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ABSTRACT

The response of consumer demand to prices, income, and other
characteristics is important for a range of policy issues. Naturally, the
level of detail for which consumer behaviour can be estimated depends on
the level of disaggregation of the available data. However, it is often the
case that the available data is differently aggregated in different time
periods, with the information available in later time periods usually being
more detailed. The applied researcher is thus faced with choosing between
detail , in which case the more highly aggregated data is ignored; or
duration, in which case the data must be aggregated up to the “lowest
common denominator” . Furthermore, since parametric demand systems
invariably involve a large number of parameters, with the number
increasing at least linearly with the number of expenditure categories, it
may well be that only the second option is feasible. That is, there is simply
not enough data available at the finer aggregation level for the chosen
model to be estimated.

This paper develops a specification/estimation technique that exploits the
entire information content of a variably-aggregated data set. The
technique is based on the observation that the more highly aggregated data
does in fact contain information on the finer subcategories: viz, the sum of
certain subcategory expenditures is observed. It is thus possible, under
certain simpli fying assumptions, to write down, and maximize, the
likelihood of the observed data as a function of the parameters of the
chosen model written for the finest available level of disaggregation. The
technique is applied to an ABS dataset containing historical information
relating to private final consumption expenditures on up to 18
commodities, and found to be feasible for both the LES and AIDS.

KEYWORDS: Singular demand systems, Linear expenditure system,
Almost ideal demand system, Missing data.

JEL classification: C32, C51, D12, E21
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1. Introduction.

The response of consumer demand to prices, income, and demographic and other

characteristics is important for a range of policy issues, such as the effects of a change

in the tax mix, and welfare calculations. Estimation of such response depends on

economic theory, a statistical model, and a data source. Naturally, the precision and

reliabili ty of parameter estimates relies criti cally on the accuracy and time span of the

available data; and the level of detail to which consumer behaviour can be estimated

depends on the level of disaggregation of the available data.

Typically, however, the available data is differently aggregated in different time

periods, with the information available in later time periods generally being more

detailed. The applied researcher is thus faced with choosing between detail , in which

case the more highly aggregated data is ignored; or duration, in which case the data

must be aggregated up to the “lowest common denominator” . Furthermore, since

parametric demand systems invariably involve a large number of parameters, with the

number increasing at least linearly with the number of expenditure categories, it may

well be that only the second option is feasible. That is, there is simply not enough data

available at the finer aggregation level for the chosen model to be estimated.

The aim of this paper is the development of a specification/estimation technique that

exploits the entire information content of a variably-aggregated data set. The

technique is based on the observation that the more highly aggregated data does in

fact contain information on the finer subcategories, in that the sum of the missing

subcategory expenditures is observed. It is therefore possible to construct the

likelihood of the observed expenditure data as a function of the parameters of the

chosen model written for the finest available level of disaggregation. The precise form

of the resulting likelihood function is indicated for the Linear Expenditure System

(LES) and the Almost Ideal Demand System (AIDS), chosen as ill ustrative examples.
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The technique is then applied to an ABS dataset containing detailed historical

information relating to private final consumption expenditures on a wide range of

commodities1, resulting in more detailed and more precise parameter estimates than

would normally be available. Implications for the detailed analysis of policy questions

of current interest, such as the effect on behaviour of a change in the tax mix, should

be obvious.

2. Model and notation.

Consider a system of demand equations q p=
�

( , , )m θ , where q is an N-vector of

goods with price vector p, m is income (assumed equal to total expenditure), the

vector θ contains the parameters of the utili ty function, and the functions � i(·), i =

1,…,N, satisfy the restrictions implied by the theory of consumer demand.

For the purposes of estimation the endogenous variables qi are generally transformed

to expenditures x pqi i i= , or, further, to expenditure shares w pq mi i i=  (to be more

consistent with an assumption of homoscedasticity and to remove dependence on the

numeraire). This leads to the standard specification in demand analysis: the estimation

of the parameters of the system of share equations

w p p m u i Ni i N i= + =
�

( , , , ; ) , ,1 1� �θ  ;      .

More precisely, the 1 × N vector comprising the tth observation on the N expenditure

shares2 ~ ~′ = ′w xt t tm , is modelled as a function of the N-vector of prices ~′pt , income in

the tth period m xt iti

N= =∑ 1 , the parameter vector θ, and an additive, serially

independent, zero mean disturbance, with constant variance-covariance matrix 
~ΣΣ ; ie,

                                                
1 The dataset was compiled in previous joint work (McLaren, Rossiter and Powell (2000)) with the
Australian Bureau of Statistics (ABS); and in effect extends the publicly available expenditure data
back to 1969/70 for certain subcategories of Other Goods and Services.
2  Quantities pertaining to the complete N-commodity system are henceforth indicated by a “~” over the
symbol for the corresponding “ full rank” quantity – cf. equation (2.2).



3

′ = ′ + ′
× ×
~ (~ , , ) ~ ; ~ ~ ( ,

~
)w p u ut

N
t t t t

N N
m

1

0
�

θ ΣΣ . (2.1)

The demand system “adding-up” condition, making 
~ΣΣ  singular, of rank n = N – 1, is

then as usual avoided by “dropping” one of the expenditure categories, so yielding a

full rank system involving T observations on n categories:

′ = ′ + ′
× ×

w p u ut
n

t t t t
n n

m
1

0
�

(~ , , ) ; ~ ( , )θ ΣΣ . (2.2)

The model is completed by the conventional assumption that ut is distributed n-variate

normal3, and the standard Gaussian log-likelihood4 follows; ie,

�
( , ) ln| | tr( )θ ΣΣ ΣΣ ΣΣ= − − ′−T

2

1

2
1U U , (2.3)

where U W P m
T n T n T N T× × × ×

= − ��
(

~
, , )

1
θ (2.4)

is the T × n matrix of disturbances, W is the T × n matrix of observed expenditure

shares, and �	
 is the T × n matrix of expected expenditure shares, conditional on the

T × N matrix of prices 
~P , the T × 1 vector of total expenditures m, and the vector of

“mean” parameters, θ.

3. The “aggregated” likelihood.   

Now consider the situation in which the expenditure data is available at differing

levels of disaggregation in different subperiods. For example: suppose that

expenditure data is initially collected for categories “Food”, “Durables” and “Other” ;

where “Other” is later split i nto “Other goods” and “Other services” . That is, data is

available for shares of N = 3 commodities (A, B, C) in the total budget for the first

                                                
3 Although, as the dependent variable is now by definition constrained to be both non-negative, and to
sum to unity, it can be argued that the disturbance distribution should be specified so as to avoid
violating this constraint. See, for instance, Fry, Fry and McLaren (1996).
4 For clarity, all likelihoods will be written without their density function constants.
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time period, and for N = 4 commodities (1, 2, 3, 4) for a later time period. Thus we

observe only

w w w t TAt Bt Ct, , ; , ,= 1 1

 ,

and w w w w t T Tt t t t1 2 3 4 1 1, , , ; , ,= + 
 ;

where, by the nature of the problem (and for later convenience setting “A” equal to

“Other goods and services” , “B” equal to “Durables” and “C” equal to “Food”),

w w w

w w

w w t T

At t t

Bt t

Ct t

≡ +
≡
≡ =

1 2

3

4 11

,

,

, , , .

 

    

and      

Standard estimation strategies in such a situation would be to:

(a) aggregate the data for the period  t T T= +1 1, ,
 and apply the theory to the case

of N = 3, for the entire period t T= 1, ,� ; or

(b) use a statistical method to interpolate the data on wAt  for the period

t T= 1 1, ,� to construct an approximate statistical series for w t1  and w t2 for the

period t T= 1 1, ,� , and then carry out estimation for the case of N = 4 for the

period t = 1,…,T; or

(c) estimate separate models for the subperiods t T= 1 1, ,�  and t T T= +1 1, ,� .

However, it must be the case that the expected expenditure on commodity A is just the

sum of the expected expenditures on the component commodities 1 and 2, and hence

the stochastic part of wA is also the sum over the sub-commodities; that is,  
At t tp m p m p m( , ; ) ( , ; ) ( , ; )θ θ θ≡ +1 2 ,

and u u uAt t t≡ +1 2 .
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In other words, an economic model specified for the most disaggregated data

necessarily implies a corresponding economic model applying to the data at any level

of aggregation. The same statement applies to the accompanying statistical model.

To generalise this, let us assume S �  1 subperiods � 1,…, � S with differing degrees of

expenditure category aggregation; and note that the observed expenditure shares in

each subperiod are necessarily a linear combination of the underlying (partially

unobserved) expenditure set ~w . That is, for t ∈ � r we observe only the linear

combination ~
~ ~y A wrt t= , where 

~Ar  is a Nr × N “aggregation matrix” , of rank Nr ≤ N,

taking the N-vector ~w  into the Nr-vector of observed, but more aggregated,

expenditures ~y . We also assume that, for at least one of our subperiods (usually the

last), expenditures on all N commodities are observed, in which case the implicit

aggregation matrix for that subperiod is the N × N identity (ie, ~ ~y wt t=  for t ∈ � S ).

With ~w t  generated as per (2.1) the model for ~yt , t ∈ � r , is then just

′ = ′ ′ = ′ ′ + ′ ′~ ~ ~
(~ , , )

~ ~ ~y w A p m A u Ar r rt t t t t

�
θ ,

with5 ~ ~ ~ N( ,
~ ~~

)A u 0 A Ar r rt ΣΣ ′ .

Thus, in the context of our introductory example, with {w1, w2, w3, w4} denoting the

(partially unobserved) expenditure shares for the “disaggregated” set “Other goods” ,

“Other services” , “Durables” , “Food”; and {wA, wB, wC} denoting expenditure shares

for “Other” , “Durables” , and “Food” respectively, the additional information that

w w wA ≡ +1 2  instantly implies

w

w

w

w

w

w

w

A

B

C

�
���

�
� �� =

�
�
���

�
�

���
�
�
����

 
!

"""" =
1 1 0 0

0 0 1 0

0 0 0 1

1

2

3

4

~~Aw .

                                                
5 The assumption of an additive multivariate normal disturbance is clearly advantageous in this setting.
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~A  thus aggregates ~w  = { w1, w2, w3, w4} into ~y  = { wA, wB, wC} , and for at least some

subset of the sample period (specifically, t = 1,…,T1) only the linear combination

~ ~~y Awt t=  is observed. The model for ~yt  then follows from that assumed for ~w t .

As before, converting the model for ~y  into a “full rank” equivalent is most simply

accomplished by omission of one of the (possibly aggregated) expenditure categories,

corresponding to deletion of the matching row from the aggregation matrix. More

formally, note that elimination of the last equation/commodity from the N-vector ~w

corresponds to pre-multiplication by the n × N matrix J I 0n= ; ie:

w J w
n N× ×

=
1 1

~ .

Accordingly, for the r th subperiod, with Nr observed expenditure shares ~
~ ~y A wr= , let

y J yr
n Nr r× ×

=
1 1

~ ,

where nr = Nr – 1, and J I 0r nr
= . Then y J A wr rt t= ~ ~ , and, as before, the model

for y would follow quite simply from that assumed for ~w .

The expression for y simpli fies even further if we assume a system in which at least

one category (such as “Food”, in the example above) is common to all subperiods, as

we can then order the commodities such that

~A
A 0

0r
r=
′

#$% &' (
1

,

where the top-left submatrix Ar is nr × n. Consequently, J A A 0r r r
~ = , and

y A 0
w

A wr r=
)*+ ,- .

=
wN

.

Exclusion of the last commodity equation to avoid the adding-up problem now

corresponds to deletion of the last row and column of 
~A , and we have, for t ∈ / r ,
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′ = ′ ′ = ′ ′ + ′ ′ ′y w A p A u A A u A Ar r r r r rt t t t t tm
0

(~ , , ) ; ~ N( , )θ 0 ΣΣ .

Assuming Tr such observations then yields the log-likelihood for the r th subperiod as

1
r

rT
( , ) ln| | tr( )θ ΣΣ ΣΣ ΣΣ= − − ′−

2

1

2
1

r r r rU U , (3.1)

in which ΣΣ ΣΣr r rA A
n nr r×

= ′  ,

and U Y P m Ar r r r r
T n T n T N T n nr r r r r r r× × × × ×

= − ′
23

(
~

, , )
1

θ . (3.2)

Here Ur and Yr are the Tr × nr matrices of disturbances and observed expenditure

shares for the r th subperiod, and 
23

(
~

, , )P mr r θ , for convenience also denoted 
23

r ( )θ ,

is the Tr × n matrix of expected expenditure shares, conditional on the Tr × N matrix6

of prices pertaining to the r th subperiod 
~Pr , the Tr × 1 vector of total expenditures mr,

and the k-vector of mean parameters θ.

Assuming independence of observations across time periods then yields the complete,

or “aggregated” , log-likelihood

1 1
( , ) ln ( )θ ΣΣ ΣΣ ΣΣ= = − ′ − ′ ′

= =

−

=
∑ ∑ ∑r
r

S

r
r

S

r

S

T
1 1

1

1

1

2

1

2
A A U U A Ar r r r r rtr 4 5 . (3.3)

It is now a straightforward matter, given θ and ΣΣ, to calculate the joint likelihood for

the entire sample allowing for the varying levels of aggregation within the sample,

provided price data is available on all commodities for the entire period. The only

remaining requirement for specification of the aggregated likelihood is a parametric

model for the expected expenditure shares; with the comparatively parsimonious

Linear Expenditure System serving as a convenient starting point.

                                                
6 Note that it is implicitly assumed that, although expenditure data is not available for all N
commodities in all t ime periods, price data is.
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3.1 Application to the Linear Expenditure System

For the LES the tth expenditure on the i th commodity is modelled as

x p m v i N t Tit it i i t t it= + − ′ + = =γ β γ( ~ ) , , , , , ,p 1 16 6 ;

where βi, γi are parameters, γ is the N-vector ( , , , )γ γ γ1 2
6

N ′ , and the adding-up

condition implies βi

N

1
1∑ = . In expenditure share form this becomes

w
p
m m u i N t Tit

it

t
i i

t

t
it= + − ′

789 :; <
+ = =γ β γ1 1 1

~
, , , , , ,

p 6 6 ;

with total expenditure now subsumed into the price matrix as a divisor. Excluding the

Nth equation and rewriting this in vector notation as per (2.2) then yields

′ = ′ + ′ =w p ut t t tm t T1 1~ ( , ) , , ,ΠΠ β γ 6 , (3.4)

where β is an n-vector excluding βN and

ΠΠ ΠΠ( ) ( , )

( )

( )

( )

( )
θ β γ

β β β
γ β γ β γ β

γ β γ β γ β

γ β γ β γ β
γ β γ β γ β

N n n N

n

n n

n

n n n n

N N N n

+ × × ×
= =

− − −
− − −

⋅
− − −
− − −

=

>

???????

@

A

BBBBBBB1 1 1

1 2

1 1 1 1

1 1 2 2 1

1 2

1 2

1

1

1

CCCD D DEE
.

The expectation of the T × n matrix of expenditure shares is therefore

FG
(
~

, , ) ( , )P m PTθ ι β γ= ΠΠ ,

where ιT is the T-vector of ones, and P denotes the T × N matrix of prices scaled by

total expenditure (ie, p pt t tm= ~ ). Accordingly, for the r th subperiod,

FG FG
r r r rP m P( ) (

~
, , ) ( , )

( )

θ θ ι β γ
T n T T N N nr

r

r r× × × + ×

≡ = T

1 1

ΠΠ . (3.5)
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3.2 AIDS

While the LES has the advantage of deriving directly from a well -defined utili ty

function, and thus automatically satisfying the necessary theoretical restrictions, it can

be criti cised on the grounds that it simply has too few parameters to adequately

model, in particular, the 1

2 1n n( )− substitution effects involved in a N-commodity

demand system. We therefore also consider the Almost Ideal Demand System of

Deaton and Muellbauer (1980), viz

w
m

P
p u i N t Tit i i

t

t
ij jt

j

N

it= + + + = =
=

∑α β γln ln , , , , , ,
1

1 1H H ; (3.6)

where adding-up implies α ii

N

=∑ =
1

1, βii

N

=∑ =
1

0, and γ iji

N

=∑ =
1

0; homogeneity

requires γ ijj

N

=∑ =
1

0; and γ γij ji=  ensures Slutsky symmetry.

Strictly speaking, the deflator Pt should enter (3.6) via the translog price index

ln ln ln lnP p p pt j jt
j

N

j jt t

N

j

N

= + +
= ==

∑ ∑∑α α γ0
1 11

1
2 I II .

However, as we shall see, for any more than a few commodity categories the

computational burden imposed by the symmetry restriction is already suff iciently

onerous without imposing another level of nonlinearity. It is therefore common to

either replace ln P  by, for instance, Stone’s price index w pi ii

N ln=∑ 1
; or, even more

simply, to use real expenditure directly if this is already available. If this is done we

have

′ = ′ +
JKL MN O

′ + ′ + ′ =
× ×
~ ~ ln

~
ln

~ ~ , , ,w p ut
N

t

t
t

N N
t

m
P

t T
1

1α β P Q ΓΓ R .

Deleting the Nth equation and imposing homogeneity directly then yields

′ = ′ + STU VW X ′ + ′STU VW X + ′ =
× ×

w
p

ut
n

t

t

t

Nt n n
t

m
P p t T

1

1α βln ln , , ,ΓΓ R , (3.7)
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implying

W h R UT
T n n n× ×

= ′ + ′ + +ι α β ΓΓ ,

where h is the T-vector with tth element equal to the logarithm of real income

ln( )m Pt t , R is the T × n matrix with tth row equal to the logarithm of the vector of

normalised prices ln( )′p t Ntp , and ΓΓ is n × n symmetric. Clearly, it is only the cross-

equation symmetry restrictions that now make the system nonlinear.

The r th subperiod matrix of expected expenditure shares required by (3.2) is therefore

Y
r r rh R( )θ ι α β

T n T T T nr

r

r r r× × × ×

= ′
T

1 1

ΓΓ , (3.8)

where hr and Rr denote the Tr -vector of log-real incomes and the Tr × n matrix of

log-normalised prices in the r th subperiod.

4. Maximizing the aggregated likelihood

Specification of an “aggregated” li kelihood is thus relatively straightforward.

Estimation of the parameters of such a likelihood is, however, another matter. To see

this, reconsider the conventional Gaussian likelihood of Section 2. It so happens, in

this case, that the first order condition (FOC) for ΣΣ has a simple closed form solution,

enabling the construction of a profile, or “concentrated” li kelihood for θ of the

familiar log-determinant form

Z ∗ = − ′( ) ln| |θ T

2
U U . (4.1)

An optimization problem previously involving k mean parameters θ, plus 1

2 1n n( )+

covariance parameters, now depends only the former, and so is far more likely to be

feasible. Indeed, it is not, in general, possible to maximize (2.3) with respect to both θ

and ΣΣ numerically unless the number of expenditure categories is very small .
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Exploitation of the closed form MLE of ΣΣ can therefore be crucial to estimation of the

system.

Contrast this with the situation pertaining in the context of “aggregated” li kelihood

(3.3). The n × n matrix of scores with respect to the elements of ΣΣ is now

∂
∂

= ∂
∂=

∑
[ [
ΣΣ ΣΣ

r

r

S

1

;

where 
[

r is a scalar-valued function of the quadratic ΣΣ ΣΣr r rA A= ′  as per (3.1), and the

(i, j)th element of ΣΣr is just ( ) ( (ΣΣ ΣΣr a aij i
r)

j
r)≡ ′  with a i

r)(  denoting the n × 1 vector

obtained by transposing the i th row of aggregation matrix Ar. The contribution of the

r th subperiod to the score with respect to ΣΣ then proceeds by application of Lemmas

A.1 – A.3 (Appendix A) as

∂
∂

=
×==

∑∑
[

r

n nj i

n

i

n

q
rr

ΣΣ ij
r)

ij
r)( (A

1

, (4.2)

in which q rij
r)

ij
( ( )≡ ∂ ∂

[
ΣΣ r  is the (i, j)th element of

Q U U Dr
r

r r r r r U Ur r r r rn n

r
r T

r r
r

T
×

− −
′ −

≡ ∂
∂

= ′ − − − −

[
ΣΣ

ΣΣ ΣΣ ΣΣ
ΣΣ ΣΣ ΣΣ

1 1 1

2 1 1

\ ] ^ _
;

A ij
r)(  is the (i, j)th n × n submatrix of A

A A
r

r r r

nn nnr r×
= ∂

∂
= ∂ ′

∂
ΣΣ
ΣΣ

ΣΣ
ΣΣ

 defined by

A a a a a Dr

a aij
r) ij

i
r)

j
r)

j
r)

i
r)

i
r)

j
r)

( ( ( ( (( )
( (

n n

d

d×
′

≡ = ′ + ′ −
ΣΣ
ΣΣ

;

DA denotes the n × n diagonal matrix with (i, i)th element equal to the corresponding

diagonal element of the n × n matrix A7, and the matrix differential ∂ ∂ΣΣ ΣΣr  is

                                                
7 The same notation is, without ambiguity, employed for the “diagonalisation” of a vector; ie; if a is an
n-vector then Da will denote the n × n diagonal matrix with (i, i)th element equal to the corresponding
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defined as per MacRae (1974)8. The double-sum in (4.2) will be referred to (with

notation and terminology borrowed from MacRae) as a modified “star product” , and

written

∂
∂

= ∗⋅
× ×

`
r

n n nn nnr r r rΣΣ
Q Ar r ,

implying
∂
∂

= ∗⋅
× ×=

∑Σ̀Σ
( )Q Ar r

n n nn nnr

S

r r r r1

.

Thus the FOC for ΣΣ consists of the sum, over r, of functions in which, even leaving

aside the complication posed by the star-product with Ar , ΣΣ only ever appears via the

quadratic ΣΣ ΣΣr r rA A= ′ . It is evident that we can no longer obtain a closed form

solution for the MLE aΣΣ , and so cannot derive, after the manner of (4.1), a profile

likelihood for θ. The 1

2 1n n( )+  parameters of the covariance matrix must, as a result,

be estimated directly, along with the k (= 2n+1 for the LES, ( )n n2 5 2+  for

symmetry-restricted AIDS) parameters of the mean. This was found, even for the

comparatively parsimonious LES, and even leaving aside the matter of the missing

expenditure data, to be infeasible9 for any realistic sample size at the level of

commodity disaggregation contemplated here10.

                                                                                                                                           
element of a. The converse operation, in which the diagonal elements of the n × n matrix A are
“extracted” into an n-vector, will be denoted dv(A).
8 That is, dYb dX ≡ Y ⊗ db dX. Cf. “definition 2” in §3 of Magnus and Neudecker (1988, p.171).
9 In that the optimizing procedure (Gauss module CO) iterates ad infinitum without finding a set of
parameter values that can with any confidence be said to be “maximizing” .
10 The data available consisted of 27 annual, or 95 quarterly, observations on up to 18 expenditure
categories. It should be noted that even an LES-based version of profile likelihood (4.1) cannot be
maximized with only 27 observations – and if we prefer AIDS then 95 observations is similarly
inadequate. Estimation of a model with so many commodity categories is thus problematic even
without the additional complication of differing degrees of disaggregation.
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4.1 De Boer and Harkema’s covariance matrix.

An obvious solution to the problem described above is to reduce the dimension of the

optimization problem by considering a reduced-order parameterization of the

covariance matrix. This has typically been accomplished by setting 
~ ~ΣΣ = σ2C , where

~C  is a symmetric N × N matrix of constants (which may be functions of the data)

devised such that 
~ΣΣ ιN = 0 , where ιN is the N-vector of ones, and rank(

~ΣΣ ) = n. The
1

2 1n n( )+  unknown covariance parameters are thereby reduced to just one – a degree

of parameter reduction which might be thought somewhat extreme. Furthermore, the

most common data-independent specification (see §4.2 following) imposes the less

than reasonable restriction that all category variances are equal, as are all the cross-

category covariances.

Accordingly, consider the less restrictive order-N parameterization devised by De

Boer and Harkema (1986), in which the singular N × N covariance matrix 
~ΣΣ  is

parameterized on an N-vector ξ according to

~
( )ΣΣ

N N N× ×
= − ′ ′ξ ξξ ι ξ

1
Dξ N ,

Dξ ξ ξ= diag N( , , )1 c . Then 
~

( )ΣΣ ξ  clearly satisfies 
~ΣΣ ιN = 0 , and the submatrix

defined by ommission of the last (or any) category,

ΣΣ ΣΣ
n n×

= ′ = − ′ ′ ′( )
~ξ ξξ ι ξξJ J D J JJ N , (4.3)

Jξ ξ ξ= ′( , , )1 c n , is positive definite if either (i) all ξi are strictly positive; ie, ξi > 0

∀ =i N1, ,c  (in which case all the cross-covariances will be negative); or (ii ) a

single ξi is negative, and of suff icient magnitude that ′ι ξN  is negative also.

Substituting (4.3) into (3.3) then implies an “aggregated” li kelihood parameterized on

θ and ξ. Most importantly, the number of covariance parameters to be estimated is

now O(n) rather than O(n²).
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4.2 Order-1 parameterization

The most restricted such parameterization of the covariance matrix is obviously just

ξ σ ι= 2
N , leading to the well known specification

~
( )ΣΣ = − ′σ ι ι2 IN N N N , (4.4)

implying ΣΣ = − ′σ ι ι2( )In n n N , ΣΣ − = + ′1 2( )In n nι ι σ , and ΣΣ = σ2n N . Substituting

the last two into (3.3) then yields aggregated log-likelihood d d( , )θ σ2
1= ∑ =r

S
r  with

d r
r r rT n T= − − − ′−

2 2

1

2
2

2
1ln ln| | tr( )σ

σ
C C U Ur r r r , (4.5)

and C A I Ar r r
n nr r

N
×

= − ′ ′( )n n nι ι .

The MLE of our single remaining covariance parameter is then easily obtained as

e
tr( )σ2 1

1 1

= ′−

= =
∑ ∑C U Ur r r
r

S

r r
r

S

T n . (4.6)

Consequently, and in contrast to the situation for more general ΣΣ (including ΣΣ(ξ) of

the previous subsection), σ² can be concentrated out of ∑ =r
S

r1
2d ( , )θ σ . The result is an

“aggregated” log-profile li kelihood for θ of the form (ignoring all constants)

d ∗

=

−

=

= − fg h i jk ′
lm n o pk∑ ∑( ) ln tr( )θ 1

2 1

1

1

T nr r
r

S

r

S

C U Ur r r . (4.7)

This expression can naturally be used as a basis for the estimation of θ as an end in

itself – provided we are prepared to accept the accompanying, possibly over-

restrictive, covariance structure. For our purposes (4.7) and (4.6) are most useful as a

means of obtaining starting values for the maximization of the aggregated likelihood

with ΣΣ as per (4.3).
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4.3 Re-parameterizing AIDS for small datasets

The estimation problem is compounded if we attempt estimation of the Almost Ideal

Demand System with a very small dataset (such as the annual dataset used in the

Example following). Even after restricting the covariance matrix we find that

symmetry-restricted AIDS cannot be estimated unless the dataset is reasonably

large11. The problem, once again, is simply too many parameters ( ( )n n2 5 2+ ) to

permit non-linear estimation.

Pursuing the same strategy as that employed for the covariance matrix, a feasible,

though somewhat ad hoc, solution is to reparameterize the ΓΓ matrix in such a way as

to considerably reduce the number of free parameters to be estimated, while ensuring

symmetry and adding-up. The obvious choice is, once again, De Boer and Harkema’s

parameterization, with the minor difference that we no longer require positive-

definiteness of any n × n submatrix. Accordingly, let

~ΓΓ
N N×

= − ′ ′Dη ηη ι ηN , (4.8)

where the N-vector η is unrestricted, implying

ΓΓ
n n×

= − ′ ′ ′D J JJη ηη ι ηN . (4.9)

The model now involves just 3 1n+  free mean parameters, plus the N parameters of

De Boer and Harkema’s covariance matrix.

                                                
11 Such as the 95 observations of the quarterly dataset, for which AIDS with De Boer and Harkema’s
covariance matrix could be estimated without difficulty.
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5. Example

The LES, with De Boer and Harkema’s covariance matrix (hereafter designated

LES(1)), and AIDS, with De Boer and Harkema’s parameterization applied to both ΓΓ

and ΣΣ (hereafter AIDS(1)), were estimated for a demand system comprised of up to 18

expenditure categories, over the period 1969/70 – 1995/96. The data12 used for the

main example was collected annually, and included 3 subperiods of differing

expenditure aggregation, due, in this case, to successive divisions of the “Other goods

and services” category. The three subperiods were defined according to the then

published data, with expenditure data disaggregated as follows.

1969/70 – 1980/81. 12 categories: Food, Cigarettes and Tobacco, Alcohol and spirits,

Clothing and footwear, Household appliances, Other household durables,

Dwelli ng rent, Gas, electricity and fuel, Fares, Purchase of motor vehicles,

Postal and telecommunications, and Other goods and services.

1981/82 – 1986/87. Other goods and services (G&S) split i nto: Operation of motor

vehicles, Health, Entertainment and recreation, Financial services, Other

goods and services q  16 categories.

1986/87 – 1995/96. Other G&S split i nto: Other goods, Other services, Net

expenditure overseas (LES only) q  18 categories for LES, 17 for AIDS13.

The experiment was repeated with quarterly data14, as this allowed the estimation of

AIDS with ΓΓ symmetric but otherwise unrestricted; though, of course, still with De

Boer and Harkema’s covariance matrix (hereafter designated AIDS(2)). The quarterly

dataset extended from 1974(3rd quarter) to 1998(1st quarter), with the 12, 16, and

                                                
12 Australian Bureau of Statistics National Accounts: Private Final Consumption Expenditure.
13 Net overseas expenditure (NEO), alone of the categories, can take both negative and positive values.
More crucially, the nominal and real data do not always have the same sign, making the actual
definition of an IPD rather problematic in any case, and the log-price undefined. Total expenditure for
AIDS was thus calculated net of NEO, and the category excluded.
14 Australian Bureau of Statistics, Private Final Consumption Expenditure (quarterly estimates).
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18(17) category subperiods covering, respectively, 1974(3) – 1985(3), 1985(4) –

1989(3), and 1989(4) – 1998(1). The three subperiods were, once again, defined

according to the then published data.

In summary, the 1st subperiod consists of 12 annual (45 quarterly) observations on 12

expenditure categories; the 2nd involves 6 annual (16 quarterly) observations on 16

categories; and the 3rd involves 9 annual (34 quarterly) observations on 18 (17)

categories. All expenditures are in A$ per capita. Prices are measured by the IPD for

each expenditure category, and equal unity in 1989/90.

Each model was estimated by ML in two stages, with Food as the “omitted” category

in all subperiods. The first stage assumes that ΣΣ is parameterized on the scalar σ² as

per (4.4); and so consists of maximization of li kelihood (4.7) with respect to θ15. The

MLE of σ² then follows via (4.6). The 1st stage thus supplies starting values for θ and

ξ (the latter via ξ σ ι= r 2
N ) for the 2nd stage, in which likelihood (3.3), with ΣΣ

parameterized on ξ as per (4.3), is maximized with respect to θ and ξ, subject to the

restriction that ξi > 0, i = 1,…,N. As remarked above, this is slightly more restrictive

than necessary, and has the disadvantage that it forces all the cross covariances to be

negative, but is trivial to implement. As it happens, replacing “all ξi > 0” with the

requirement that all eigenvalues of ΣΣ be strictly positive had no effect other than to

slow the optimization.

Results for LES(1) and AIDS(1) (annual data) are given in Tables 2 and 4. Tables 3, 5

and 6 give analogous results based on the quarterly dataset and models LES(1) and

AIDS(2). Standard errors were computed via the inverse Hessian evaluated at the

maximum; the Hessian itself being computed via forward difference approximation of

                                                
15 Starting values for the 1st stage were, for the LES, β = average expenditure share in the final
subperiod, and γ = 0. 1st stage starting values for AIDS were obtained via the unrestricted regression of
the matrix of expenditure shares on log-real income, log-normalised prices, and a constant; with the
exception of the initial η for AIDS(1), which we started at 0.01ιN.
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the derivatives of the analytic gradient16. The time required for the estimation was less

than 30 seconds for the LES, and about 1½ minutes for AIDS.

We find that our estimated coefficients are, for the most part, statistically significant

at the 5% level, and have signs that are usually plausible. Thus, for the LES, it is not

unreasonable to suppose that most of those categories attracting a significantly

negative γi are indeed price elastic; while for AIDS most of the positive βi are attached

to categories that might be regarded as “ luxuries” . However, as is common when

estimating consumer demand based on aggregate data, theoretical restrictions not

explicitly imposed during estimation are not in general satisfied. In particular, for the

LES, estimates of the income effects parameter β, which should in theory lie between

0 and 1, are occasionally negative; implying both a negative Engel elasticity and

positive own-price substitution effect. Similarly, for AIDS most γii are positive,

suggesting that negativity is again likely to be violated. We emphasise, however, that

such criti cisms should be regarded separately from the feasibili ty of the suggested

method of estimating a demand system with differently aggregated data.

6. Conclusion

A simple method has been proposed for the ML estimation of a consumer demand

system in the situation where not all expenditures are observed for all commodity

categories in all time periods. The major diff iculty with the estimation of such a

system is that, while the likelihood function can be written down simply enough

(particularly if we assume serially uncorrelated Gaussian errors), its maximization is

problematic because of the 1

2 1n n( )+  covariance parameters that must now also be

included in the objective function. In essence, the complete log-likelihood cannot be

satisfactorily maximized unless ΣΣ can be concentrated out. It is worth noting that this

                                                
16 Analytic expressions for the scores with respect to the components of θ in each model, and with
respect to the De Boer and Harkema (1986) covariance vector ξ, are given in Appendix B.
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would be the case even if we had a complete set of quarterly data (95 observations)

available on all 18 expenditure categories.

The obvious strategy, and the one considered in this paper, is to reduce the number of

covariance parameters to be estimated by a suitable re-parameterization, leading to the

adoption of De Boer and Harkema’s (1986) covariance matrix. We find that the

“aggregated” li kelihood based on the LES can now be maximized without diff iculty,

even for the annual (27 observation) dataset. Furthermore, while such estimation

cannot easily be carried out in a standard econometric package such as TSP or

Shazam, it can be coded and computed quite simply in a programming language such

as GAUSS.

Estimation of the aggregated likelihood based on AIDS was (unsurprisingly) more

problematic, even after reparameterizing ΣΣ. The method is perfectly feasible if

suff icient data is available; however, for practical purposes this means the use of

quarterly data. Estimation of “aggregated” AIDS with annual data was, at least for our

dataset, possible only if the number of free parameters in the ΓΓ matrix was also

greatly reduced. As implemented here this leaves us with only N parameters to

estimate the substitution effects. Nonetheless this still represents a distinct advance

over the LES, which imposes, among other things, the “hidden” restriction that the

Allen-Uzawa substitution elasticities be proportional to the product of the

corresponding Engel elasticities.

The need to impose De Boer and Harkema’s still fairly restrictive parameterization on

the covariance structure of the model might be thought something of a disadvantage.

It seems that the price of being able to use differently aggregated data from earlier

time periods without sacrificing some commodity subcategories is a somewhat ad hoc

covariance structure. We find, however, that not even the concentrated log-likelihood,

which we would expect to use if there were no missing expenditure data, can be

reliably maximized if the annual dataset is preferred. That is, 27 observations are

insuff icient to allow maximization of the conventional li kelihood with symmetric but
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otherwise unrestricted covariance matrix and more than 7 or 8 categories, even for the

extremely parsimonious LES. If we prefer AIDS then the (95 observation) quarterly

dataset is similarly insuff icient. Indeed, restricting the covariance matrix may well be

essential to the estimation of AIDS for a large number of commodities, even without

the problem of missing expenditure data. Of course, if there are insufficient data17

available on all N commodities then an N-commodity model cannot be estimated in

any case without resort to additional information – such as that implicit in more

highly aggregated data in previous time periods.

Naturally, implementation of our approach requires, fairly obviously, that there be

expenditure data available on all commodities in at least one time period18. Also note

that we must have data on the complete set of explanatory variables for all time

periods; that is, only the dependent variable (expenditure) can be “missing” . Since (in

Australia) price (CPI) data has been collected for a greater degree of disaggregation

over longer time periods than almost any other series this may not be too onerous a

requirement, at least as regards the estimation of demand systems.

                                                
17 ML requires, at the very least, T ≥ N – 1 observations to be feasible in an N-commodity system.
18 Though it is difficult to say how few observations on the full system it would be possible to have
before the problem became, in some sense, il l-conditioned, and the maximization infeasible.
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Appendix A.

LEMMA A.1. Given s = − − ′−T

2

1

2
1ln| | tr( )ΣΣ ΣΣ U U  where ΣΣ is symmetric,

∂
∂

= ′ − −− −
′ −− −

s
ΣΣ

ΣΣ ΣΣ ΣΣ
ΣΣ ΣΣ ΣΣ

1 1 1

2
1 1U U D

U U
T

T

t u v w
. (A.1)

LEMMA A.2. For X n × n symmetric and n-vectors a and b,

d

d

′ = ′ + ′ − ′
a Xb

X
ab ba Dab

LEMMA A.3. Let w be a scalar-valued function of a n × n symmetric matrix Y which is

in turn a function of matrix X. Then the derivative of w with respect to X is

dw

d

w

y

dy

dijj i

n

i

n
ij

X X
= ∂

∂
⋅

==
∑∑

1

.

LEMMA A.1 is a straightforward application of Graybill (1983, pp.354-358), theorems

10.8.8 and 10.8.11. LEMMA A.2 extends Graybill (1983) Theorem 10.8.4. LEMMA A.3

follows from the ordinary chain rule, bearing in mind that, because Y is symmetric the

summation is to be taken over only “half” of Y to avoid double-counting. The lemma

thus modifies Theorem 8 of MacRae (1974) regarding differentiation of a scalar-

valued function of a matrix so as to correctly handle symmetric matrices.

Appendix B.

The score with respect to general θ in li kelihood (2.3) can readily be shown to be

∂
∂θ

= ∂
∂θ

≡
∂ ′
∂θ

⊗
′ −

=

−∑s x t
t

t

T

ΣΣ ΣΣ1

1

1u I uT

yy
~

~ ; (B.1)
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where ′ = ′z {
t t tm(~ , , )p θ  is the n-vector of expected expenditure shares at time t as

per (2.2), u U~ ( )= ′vec , and | | }~
~ ( )= ′vec ; U and ��

 being defined as per (2.4).

In the context of “aggregated” li kelihood (3.3) this becomes 
∂
∂θ

= ∂
∂θ=

∑
� �

r

r

S

1

, where

∂
∂θ

=
∂ ′

∂θ
⊗ ′ ≡ ∂

∂θ
′− −

∈

′∑
�

r r
r

t
t

t
r

r

|| ~
~

( )I A u A uT r r r rΣΣ ΣΣ1 1
z� r , (B.2)

u Ur r~ ( )= ′
×

vec
n Tr r 1

, �� ��
~ ( )r r= ′

×

vec
nTr 1

, ut
( )r  is the tth row of Ur; and Ur , ��

r are as per (3.2).

∂
∂θ

�
r  simpli fies considerably, as might be expected, for the LES and AIDS. In

particular, for the LES, with � (~ , , )′pt tm θ  as per (3.4), we find that

∂
∂α

= ′ ′ −−
�

r
r

A U Pr r r T rΣΣ 1 ( )ι γ ,

and 
∂
∂γ

= − ′ + ′− −
�

r dvP U A P U A Jr r r r r r r rΣΣ ΣΣ1 1α � � ,

where dv a a
n n

nn( ) ( , , )A
×

= ′
�

11 �  and J I 0n= [ ] .

For AIDS (equation (3.7)), which is in any case linear with respect to α and β, we

simply require the sum over r of 
∂
∂α

= ′ ′−
�

r
r

A Ur r r TΣΣ 1 ι , 
∂
∂β

= ′ ′−
�

r A U hr r r rΣΣ 1 , and, for

symmetric ΓΓ, 
∂
∂

= + ′ −
�

r

ΓΓ
G G Dr r Gr

, where G A U Rr r r r r= ′ ′−ΣΣ 1  and

DA =
�

diag a ann( , , )11 �  for any n × n A.

Finally, for De Boer and Harkema’s (1986) covariance matrix, in which ΣΣ is

parameterized on ξ as per (4.3), it can be shown that the score with respect to ξ, for

both conventional li kelihood (2.3) and aggregated likelihood (3.3), is given by

∂
∂ξ

= ∂
∂

�� � � �� − ′ ∂
∂

+
�� � � �� + ′ ∂

∂
+

�� � � ��∂ ∂ ∂ ∂

� � � �� �dv
ΣΣ ΣΣ ΣΣΣΣ ΣΣJ J D Dζ ι ζ ζN , (B.3)
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where ζ ξ ι ξ≡ ′J N , and 
∂
∂

�
ΣΣ

 is as per (4.2) in the case of the aggregated likelihood,

(A.1) otherwise. Hence, for AIDS with ΓΓ parameterized on η as per (4.8), the score

with respect to η is also given by (B.3), with η and ΓΓ replacing ξ and ΣΣ respectively.
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Tables

Table 1. Abbreviations for expenditure categories

Food FOD

Cigarettes and Tobacco CGT

Alcohol and spirits ALC

Clothing and footwear CFF

Dwell ing rent RNT

Purchase of motor vehicles MVP

Household appliances HAP

Other household durables HDU

Postal and telecommunications TEL

Gas, electricity and fuel GEF

Fares FRS

Operation of motor vehicles MVO

Health MED

Entertainment and recreation REC

Financial services FIN

Other goods OGD

Other services OSV

Net expenditure overseas NEO
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Table 2. ML estimation of the LES. De Boer and Harkema’s covariance matrix; 3

subperiods; 18 expenditure categories; annual data

β γ ξ (× 104)‡

Expenditure
category

final
estimate

standard
error

final
estimate

†
standard

error
final

estimate
standard

error

FOD 0.0870 0.0052 1.2954 0.0550 0.1434 0.0420

CGT 0.0244 0.0132 0.0949 0.0948 0.3015 0.1026

ALC -0.0033 0.0040 0.5957 0.0231 0.0853 0.0241

CFF 0.0051 0.0036 0.7215 0.0198 0.0954 0.0272

RNT 0.2502 0.0110 0.4118 0.1993 0.4344 0.1835

MVP 0.0112 0.0035 0.4124 0.0219 0.0847 0.0240

HAP 0.0454 0.0044 0.0539 0.0084 0.1441 0.0424

HDU 0.0171 0.0034 0.3955 0.0212 0.0707 0.0200

TEL 0.0298 0.0019 -0.0076 0.0093 0.0084 0.0024

GEF 0.0154 0.0006 0.1627 0.0108 0.0014 0.0004

FRS 0.0230 0.0019 0.1854 0.0159 0.0225 0.0063

MVO 0.0526 0.0063 0.4167 0.0422 0.0390 0.0146

MED 0.1143 0.0076 0.0580 0.0728 0.0267 0.0104

REC 0.1138 0.0074 -0.2007 0.1028 0.0153 0.0059

FIN 0.0674 0.0092 -0.0577 0.0585 0.0678 0.0264

OGD -0.0232 0.0278 1.0468 0.1732 0.7423 0.6550

OSV 0.1878 0.0120 -0.2244 0.1273 0.0145 0.0069

NEO -0.0179 0.0036 -0.0081 0.0062 0.2806 0.1475

Initial log-likelihood 1651.50 Final log-likelihood 1754.27

Number of iterations 26 Norm of the gradient 2.09 × 10−5

Time to convergence 38.89 seconds Number of observations 27 (annual)

† For estimation purposes the matrix of price ratios (that is, the ratio of price (an index, =1 in 1989/90)
to total expenditure per capita (in Australian $)) has been scaled up by 103. Estimates of γ in Tables 2
and 3 are thus in units of thousands of 1989/90 A$.

‡ The system covariances are recoverable via σ ξ ξ ι ξii i i= − ′2

N , σ ξ ξ ι ξij i j i j= − ′ ≠N , .
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Table 3. ML estimation of the LES. De Boer and Harkema’s covariance matrix; 3

subperiods; 18 expenditure categories; quarterly data

β γ ξ (× 104)‡

Expenditure
category

final
estimate

standard
error

final
estimate

Standard
error

final
estimate

standard
error

FOD 0.0902 0.0041 0.2650 0.0163 0.2207 0.0337

CGT 0.0300 0.0032 -0.0083 0.0035 0.0527 0.0104

ALC -0.0105 0.0040 0.1674 0.0088 0.1459 0.0217

CFF 0.0179 0.0050 0.1479 0.0108 0.7158 0.1188

RNT 0.2592 0.0137 -0.0677 0.0640 2.6211 0.7294

MVP 0.0243 0.0035 0.0663 0.0095 0.1590 0.0238

HAP 0.0303 0.0018 0.0192 0.0016 0.1044 0.0156

HDU 0.0130 0.0039 0.0983 0.0089 0.2670 0.0406

TEL 0.0262 0.0013 -0.0095 0.0017 0.0229 0.0035

GEF 0.0136 0.0037 0.0355 0.0085 0.1326 0.0197

FRS 0.0269 0.0011 0.0228 0.0041 0.0228 0.0034

MVO 0.0155 0.0017 0.1682 0.0049 0.0094 0.0019

MED 0.0855 0.0062 0.0174 0.0202 0.1285 0.0262

REC 0.0977 0.0096 -0.0780 0.0301 0.1804 0.0377

FIN 0.0338 0.0030 0.0310 0.0081 0.0728 0.0147

OGD 0.1208 0.0072 -0.0755 0.0272 0.0808 0.0195

OSV 0.1383 0.0117 -0.0325 0.0356 0.3527 0.0821

NEO -0.0126 0.0023 -0.0093 0.0050 0.6465 0.1437

Initial log-likelihood 5159.35 Final log-likelihood 5588.39

Number of iterations 18 Norm of the gradient 2.95 × 10−7

Time to convergence 28.18 seconds Number of observations 95 (quarterly)

‡ σ ξ ξ ι ξii i i= − ′2

N , σ ξ ξ ι ξij i j i j= − ′ ≠N , .
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Table 4. ML estimation of AIDS(1). De Boer and Harkema’s covariance matrix; 3

subperiods; 18 expenditure categories; annual data

α β η† ξ (× 104)‡

Expenditure
category

final
estimate

standard
error

final
estimate

standard
error

final
estimate

standard
error

final
estimate

standard
error

FOD 0.4852 0.1162 -0.0355 0.0123 0.1781 0.0373 0.0937 0.0307

CGT 0.3406 0.0115 -0.0342 0.0012 0.0111 0.0006 0.0020 0.0005

ALC 0.5316 0.0239 -0.0515 0.0026 0.0212 0.0118 0.0289 0.0082

CFF 0.8824 0.0487 -0.0870 0.0052 -0.0046 0.0088 0.0435 0.0125

RNT -0.4252 0.1496 0.0639 0.0158 0.2214 0.0385 0.3386 0.1605

MVP 0.3116 0.0414 -0.0290 0.0044 0.0249 0.0093 0.0873 0.0265

HAP -0.0306 0.2806 0.0064 0.0296 0.0066 0.0089 0.1272 0.0411

HDU 0.0109 0.0985 0.0030 0.0104 0.1255 0.0298 0.0359 0.0110

TEL -0.2305 0.0166 0.0261 0.0018 0.0059 0.0011 0.0028 0.0008

GEF 0.0656 0.0094 -0.0047 0.0010 0.0161 0.0011 0.0015 0.0004

FRS 0.1622 0.0293 -0.0144 0.0031 -0.0099 0.0051 0.0125 0.0035

MVO 0.4169 0.0615 -0.0372 0.0065 -0.0036 0.0075 0.0198 0.0082

MED -0.4675 0.1037 0.0566 0.0109 0.0782 0.0327 0.0576 0.0302

REC -0.2767 0.0513 0.0344 0.0055 0.0528 0.0159 0.0072 0.0029

FIN 0.2227 0.0620 -0.0195 0.0065 -0.0775 0.0076 0.0079 0.0032

OGD -0.2786 0.0299 0.0369 0.0031 -0.0095 0.0089 0.0021 0.0010

OSV -0.7207 0.0645 0.0858 0.0068 -0.0303 0.0119 0.0315 0.0148

Initial log-likelihood 1726.74 Final log-likelihood 1908.03

Number of iterations 55 Norm of the gradient 7.21 × 10−4

Time to convergence 99.97 seconds Number of observations 27 (annual)

† To recover the matrix of price effects 
~ΓΓ , recall that γ η η ι ηij i j i j= − ′ ≠N ,  and

γ η η ι ηii i i= − ′2

N . Note that the estimated ′ι ηN  = 0.6065, implying γii  < 0 iff ηi < 0 or ηi > ′ι ηN .
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Table 5. ML estimation of AIDS(2). De Boer and Harkema’s covariance matrix; 3

subperiods; 18 expenditure categories; quarterly data

α β γii
† ξ (× 104)‡

Expenditure
category

final
estimate

standard
error

final
estimate

standard
error

final
estimate

standard
error

Final
estimate

standard
error

FOD 0.2340 0.0706 -0.0106 0.0087 0.0909 0.0186 0.0920 0.0186

CGT 0.0451 0.0147 -0.0034 0.0018 0.0074 0.0011 0.0033 0.0005

ALC -0.1052 0.0441 0.0184 0.0055 0.0127 0.0083 0.0330 0.0054

CFF -1.0580 0.0865 0.1382 0.0107 0.1409 0.0250 0.1526 0.0264

RNT 1.4678 0.0461 -0.1587 0.0057 0.1190 0.0170 0.0297 0.0060

MVP 0.0908 0.0644 -0.0066 0.0080 -0.0084 0.0082 0.1045 0.0180

HAP -0.0575 0.0907 0.0106 0.0112 0.0105 0.0045 0.2713 0.0604

HDU -0.7723 0.0408 0.1005 0.0051 0.0218 0.0171 0.0244 0.0037

TEL 0.0443 0.0140 -0.0037 0.0017 0.0066 0.0016 0.0028 0.0005

GEF -0.0420 0.0809 0.0077 0.0100 0.0186 0.0074 0.1870 0.0347

FRS 0.1288 0.0298 -0.0125 0.0037 0.0028 0.0040 0.0138 0.0023

MVO 0.3723 0.0215 -0.0382 0.0027 0.0532 0.0041 0.0034 0.0008

MED 0.4543 0.0531 -0.0478 0.0066 -0.0099 0.0324 0.0210 0.0050

REC 0.3201 0.0319 -0.0338 0.0040 0.0963 0.0245 0.0059 0.0014

FIN 0.2740 0.0300 -0.0293 0.0037 0.0317 0.0059 0.0061 0.0018

OGD -0.8655 0.0696 0.1158 0.0086 -0.0407 0.0474 0.0261 0.0075

OSV 0.4691 0.1042 -0.0466 0.0129 -0.0068 0.0710 0.1344 0.0431

Initial log-likelihood 6063.93 Final log-likelihood 6431.78

Number of iterations 15 Norm of the gradient 2.73 × 10−4

Time to convergence 77.77 seconds Number of observations 95 (quarterly)

† γ ii , i = 1,…,N, are the diagonal elements of the N × N matrix of price effects 
~ΓΓ .
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