.2∗

(−4.8,−0.8)
−2.5∗

(−5.5,−0.8)
−6.7

(−21.5,−0.7)

TP 257 1061
(91,3604)

694
(106,2128)

691
(96,2177)

1192
(55,4378)

Excess
PT 0.27 −0.00∗

(−0.16,0.16)
0.00∗

(−0.15,0.14)
0.00∗

(−0.16,0.16)
0.06

(−0.19,0.35)

TP 1.35 0.04
(−1.54,1.68)

0.03
(−1.31,1.40)

0.02
(−1.44,1.44)

0.14
(−1.81,2.24)

C. UK

Raw RW + AR(1)+ ARLI Bi
Data Drift Break NARLI

Duration
PT 4.4 3.0∗

(2.3,4.0)
3.2∗

(2.3,4.3)
3.4

(2.4,4.7)
3.9

(2.5,5.8)

TP 25.5 14.7∗
(8.6,24.5)

13.6∗
(7.6,23.0)

15.3
(8.9,25.5)

16.6
(9.1,29.0)

Amplitude
PT −3.2 −1.7∗

(−2.3,−1.1)
−1.9∗

(−2.8,−1.3)
−1.9∗

(−2.7,−1.2)
−2.3

(−3.8,−1.3)

TP 21.5 12.2∗
(7.3,20.2)

11.9∗
(6.9,19.9)

12.9
(7.3,21.6)

14.8
(7.4,27.0)

Cumulation
PT −9.6 −3.0∗

(−5.4,−1.4)
−3.7∗

(−7.0,−1.6)
−3.9∗

(−7.8,−1.6)
−6.4

(−15.9,−1.8)

TP 381 158
(45,394)

141∗
(37,356)

173
(47,435)

233
(51,626)

Excess
PT −0.14 −0.00∗

(−0.13,0.13)
0.00

(−0.17,0.15)
0.00

(−0.15,0.15)
0.01

(−0.17,0.20)

TP −0.50 0.00
(−0.53,0.53)

0.03
(−0.55,0.63)

−0.00
(−0.61,0.61)

0.04
(−0.73,0.79)



D. France

Raw RW + AR(2) ARLI Bi
Data Drift NARLI

Duration
PT 3.0 2.5

(2.0,3.5)
3.2

(2.0,5.0)
3.1

(2.0,5.0)
3.8

(2.0,7.0)

TP 32.5 28.7
(8.7,68.0)

25.2
(9.0,56.0)

28.0
(8.0,66.0)

22.6
(6.0,54.0)

Amplitude
PT −1.6 −0.8∗

(−1.3,−0.4)
−1.1

(−1.9,−0.5)
−1.0

(−1.8,−0.4)
−1.2

(−2.4,−0.5)

TP 21.3 19.2
(5.8,45.1)

17.5
(5.1,40.9)

19.0
(4.6,46.6)

14.6
(2.8,38.3)

Cumulation
PT −2.0 −1.1

(−2.2,−0.3)
−2.1

(−5.4,−0.5)
−1.9

(−4.9,−0.4)
−3.4

(−10.5,−0.5)

TP 358 434
(27,1545)

367
(28,1257)

438
(22,1572)

314
(10,1188)

Excess
PT 0.03 0.00

(−0.12,0.12)
0.00

(−0.13,0.14)
0.00

(−0.14,0.14)
0.00

(−0.14,0.15)

TP −0.37 0.03
(−1.04,1.15)

0.02
(−1.17,1.23)

0.01
(−1.32,1.33)

0.03
(−1.05,1.14)

E. Germany

Raw RW + AR(4) LSTAR(4) ARLI Bi
Data Drift NARLI

Duration
PT 4.5 3.3∗

(2.4,4.4)
3.4

(2.3,5.1)
3.2

(2.0,5.0)
3.8

(2.3,5.8)
3.4

(2.2,5.2)

TP 19.2 13.9
(8.5,22.8)

18.5
(10.1,32.7)

18.2
(9.9,31.7)

19.1
(10.1,35.0)

20.2
(10.7,37.7)

Amplitude
PT -2.3 −2.4

(−3.3,−1.6)
−2.1

(−3.1,−1.3)
−2.1

(−3.4,−1.1)
−2.3

(−3.5,−1.3)
−1.9

(−3.3,−1.1)

TP 20.1 14.0
(8.6,22.4)

16.5
(8.6,30.0)

16.5
(8.6,29.2)

17.3
(8.6,32.5)

17.4
(9.3,31.7)

Cumulation
PT -5.3 −4.6

(−8.5,−2.1)
−4.5

(−9.8,−1.6)
−4.3

(−11.1,−1.2)
−5.7

(−12.9,−1.7)
−4.5

(−11.8,−1.2)

TP 253 161
(49,401)

270
(60,731)

264
(61,686)

294
(61,831)

311
(71,858)

Excess
PT .11 .00

(−.18,.18)
.00

(−.19,.19)
.05

(−.14,.26)
.00

(−.21,.21)
.00

(−.15,.21)

TP .79 .01
(−.63,.64)

.02
(−.83,.85)

.35
(−.47,1.26)

.04
(−.87,.97)

.22
(−.56,1.04)



F. Italy

Raw RW + AR(5) STAR(5) ARLI Bi
Data Drift NARLI

Duration
PT 2.8 2.8

(2.0,4.0)
3.5

(2.4,4.7)
3.0

(2.3,3.9)
3.6

(2.4,5.0)
3.2

(2.3,4.5)

TP 14.8 20.6
(9.3,43.0)

15.6
(8.8,27.7)

16.0
(9.0,28.8)

15.5
(8.7,27.0)

15.2
(8.4,26.7)

Amplitude
PT -1.5 −1.2

(−1.9,−0.7)
−1.7

(−2.6,−0.9)
−1.5

(−2.4,−0.8)
−1.8

(−2.8,−1.0)
−2.1

(−3.7,−1.0)

TP 11.5 15.2
(6.9,31.2)

13.3
(7.5,22.7)

13.2
(7.4,22.7)

13.3
(7.3,22.8)

12.2
(6.6,20.6)

Cumulation
PT -3.0 −2.0

(−4.1,−0.7)
−3.5

(−6.9,−1.3)
−2.3

(−4.1,−1.0)
−3.9

(−8.1,−1.3)
−4.3

(−10.4,−1.3)

TP 130 264
(41,837)

158
(38,424)

157
(40,425)

159
(40,420)

135
(34,355)

Excess
PT -0.06 0.00

(−0.14,0.15)
0.00

(−0.14,0.15)
0.00

(−0.10,0.14)
0.00

(−0.15,0.15)
−0.04

(−0.29,0.14)

TP 0.27 0.02
(−0.81,0.88)

0.01
(−0.68,0.73)

−0.18
(−0.99,0.56)

0.02
(−0.74,0.78)

−0.37
(−1.26,0.33)

G. Japan

Raw RW + AR(5)+ TAR(5) ARLI Bi
Data Drift+Break Break +Break NARLI

Duration
PT 3.6 3.5

(2.0,6.0)
3.6

(2.0,6.0)
3.6

(2.0,6.7)
4.2

(2.3,7.0)
4.1

(2.0,6.5)

TP 8.0 17.5
(4.0,42.0)

18.6
(4.5,43.5)

27.1
(8.0,66.0)

17.8
(5.0,38.5)

22.5∗
(9.7,47.0)

Amplitude
PT −1.9 −1.7

(−2.0,−0.6)
−1.7

(−3.0,−0.6)
−1.6

(−3.2,−0.6)
−2.2

(−3.0,−0.6)
−5.3

(−12.2,−1.2)

TP 4.9 15.4∗
(2.4,40.5)

16.5
(2.6,42.7)

24.5∗
(5.2,63.1)

17.4
(3.1,39.8)

25.8∗
(8.7,55.8)

Cumulation
PT −6.3 −3.8

(−10.4,−0.8)
−4.0

(−10.6,−0.9)
−4.2

(−12.6,−0.6)
−6.4

(−16.4,−1.3)
−17.2

(−51.4,−1.6)

TP 19 353
(5,1348)

383
(6,1473)

554∗
(23,2119)

355
(9,1244)

440∗
(49,1448)

Excess
PT −0.13 0.00

(−0.23,0.22)
0.00

(−0.23,0.23)
0.00

(−0.22,0.21)
0.00

(−0.26,0.26)
−0.25

(−1.18,0.36)

TP −0.13 0.34
(−0.63,1.84)

0.36
(−0.68,1.93)

0.04
(−1.80,1.89)

0.28
(−0.75,1.72)

−0.39
(−2.41,1.91)



PANEL 2

Summary of Probability Forecasts

A. USA
Pr(A) = 0.1410, Pr(B) = 0.2000

Event A Event B
Model QPS LPS QPS LPS
Constant 0.242 0.407 0.303 0.480
RW 0.246 0.416 0.303 0.481
AR(2) 0.235 0.388 0.284 0.453
AR(2)+Break 0.234 0.392 0.276 0.433
ARLI 0.169 0.267 0.197 0.320
Bi-NARLI 0.133 0.251 0.176 0.301

B. Canada
Pr(A)=0.1192, Pr(B)=0.1457

Event A Event B
Model QPS LPS QPS LPS
Constant 0.209 0.364 0.248 0.413
RW 0.210 0.367 0.250 0.417
AR(1) 0.202 0.351 0.242 0.405
ARLI 0.111 0.210 0.136 0.258
Bi-NARLI 0.088 0.149 0.121 0.215

C. UK
Pr(A)=0.1558, Pr(B)=0.2662

Event A Event B
Model QPS LPS QPS LPS
Constant 0.263 0.433 0.391 0.579
RW 0.278 0.455 0.447 0.640
AR(1)+Break 0.267 0.428 0.411 0.581
VAR 0.238 0.404 0.412 0.602
Bi-NARLI 0.206 0.367 0.359 0.545

D. France
Pr(A) = 0.0734, Pr(B) = 0.1651

Event A Event B
Model QPS LPS QPS LPS
Constant 0.136 0.262 0.276 0.448
RW 0.138 0.268 0.280 0.456
AR(2) 0.151 0.290 0.296 0.470
ARLI 0.113 0.181 0.255 0.402
Bi-NARLI 0.111 0.176 0.258 0.402



E. Germany
Pr(A) = 0.1987, Pr(B) = 0.4503

Event A Event B
Model QPS LPS QPS LPS
Constant 0.318 0.499 0.495 0.688
RW 0.333 0.518 0.498 0.691
AR(4) 0.327 0.508 0.509 0.703
STAR(4) 0.330 0.508 0.495 0.688
ARLI 0.285 0.457 0.487 0.683
Bi-NARLI 0.283 0.448 0.462 0.653

F. Italy
Pr(A) = 0.2432, Pr(B) = 0.3153

Event A Event B
Model QPS LPS QPS LPS
Constant 0.380 0.568 0.443 0.635
RW 0.384 0.574 0.442 0.634
AR(5) 0.340 0.517 0.395 0.579
STAR(5) 0.297 0.463 0.353 0.528
ARLI 0.367 0.560 0.450 0.649
Bi-NARLI 0.289 0.469 0.358 0.546

G. Japan
Pr(A)=0.1468, Pr(B)=0.2661

Event A Event B
Model QPS LPS QPS LPS
Constant 0.250 0.417 0.391 0.579
RW 0.200 0.330 0.244 0.403
AR(5) 0.196 0.312 0.229 0.373
TAR(5) 0.194 0.314 0.291 0.462
ARLI 0.180 0.269 0.219 0.343
BiNARLI 0.192 0.319 0.262 0.401
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