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ABSTRACT

The resporse of consumer demand to prices, income, and aher
characteristics is important for a range of pdlicy isaes. Naturally, the
level of detail for which consumer behaviour can be estimated depends on
the level of disaggregation d the available data. However, it is often the
cese that the available data is differently aggregated in dfferent time
periods, with the information avail able in later time periods usually being
more detail ed. The gplied researcher is thus faced with choosing between
detail, in which case the more highly aggregated data is ignored; or
duration, in which case the data must be aggregated up to the “lowest
common denominator”. Furthermore, since parametric demand systems
invariably involve a large number of parameters, with the number
increasing at least linealy with the number of expenditure cdegories, it
may well bethat only the second opionisfeasible. That is, thereis smply
not enough data available a the finer aggregation level for the chosen
model to be estimated.

This paper develops a spedficaion/estimation technique that exploits the
entire information content of a variably-aggregated data set. The
technique is based onthe observation that the more highly aggregated data
doesin fad contain information onthe finer subcategories: viz, the sum of
cetain subcategory expenditures is observed. It is thus possble, under
catain smplifying assumptions, to write down, and maximize, the
likelihood d the observed data & a function d the parameters of the
chosen model written for the finest avail able level of disaggregation. The
technique is applied to an ABS dataset containing historical information
relating to private fina consumption expenditures on up to 18
commoditi es, and foundto be feasible for both the LES and AIDS.

KEYWORDS. Singular demand systems, Linear expenditure system,
Almost ided demand system, Missng data.

JEL clasdficaion: C32,C51,D12,E21



1. Introduction.

The resporse of consumer demand to prices, income, and demographic and aher
characteristicsisimportant for a range of palicy isaues, such asthe dfeds of a dhange
in the tax mix, and welfare calculations. Estimation d such resporse depends on
eoonamic theory, a statisticd model, and a data source. Naturally, the precisionand
reli abili ty of parameter estimates relies criticdly onthe acaracy andtime span of the
avail able data; and the level of detail to which consumer behaviour can be estimated

depends onthe level of disaggregation d the avail able data.

Typicaly, however, the avall able datais differently aggregated in dfferent time
periods, with the information avail able in later time periods generally being more
detail ed. The goplied researcher isthus faced with choasing between detail, in which
case the more highly aggregated dataisignored; or duration, in which case the data
must be aggregated upto the “lowest common denominator”. Furthermore, since
parametric demand systemsinvariably involve alarge number of parameters, with the
number increasing at least linearly with the number of expenditure cdegories, it may
well bethat only the seacond opiionisfeasible. That is, thereis sSmply not enough data
avail able d the finer aggregation level for the chosen model to be estimated.

The am of this paper is the development of a spedficatior/estimation technique that
exploits the entire information content of a variably-aggregated data set. The
technique is based onthe observation that the more highly aggregated data does in
fad contain information onthe finer subcaegories, in that the sum of the missng
subcategory expendituresis observed. It is therefore posgble to construct the
likelihood d the observed expenditure data e afunction d the parameters of the
chasen model written for the finest avail able level of disaggregation. The precise form
of the resulting likelihoodfunctionisindicaed for the Linea Expenditure System
(LES) and the Almost Ideal Demand System (AIDS), chosen asill ustrative examples.



Thetechnique is then applied to an ABS dataset containing detail ed historicd
information relating to private final consumption expenditures on a wide range of
commoditi es', resulting in more detail ed and more predse parameter estimates than
would namally be avail able. Implications for the detail ed analysis of palicy questions
of current interest, such asthe dfed on behaviour of a change in the tax mix, should

be obvious.

2. Model and notation.

Consider a system of demand equations q = &( p,m,0), where g is an N-vector of
goods with price vedor p, misincome (assumed equal to total expenditure), the
vedor 6 contains the parameters of the utili ty function, and the functions @.(+), i =

1,... N, satisfy the restrictions implied by the theory of consumer demand.

For the purposes of estimation the endogenous variables g; are generally transformed
to expenditures x = pgq , or, further, to expenditure shares w, = p.¢ /m (to be more
consistent with an assumption d homoscedasticity and to remove dependenceonthe
numeraire). This leads to the standard spedficaionin demand analysis: the estimation

of the parameters of the system of share equations

W =W (P, Py.MmO)+u ; i=1...,N.

More precisely, the 1 x N vedor comprising the t observation onthe N expenditure
shares” W, =X/ /m , ismodelled as afunction d the N-vedor of prices p; , incomein
the t" period m = ZNﬂ)qt , the parameter vedor 8, and an additive, serially

independent, zero mean disturbance, with constant variance-covariance matrix = ; ie,

! The dataset was compil ed in previous joint work (McLaren, Rosster and Powell (2000) with the
Australian Bureau of Statistics (ABS); and in eff ect extends the publi cly avail able expenditure data
badk to 1969/70 for certain subcaegories of Other Goods and Services.

2 Quantities pertaining to the mmplete N-commodity system are henceforth indicated by a“~" over the
symboal for the corresponding “full rank” quantity — cf. equation (2.2).



W, = W(E;m.e)+T; T~ 2 ). (2.1)

1xN
The demand system “ adding-up’ condtion, making £ singular, of rankn=N — 1,is
then as usua avoided by “droppng” one of the expenditure categories, so yielding a
full rank system involving T observations on n categories:

w, =WELm.0)+ul; u, ~(0,5). (22)

1xn

The model is completed by the conventional assumption that u, is distributed n-variate

normal®, and the standard Gaussan log-li kelihood” foll ows; ie,

08,%) = —£|n|2| - %tr(z*u'U), (2.3)
where U=W-UW(P,m,0) (2.4)
Txn Txn TxN Tx1

isthe T x n matrix of disturbances, W isthe T x n matrix of observed expenditure

shares, and <l isthe T x n matrix of expeded expenditure shares, condtional onthe

T x N matrix of prices P, the T x 1 vedor of total expenditures m, and the vector of

“mean” parameters, 0.

3. The “aggregated” likelihood.

Now consider the situationin which the expenditure datais avail able & differing
levels of disaggregationin dfferent subperiods. For example: suppase that
expenditure dataisinitialy colleded for categories “Food”, “Durables’ and “Other”;
where “Other” islater split into “ Other goods” and “Other services’. That is, datais
avail able for shares of N = 3 commodities (A, B, C) in the total budget for the first

3 Although, as the dependent variable is now by definiti on constrained to be both non-negative, and to
sum to unity, it can be agued that the disturbance distribution should be spedfied so asto avoid
violating this constraint. Seg for instance, Fry, Fry and McLaren (1996).

* For clarity, al likelihoods will be written without their density function constants.



time period, and for N = 4 commodities (1, 2, 3, 4 for alater time period. Thus we

observe only

Wy, W, Wy t=1...,T,,

and Wi, Wy, Wy W5 =T +1...,T;

where, by the nature of the problem (andfor later convenience setting “A” equal to
“Other goods and services’, “B” equal to “Durables” and “C” equal to “Food”),

WAt = Wlt +W2t'
Wgi = Wy,
and w,=w,, t=1..T.

Standard estimation strategies in such a situationwould be to:

(@ aggregatethe datafor theperiod t =T, +1,...,T and apply the theory to the case
of N =3, for the entireperiod t =1,...,T; or

(b) use astatisticd methodto interpolate the dataon wy; for the period
t =1,..., T, to construct an approximate statistica seriesfor wy; and wy, for the
period t =1,...,T;, and then carry out estimation for the case of N = 4 for the

periodt=1,....T; or

(c) estimate separate models for thesubperiods t =1,..., T, andt =T; +1,..., T .

However, it must be the cae that the expeded expenditure on commodity A isjust the
sum of the expeded expenditures onthe comporent commodities 1 and 2,and hence

the stochastic part of w, is also the sum over the sub-commodities; that is,

Wp (p,m;B8) = W, (p,m;0) + W, (p,m;0),

and Uat = Uyt + U .



In ather words, an econamic model spedfied for the most disaggregated data
necessarily implies a arrespondng econamic model applying to the data & any level
of aggregation. The same statement appli es to the accompanying statistica model.

To generdisethis, let usassume S> 1 subperiods 73, ..., 7swith dffering degrees of
expenditure cdegory aggregation; and nde that the observed expenditure sharesin
ead subperiod are necessarily alinear combination d the underlying (partially
unokserved) expenditure set w . That is, for t (I </, we observe only the linear
combination y, = AW, , where A, isaN; x N “aggregation matrix”, of rank N; < N,
taking the N-vedor w into the N;-vedor of observed, bu more aggregated,
expenditures y . We dso assume that, for at least one of our subperiods (usually the
last), expenditures onall N commoditi es are observed, in which case the implicit
aggregation matrix for that subperiodisthe N x N identity (ie, y, =w, fort O Yg).
With w, generated as per (2.1) the model for y,, t O </, , isthen just

Vi = WA, = W(E.m, B)A; +TA;

r

pd]

—

with® U, ~ N(O,A ZA!).

r

Thus, in the context of our introductory example, with {w;, w,, ws;, w,} dencting the
(partially unolserved) expenditure shares for the “disaggregated” set “ Other goods’,
“Other services’, “Durables’, “Food”; and {wa, Wg, Wc} denating expenditure shares
for “Other”, “Durables’, and “Food” respedively, the additional information that

w, =w, +w, instantly implies

w,) [1 100
W, ~_
WB:0010W:AW
w.) |0 00 1| °
W,

® The asumption of an additive multivariate normal disturbanceis clealy advantageous in this tting.



A thus aggregates W = {wy, Wy, W, Wy} into Y ={wa, Wa, Wc}, andfor at least some
subset of the sample period (spedficdly, t = 1,...,T;) only the linear combination

¥, = AW, isobserved. Themodel for ¥, then follows from that assumed for W, .

As before, converting the model for y into a “full rank” equivalent is most simply
acomplished by omisson d one of the (possbly aggregated) expenditure categories,
correspondng to deletion d the matching row from the aggregation matrix. More
formally, nate that elimination d the last equation/commodity from the N-vedor w
corresponds to pre-multi plication by then x N matrix J = [I . O]; ie

Acoordingly, for the r™ subperiod, with N, observed expenditure shares § = KrvT/, let

y=J Vy,

ne x1 N, x1

wheren, =N, — 1,and J, :[|n, O]. Then y, =J,A, W, , and, as before, the model

for y would follow quite ssmply from that assumed for w .

The expressonfor y smplifies even further if we aume asystem in which at least
one cdegory (such as“Food’, in the example &owe) iscommonto all subperiods, as

we ca then order the cmmodities such that

~ [A, 0O
A = ,
5

where the top-left submatrix A, isn, x n. Consequently, J A, =[A, 0], and

y=[A, 0][V\\I/\;j=ArW.

Exclusion d the last commodity equation to avoid the adding-up problem now

corresponds to deletion o the last row and column of A, andwe have, fort 0 7, ,



Vi =WiAL = W(EL M B)A, +UAT; Au, ~N(OA A .

Asauming T, such observations then yields the log-li kelihoodfor the r™ subperiod as

(8,5) :—12r|n|zr| - %tr(z;lu;ur), 3.1)
in which Z, =AZA;,
and U =Y, -W(P ,m, ,0)A". (3.2)
T xn, T, xn, T, xN T, x1 nxn,

Here U, and Y, arethe T, x n, matrices of disturbances and olserved expenditure
shares for the ™ subperiod, and <W(P.,m. ,8) , for convenience dso denated <), (6),
isthe T, x n matrix of expeded expenditure shares, condtional onthe T, x N matrix®
of prices pertaining to the ™ subperiod P, , the T, x 1 vedor of total expenditures m,

and the k-vedor of mean parameters 6.

Asaiming independence of observations acosstime periods then yields the mmplete,

or “aggregated”, log-likelihood
7(8,%) SE 13T||AZA| L (UJU. (A ZADT). (33
’ = P TS FINA, ; T4 tr ; r r ; ) :
2" 7722 22,

It isnow astraightforward matter, given 6 and Z, to cdculate the joint likelihoodfor
the entire sample dl owing for the varying levels of aggregation within the sample,
provided pricedatais avail able onal commodities for the entire period. The only
remaining requirement for spedfication d the aggregated likelihoodis a parametric
model for the expeded expenditure shares; with the mmparatively parsimonious

Linear Expenditure System serving as a mnvenient starting point.

® Note that it isimplicitly assumed that, although expenditure datais not avail able for all N
commoditiesin all time periods, pricedatais.



3.1 Application to the Linear Expenditure System

For the LES the t™ expenditure on the i"" commodity is modell ed as
X =Py B M =Py) +v i =L N =1 T

where [3;, y; are parameters, y is the N-vedor (y,,Y,,...,Yy)' ,» ahdthe adding-up

condtionimplies ZlN B, =1. In expenditure share form this beames

w, =%vi+8i[r%\/)+uﬁ, i=1..,N, t=1..,T;

with total expenditure now subsumed into the pricematrix as a divisor. Excluding the

N equation and rewriting thisin vedor notation as per (2.2) then yields
w;=[1 B/mN@y)+u;, t=1..T, (3.)

where (3 isan n-vedor excluding 3 and

Bl Bz Bn
yl(l_ [31) _Van e _Van
- 1- -
neng s TR TR
_ynBl _yn[32 yn(l_Bn)
L _yNﬁl _yNBZ _yNBn i

The expedation d the T x n matrix of expenditure sharesis therefore

W(P,m,8) =[1; PINB.y),
where 1 ; isthe T-vedor of ones, and P denatesthe T x N matrix of prices scaed by

total expenditure (ie, p, = p,/m ). Accordingly, for the r'" subperiod,

W, (0)=WPF.m,.0)=[1;, P]N(BY) . (35)

T xn Tx1 T,xN (N+1)xn



3.2 AIDS

Whil e the LES has the alvantage of deriving directly from awell-defined utili ty
function, and thus automaticdly satisfying the necessary theoretical restrictions, it can
be aiticised onthe grounds that it Simply has too few parameters to adequately
model, in particular, the %n(n —1) substitution effeds involved in a N-commodity
demand system. We therefore dso consider the Almost Ideal Demand System of
Dedon and Muell bauer (1980), viz
N

w, =a, +f3 In%+;yij Inp, +u,, i=L..,N, t=1...,T; (3.6)
where alding-upimplies Y " o, =1, 5" B, =0,and $ " y; =0; homogeneity
requires Zszlyu =0;and y; =y, ensures Slutsky symmetry.

Strictly spe&ing, the deflator P, shoud enter (3.6) viathe translog priceindex

N

InP :0(0+]_le(j Inp, +;jz”zlyw Inp, Inp, .
However, as we shall see for any more than afew commodity categories the
computational burden imposed by the symmetry restrictionis already sufficiently
onerous withou impasing ancther level of nonlinearity. It is therefore ommon to
either replaceln P by, for instance, Stone's priceindex Zi“:lwi Inp ; or, even more
simply, to usered expenditure diredly if thisis already available. If thisisdone we

have

Wy = &'+[In%) [3’+(Inp{)N[N +Up, t=1...,T.

1xN t

Deleting the N™ equation and imposing homogeneity directly then yields

1xn t nxn

w! = a’+[lnﬂ)ﬁ'+[lnp—{) r+u,t=1..,T, (3.7)
P pNt



implying

W = 1;a'+hp'+RT +U,

Txn nxn

where h isthe T-vector with t"

element equal to the logarithm of red income
In(m/R), Risthe T x n matrix with t™ row equal to the logarithm of the vedor of
normalised prices In(p;/ py,) , ahd T isn x n symmetric. Clealy, it isonly the aoss

equation symmetry restrictions that now make the system norlinea.

The r'™ subperiod matrix of expeded expenditure shares required by (3.2) is therefore

wW® =[i, h RJa B ], (3.8)
T, xn T,x1 T,x1 T,xn
where h; and R, denctethe T, -vedor of log-real incomes andthe T, x n matrix of

log-normalised pricesin the r'™ subperiod.

4. Maximizing the aggregated likelihood

Spedficaion d an “aggregated” likelihoodis thus relatively straightforward.
Estimation d the parameters of such alikelihoodis, however, ancther matter. To see
this, reconsider the cnventional Gaussan likelihood d Section 2.1t so happens, in
this case, that the first order condtion (FOC) for X has asimple dosed form solution,
enabling the mnstruction d aprofile, or “concentrated” likelihoodfor 6 of the

familiar log-determinant form

°(9) = —%InlU’U| . (4.1)

An ogimization groblem previously invaving k mean parameters 6, plus %n(n +1)
covariance parameters, now depends only the former, and so isfar more likely to be
feasible. Indedd, it isnat, in general, passble to maximize (2.3) with resped to bah 6

and ~ numericdly unlessthe number of expenditure caegoriesisvery small.

10



Exploitation d the dosed form MLE of X can therefore be aucia to estimation d the
system.

Contrast thiswith the situation pertaining in the context of “aggregated” likelihood

(3.3). Then x n matrix of scores with resped to the dements of Z is now

00 _ 0

— r .

0x 4oz’

where ¢, isascdar-valued function d the quadratic ~, = A, ZA, asper (3.1), andthe
(i, j)" element of =, isjust (Z,), = a/”Zal” with a®” denoting then x 1 vector
obtained by transposing the i row of aggregation matrix A,. The mntribution o the
r' subperiod to the score with resped to S then procees by application of Lemmas
A.1-A.3 (Appendix A) as

(4.2)

inwhich g” =a¢, /0(Z,); isthe(i, j)" element of

A = agr — s -1 1 -1 1 .
anE =E_zr WU -T2 33 " 2P s
AW isthe (i, )" n x n submatrix of A, = 0z, _ A AL efined by
nn xnn, 0> 2
~(r d(zr)l 1A (r 1At (T
Al(J) = dz J = al( )aj() +a§ )al() _Dai(r)a'j(r);

Da denotes the n x n diagonal matrix with (i, i)™ element equal to the crrespondng
diagonal element of the n x n matrix A’, and the matrix differential 0%, /0% is

" The same notation is, without ambiguity, employed for the “diagonalisation” of avedor; ie; if aisan
n-vedor then D, will denote the n x n diagonal matrix with (i, i)™ element equal to the crresponding

11



defined as per MacRae(1974)%. The doute-sum in (4.2) will be referred to (with
notation and terminology borrowed from MadRae) as amodified “star product”, and

written
agr - ar Efr ,
0 ne XN, nnoxnn
. , 0 _ &, = 8%
implying a—z—Z(Qr A ).
T=1 nexne o onnoxnn

Thus the FOC for X consists of the sum, over r, of functionsin which, even leaving
aside the complication pcsed by the star-product with Kr , 2 only ever appears viathe
quadratic Z, = A, ZA" . It isevident that we can nolonger obtain a dosed form
solution for the MLE 5, and so cannat derive, after the manner of (4.1, aprofile
likelihoodfor 6. The %n(n +1) parameters of the cvariance matrix must, as a result,
be estimated diredly, along with the k (= 2n+1 for the LES, (n* +5n)/2 for
symmetry-restricted AIDS) parameters of the mean. Thiswas found,even for the
comparatively parsimonious LES, and even learing aside the matter of the missng
expenditure data, to be infeasible” for any realistic sample size & the level of

commodity disaggregation contemplated here'®.

element of a. The cnverse operation, in which the diagonal elements of the n x n matrix A are
“extraded” into an n-vedor, will be denoted dv(A).

8 That is, dY/dX =Y O d/dX. Cf. “definition 2” in §3 o Magnus and Neudedker (1988 p.171).

® In that the optimizing procedure (Gaussmodue CO) iterates ad infinitum without finding a set of
parameter values that can with any confidence be said to be “maximizing’.

1% The data avail able mnsisted of 27 annual, or 95 quarterly, observations on up to 18expenditure
caegories. It should be noted that even an LES-based version of profile likelihood (4.1) cannot be
maximized with only 27 olservations— and if we prefer AIDS then 95 olservationsis smilarly
inadequate. Estimation of amodel with so many commodity caegoriesis thus problematic even
without the alditional complication of differing degrees of disaggregation.

12



4.1 De Boer and Harkema's covariance matrix.

An obvious lution to the problem described abowe is to reducethe dimension d the
optimization problem by considering a reduced-order parameterization d the
covariance matrix. This has typically been accomplished by setting & = 6°C, where
C isasymmetric N x N matrix of constants (which may be functions of the data)
devised such that X1, =0, where 1, is the N-vector of ones, andrank(Z ) = n. The

% n(n+1) unknavn covariance parameters are thereby reduced to just one—adegree
of parameter reduction which might be thought somewhat extreme. Furthermore, the
most common data-independent specificaion (see84.2foll owing) imposes the less
than reasonable restriction that all category variances are equal, as are dl the aoss

caegory covariances.

Acoordingly, consider the lessrestrictive order-N parameterization devised by De
Boer and Harkema (1986, in which the singular N x N covariance matrix s is

parameterized onan N-vedor & according to

Z (&)=D - E&'/1LE,

Nx1

D, =diag(&,,...,&,) . Then Z(£) clearly satisfies 31, =0, and the submatrix

defined by ommisson d the last (or any) category,
2 () =X =D, - JE&'JI'/1}E, (4.39)

J§=(&,,....&,) , ispoditive definite if either (i) al §; are strictly positive; ie, & >0
Oi=1...,N (inwhich case dl the qoss-covariances will be negative); or (ii) a

single§; is negative, and d sufficient magnitude that 1}, isnegative dso.

Substituting (4.3) into (3.3) then implies an “aggregated” likelihood @rameterized on
0 and &. Most importantly, the number of covariance parametersto be estimated is

now O(n) rather than O(n?).

13



4.2 Order-1 parameterization

The most restricted such parameterization d the covariance matrix isobviously just

& = 0’1, , leading to the well known spedficaion

S =02l — 114 /N), (4.4)

implying = =0?(l, —1,1,/N), 2" =(, +1,11)/0®, and |Z| = ¢°"/N . Substituting

the last two into (3.3) then yields aggregated log-likelihood ¢(8,0%) = 5 2., ¢, with

Tn T 1
¢ = ——T|ng®’-—LIn[C |-—tr(C'U'U ), 4.5
r 2 2 | rl 20_2 ( r r r) ( )

and C, =A.(,-1,1,/N)A;.

ne XN,

The MLE of our single remaining covariance parameter is then easily obtained as
2 2 1 2
6= Y tr(C*U'U,) /Y Tn,. (4.6)

Consequently, and in contrast to the situation for more general Z (including Z(§) of
the previous subsedion), 02 can be mncentrated out of 5 >, ¢, (6,0°) . Theresult isan

“aggregated” log-profil e likelihoodfor 6 of the form (ignoring all constants)

16) = —%{im} In{itr(CfU;Ur)}. 4.7)

r=1

This expresson can naturally be used as abasis for the estimation o 8 asan endin
itself — provided we are prepared to accept the acompanying, passbly over-
restrictive, covariance structure. For our purpases (4.7) and (4.6) are most useful as a
means of obtaining starting values for the maximization d the aygregated likelihood
with Z as per (4.3).

14



4.3 Re-parameterizing AIDS for small datasets

The estimation problem is compounced if we a@tempt estimation d the Almost Ided
Demand System with a very small dataset (such asthe annual dataset used in the
Example foll owing). Even after restricting the covariance matrix we find that
symmetry-restricted AIDS cannad be estimated uressthe dataset is reasonably
large™’. The problem, orceagain, is Smply too many parameters ( (n? +5n)/2) to

permit nontlinea estimation.

Pursuing the same strategy as that employed for the cvariance matrix, afeasible,
though somewhat ad ha, solutionisto reparameterize the I' matrix in such away as
to considerably reduce the number of free parametersto be estimated, while ensuring
symmetry and adding-up. The obvious choiceis, once again, De Boer and Harkema's
parameterization, with the minor differencethat we nolonger require positive-

definitenessof any n x n submatrix. Accordingly, let
L= Dy-nn'/un, (48)
where the N-vedor n is unrestricted, implying
I' =Dy, —Jdnn'J'/iyn. (4.9)

The model now invalvesjust 3n+1 freemean parameters, plusthe N parameters of

De Boer and Harkema' s covariance matrix.

1 Such asthe 95 otservations of the quarterly dataset, for which AIDS with De Boer and Harkema's
covariance matrix could be estimated without difficulty.

15



5. Example

The LES, with De Boer and Harkema' s covariance matrix (heredter designated
LES(1)), and AIDS, with De Boer and Harkema' s parameterization applied to bah I
and Z (heredter AIDS(1)), were estimated for a demand system comprised of upto 18
expenditure cdegories, over the period 196970 — 199896. The data™® used for the
main example was colleded annually, and included 3 subperiods of differing
expenditure agygregation, dig, in this case, to successve divisions of the “Other goods
and services’ category. The three subperiods were defined according to the then
pubished data, with expenditure data disaggregated as foll ows.

196970 — 198@81. 12caegories: Food, Cigarettes and Tobacco, Alcohd and spirits,
Clothing andfootwear, Household apgiances, Other househad durables,
Dwelling rent, Gas, eledricity andfuel, Fares, Purchase of motor vehicles,

Postal andtelecommunications, andOther goods and services.

198182 — 198637. Other goods and services (G& S) split i nto: Operation d motor
vehicles, Health, Entertainment andreaeation, Finarcial services, Other

goods andservices = 16 categories.

198687 — 19986. Other G& S split i nto: Other goods, Other services, Net
expenditure overseas (LES orly) = 18 caegoriesfor LES, 17for AIDS™.

The experiment was repeaed with querterly data™, as this all owed the estimation o
AIDS with I symmetric but otherwise unrestricted; though, d course, still with De
Boer and Harkema' s covariance matrix (hereafter designated AIDS(2)). The quarterly
dataset extended from 19743 quarter) to 199§1% quarter), with the 12, 16,and

12 Australian Bureau of Statistics National Accounts: Private Final Consumption Expenditure.

13 Net overseas expenditure (NEO), aone of the caegories, can take both negative and pasitive val ues.
More aucialy, the nomina and red data do not always have the same sign, making the adual
definition of an IPD rather problematic in any case, and the log-price undefined. Total expenditure for
AIDS was thus cdculated net of NEO, and the cdegory excluded.

14 Australian Bureau of Statistics, Private Final Consumption Expenditure (quarterly estimates).
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18(17) caegory subperiods covering, respectively, 1974(3) — 198%3), 19854) —
19893), and 198%94) — 199§1). The three subperiods were, once again, defined
acording to the then published data.

In summary, the 1% subperiod consists of 12 annual (45 quarterly) observations on 12
expenditure caegories; the 2" involves 6 annual (16 quarterly) observationson 16
categories; and the 3 involves 9 annual (34 quarterly) observations on 18(17)
caegories. All expenditures arein A$ per capita. Prices are measured by the IPD for
eadt expenditure cdegory, and equal unity in 198990.

Eadch model was estimated by ML in two stages, with Foodas the “omitted” category
in al subperiods. Thefirst stage esumesthat X is parameterized onthe scalar 62 as
per (4.4); and so consists of maximization d likelihood(4.7) with resped to 6*°. The
MLE of o2 then follows via (4.6). The 1% stage thus supplies garting values for 6 and
£ (the latter via & = 621, ) for the 2" stage, in which likelihood(3.3), with =

parameterized on¢ as per (4.3), is maximized with resped to 6 and &, subjed to the
restrictionthat & > 0,i = 1,... N. Asremarked above, thisis dightly more restrictive
than necessary, and has the disadvantage that it forces all the crosscovariances to be
negative, but istrivial to implement. Asit happens, repladng “all & > 0" with the
requirement that all eigenvalues of X be strictly positive had noeffect other than to

slow the optimization.

Results for LES(1) and AIDS(1) (annual data) are givenin Tables2 and 4.Tables 3, 5
and 6give aaogous results based onthe quarterly dataset and models LES(1) and
AIDS(2). Standard errors were mmputed viathe inverse Hessgan evaluated at the
maximum,; the Hesgan itself being computed viaforward dfference gproximation d

15 starting values for the 1% stage were, for the LES, B = average expenditure share in the final
subperiod, and y = 0. 1% stage starting values for AIDS were obtained via the unrestricted regression of
the matrix of expenditure shares on log-red income, log-normalised prices, and a mnstant; with the
exception of theinitial n for AIDS(1), which we started at 0.011 .
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the derivatives of the analytic gradient'®. The time required for the estimation was less
than 30seands for the LES, and abou 1¥2minutes for AIDS.

We findthat our estimated coefficients are, for the most part, statisticdly significant
at the 5% level, and have signs that are usually plausible. Thus, for the LES, it is not
unreasonabl e to suppase that most of thase cdegories attrading a significantly
negative y; are indeed price dastic; while for AIDS most of the positive 3; are dtaded
to categories that might be regarded as “luxuries’. However, asis common when
estimating consumer demand based onaggregate data, theoreticd restrictions not
explicitly imposed duing estimation are not in general satisfied. In particular, for the
LES, estimates of theincome dfects parameter 3, which shoud in theory lie between
0 and 1,are occasionaly negative; implying both a negative Engel easticity and
positive own-price substitution effect. Similarly, for AIDS most y; are positive,
suggesting that negativity isagain likely to be violated. We emphasise, however, that
such criticisms houd be regarded separately from the feasibili ty of the suggested
method d estimating a demand system with dff erently aggregated data.

6. Conclusion

A simple method has been propcsed for the ML estimation o a consumer demand
system in the situation where not all expenditures are observed for al commodity
caegoriesin al time periods. The mgor difficulty with the estimation o such a
system is that, whil e the likelihoodfunction can be written dowvn simply enough
(particularly if we asume serially uncorrelated Gaussan errors), its maximizaionis
problematic because of the %n(n +1) covariance parameters that must now also be
included in the objedive function. In esence, the mmplete log-likelihoodcanna be

satisfadorily maximized unlessZ can be mncentrated ou. It isworth nding that this

16 Analytic expressions for the scores with resped to the cmponents of 8 in each model, and with
resped to the De Boer and Harkema (1986 covariancevedor &, are givenin Appendix B.
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would bethe cae even if we had a mmplete set of quarterly data (95 olservations)

avail able on al 18 expenditure categories.

The obvious grategy, and the one mnsidered in this paper, is to reducethe number of
covariance parameters to be estimated by a suitable re-parameterization, leading to the
adoption d De Boer and Harkema's (1986 covariance matrix. We find that the
“aggregated” likelihood kased onthe LES can now be maximized withou difficulty,
even for the annual (27 olservation) dataset. Furthermore, whil e such estimation
canna easily be caried ou in a standard econametric package such as TSPor
Shazam, it can be coded and computed quite simply in a programming language such
as GAUSS

Estimation d the aygregated likelihood kased onAIDS was (unsurprisingly) more
problematic, even after reparameterizing . The methodis perfedly feasible if
sufficient datais avail able; however, for practicd purposes this means the use of
quarterly data. Estimation d “aggregated” AIDS with annual data was, at least for our
dataset, passhble only if the number of free parametersin the I’ matrix was aso
gredly reduced. Asimplemented here this leaves us with orly N parameters to
estimate the substitution eff eds. Nonethelessthis gill represents a distinct advance
over the LES, which impases, among other things, the “hidden” restriction that the
Allen-Uzawa substitution el asticiti es be propartional to the prodct of the
correspondng Engel elasticities.

The need to impaose De Boer and Harkema's gill fairly restrictive parameterization on
the @variance structure of the model might be thought something of a disadvantage.

It seems that the price of being ableto use diff erently aggregated data from ealier
time periods withou saaificing some commodity subcaegoriesis a somewhat ad hac
covariance structure. We find, havever, that not even the concentrated log-likelihood,
which we would exped to useif there were no missng expenditure data, can be
reliably maximized if the annual dataset is preferred. That is, 27 olservations are

insufficient to allow maximization o the mnventional li kelihoodwith symmetric but
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otherwise urnrestricted covariance matrix and more than 7 a 8 categories, even for the
extremely parsimonious LES. If we prefer AIDS then the (95 olservation) quarterly
dataset is smilarly insufficient. Indeed, restricting the cvariance matrix may well be
esentia to the estimation d AIDS for alarge number of commoditi es, even withou
the problem of missng expenditure data. Of course, if there are insufficient data®’
available onal N commoditi es then an N-commodity model canna be estimated in
any case withou resort to additional information —such as that implicit in more

highly aggregated datain previous time periods.

Naturally, implementation d our approach requires, fairly obviously, that there be
expenditure data avail able on all commoditiesin at least one time period*®. Also nae
that we must have data onthe complete set of explanatory variables for al time
periods; that is, only the dependent variable (expenditure) can be “missng’. Since(in
Australia) price (CPl) data has been colleded for a greater degree of disaggregation
over longer time periods than almost any other series this may not be too orerous a

requirement, at least as regards the estimation o demand systems.

ML requires, at the very least, T = N — 1 observations to be feasible in an N-commodity system.

'8 Thoughit is difficult to say how few observations on the full system it would be possble to have
before the problem became, in some sensg, ill-conditi oned, and the maximization infeasible.
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Appendix A.

LEMMA A.Ll. Given ¢ = —%In|2|— %tr(Z*U'U) where X is ymnetric,

1

E Dz*l{u'u—Tz}Z’1 :

O = syyu-TEls -
s

(A.D
LEMMA A.2. For X n x nsymrmetric and nvectors a andb,

da'’Xb
dXx

=ab'+ba'-D,,

LEMMA A.3. Let w be a scalar-valued function d a nx n symmetric matrix Y which is

in turn afunction d matrix X. Then the derivative of w with resped to X is

LEMMA A.lisastraightforward applicaion d Graybill (1983 pp.354-358), theorems
10.8.8and 10.8.11LEMMA A.2 extends Graybill (1983 Theorem 10.8.4.LEMMA A.3
follows from the ordinary chain rule, bearing in mind that, because Y is symmetric the
summationisto betaken over only “half” of Y to avoid doulbe-counting. The lemma
thus modifies Theorem 8 of MacRae(1974) regarding differentiation d ascdar-

valued function d amatrix so as to corredly hande symmetric matrices.

Appendix B.

The score with respect to general 0 in likelihood(2.3) can readily be shown to be

T , ]
o _ 50U, >y, Ea_cy[lT 05 u; (B.2)
0 & 00 00
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where <@, = “W(p,,m,0) isthe n-vedor of expeded expenditure shares at time't as
per (2.2), u =vec(U'), and @ = vec(‘W)’") ; U and <) being defined as per (2.4).

S
In the context of “aggregated” likelihood(3.3) this becomes % = Z % , Where
r=1

0r, _ 0w,

r

00 00

1, OAEy, = ;@A:zfurn (B.2)
r 07, 06

u, =vec(U/), w, =vec(W'), u” isthet™ row of U; and U, , W, are & per (3.2).
n T, x1 nT, x1

?;g simplifies considerably, as might be expeded, for the LESand AIDS. In

particular, for the LES, with <IJ(p;,m,0) as per (3.4), we find that

14 o
Ct=AZ U1 —PYy),
aa r<r r( T, ry)
agr - ' -1 ] -1
and a—-—Pru,zr A.a+dv{P'U,Z A J},
Y

where dv(A) 2 (a,...,a,,)" and J=[I, 0.

For AIDS (equation (3.7)), which isin any case linear with resped to a and 3, we
oL, Yl _A's U and, for
oa oB

simply require the sum over r of h,
=G, +G; -Dg ,where G, =A;2'U/R, and

: o/
mmetricl’, —
¥ or

=A/Z U,

D, #diag(a,,...,a,,) foranynxnA.

Finaly, for De Boer and Harkema' s (1985) covariance matrix, in which Z is
parameterized ong as per (4.3), it can be shown that the score with respect to &, for
bath conventional li kelihood(2.3) and aggregated likelihood(3.3), is given by

o/ o/ [ or | a¢
& = dV{EJ} —J {E +Dgyox }Z +1 {E + D5 }Z , (B.3
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where {=J&/1,&, and g—é isas per (4.2) in the case of the aggregated likelihood,
(A.1) otherwise. Hence, for AIDS with I parameterized onn as per (4.8), the score

with resped to n isaso gven by (B.3), withn andT replacing & and X respedively.
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Tables

Table 1. Abbreviations for expenditure categories

Food FOD
Cigarettes and Tobacco CGT
Alcohol and spirits ALC
Clothing andfootwear CFF
Dwelling rent RNT
Purchase of motor vehicles MVP
Household apgiances HAP
Other househdld durables HDU
Postal andtelecommunications TEL
Gas, electricity andfuel GEF
Fares FRS
Operation of motor vehicles MVO
Health MED
Entertainment andrecreation REC
Financial services FIN

Other goods OGD
Other services osv
Net expenditure overseas NEO
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Table 2. ML estimation of the LES. De Boer and Harkema'’s covariance matrix; 3

subperiods; 18 expenditure categories; annual data

B Y g (x10%°
Expenditure fi_nal standard f_inal N standard fi_nal standard
category estimate error estimate error estimate error
FOD 0.0870 0.0052 1.2954 0.0550 0.1434 0.0420
CGT 0.0244 0.0132 0.0949 0.0948 0.3015 0.1026
ALC -0.0033 0.0040 0.5957 0.0231 0.0853 0.0241
CFF 0.0051 0.0036 0.7215 0.0198 0.0954 0.0272
RNT 0.2502 0.0110 0.4118 0.1993 0.4344 0.1835
MVP 0.0112 0.0035 0.4124 0.0219 0.0847 0.0240
HAP 0.0454 0.0044 0.0539 0.0084 0.1441 0.0424
HDU 0.0171 0.0034 0.3955 0.0212 0.0707 0.0200
TEL 0.0298 0.0019 -0.0076 0.0093 0.0084 0.0024
GEF 0.0154 0.0006 0.1627 0.0108 0.0014 0.0004
FRS 0.0230 0.0019 0.1854 0.0159 0.0225 0.0063
MVO 0.0526 0.0063 0.4167 0.0422 0.0390 0.0146
MED 0.1143 0.0076 0.0580 0.0728 0.0267 0.0104
REC 0.1138 0.0074 -0.2007 0.1028 0.0153 0.0059
FIN 0.0674 0.0092 -0.0577 0.0585 0.0678 0.0264
OGD -0.0232 0.0278 1.0468 0.1732 0.7423 0.6550
osv 0.1878 0.0120 -0.2244 0.1273 0.0145 0.0069
NEO -0.0179 0.0036 -0.0081 0.0062 0.2806 0.1475
Initial log-likelihood 1651.50 Final log-likelihood 1754.27
Number of iterations 26 Norm of the gradient 2.09 x 107
Time to convergence 38.89 seconds Number of observations 27 (annual)

" For estimation purposes the matrix of priceratios (that is, theratio of price (an index, =1 in 198990)
to total expenditure per capita (in Australian $)) has been scaled up by 10°. Estimates of yin Tables 2
and 3are thusin units of thousands of 198990 AS$.

* The system covariances are recoverablevia o, = £, —Ef/l’NE, o, =-&& /n&, i%]j.
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Table 3. ML estimation of the LES. De Boer and Harkema'’s covariance matrix; 3

subperiods; 18 expenditure categories; quarterly data

B % € (x 10"
Expenditure final standard final Standard final standard
category estimate error estimate error estimate error
FOD 0.0902 0.0041 0.2650 0.0163 0.2207 0.0337
CGT 0.0300 0.0032 -0.0083 0.0035 0.0527 0.0104
ALC -0.0105 0.0040 0.1674 0.0088 0.1459 0.0217
CFF 0.0179 0.0050 0.1479 0.0108 0.7158 0.1188
RNT 0.2592 0.0137 -0.0677 0.0640 2.6211 0.7294
MVP 0.0243 0.0035 0.0663 0.0095 0.1590 0.0238
HAP 0.0303 0.0018 0.0192 0.0016 0.1044 0.0156
HDU 0.0130 0.0039 0.0983 0.0089 0.2670 0.0406
TEL 0.0262 0.0013 -0.0095 0.0017 0.0229 0.0035
GEF 0.0136 0.0037 0.0355 0.0085 0.1326 0.0197
FRS 0.0269 0.0011 0.0228 0.0041 0.0228 0.0034
MVO 0.0155 0.0017 0.1682 0.0049 0.0094 0.0019
MED 0.0855 0.0062 0.0174 0.0202 0.1285 0.0262
REC 0.0977 0.0096 -0.0780 0.0301 0.1804 0.0377
FIN 0.0338 0.0030 0.0310 0.0081 0.0728 0.0147
OGD 0.1208 0.0072 -0.0755 0.0272 0.0808 0.0195
osv 0.1383 0.0117 -0.0325 0.0356 0.3527 0.0821
NEO -0.0126 0.0023 -0.0093 0.0050 0.6465 0.1437
Initial log-likelihood 5159.35 Final log-likelihood 5588.39
Number of iterations 18 Norm of the gradient 2.95 x 107
Time to convergence 28.18 seconds Number of observations 95 (quarterly)

io-ii :Ei_ziz/l;\lz’o-ij :_Eizj/l;\jzﬂ i¢j-
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Table 4. ML estimation of AIDS(1). De Boer and Harkema'’s covariance matrix; 3
subperiods; 18 expenditure categories; annual data

a B n' § (x 10%*
Expenditure final standard final standard final standard final standard
category estimate error estimate error estimate error estimate error
FOD 0.4852 0.1162 -0.0355 0.0123 0.1781 0.0373 0.0937 0.0307
CGT 0.3406 0.0115 -0.0342 0.0012 0.0111 0.0006 0.0020 0.0005
ALC 0.5316 0.0239 -0.0515 0.0026 0.0212 0.0118 0.0289 0.0082
CFF 0.8824 0.0487 -0.0870 0.0052 -0.0046 0.0088 0.0435 0.0125
RNT -0.4252 0.1496 0.0639 0.0158 0.2214 0.0385 0.3386 0.1605
MVP 0.3116 0.0414 -0.0290 0.0044 0.0249 0.0093 0.0873 0.0265
HAP -0.0306 0.2806 0.0064 0.0296 0.0066 0.0089 0.1272 0.0411
HDU 0.0109 0.0985 0.0030 0.0104 0.1255 0.0298 0.0359 0.0110
TEL -0.2305 0.0166 0.0261 0.0018 0.0059 0.0011 0.0028 0.0008
GEF 0.0656 0.0094 -0.0047 0.0010 0.0161 0.0011 0.0015 0.0004
FRS 0.1622 0.0293 -0.0144 0.0031 -0.0099 0.0051 0.0125 0.0035
MVO 0.4169 0.0615 -0.0372 0.0065 -0.0036 0.0075 0.0198 0.0082
MED -0.4675 0.1037 0.0566 0.0109 0.0782 0.0327 0.0576 0.0302
REC -0.2767 0.0513 0.0344 0.0055 0.0528 0.0159 0.0072 0.0029
FIN 0.2227 0.0620 -0.0195 0.0065 -0.0775 0.0076 0.0079 0.0032
OGD -0.2786 0.0299 0.0369 0.0031 -0.0095 0.0089 0.0021 0.0010
osv -0.7207 0.0645 0.0858 0.0068 -0.0303 0.0119 0.0315 0.0148
Initial log-likelihood 1726.74 Final log-likelihood 1908.03

Number of iterations 55 Norm of the gradient 7.21 x10™
Time to convergence 99.97 seconds Number of observations 27 (annual)

T To recver the matrix of price dfeds r ,recdl that y, = —ninj/lm, i # ] and
Y, =N, — niz/l;m . Note that the estimated 1, = 0.6065, implyingy; <0iff N;<0orn;>1,n.
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Table 5. ML estimation of AIDS(2). De Boer and Harkema'’s covariance matrix; 3

subperiods; 18 expenditure categories; quarterly data

a B Vi! & (x 10)F
Expenditure fi_nal standard fi_nal standard fi_nal standard F_inal standard
category estimate error estimate error estimate error estimate error
FOD 0.2340 0.0706 -0.0106 0.0087 0.0909 0.0186 0.0920 0.0186
CGT 0.0451 0.0147 -0.0034 0.0018 0.0074 0.0011 0.0033 0.0005
ALC -0.1052 0.0441 0.0184 0.0055 0.0127 0.0083 0.0330 0.0054
CFF -1.0580 0.0865 0.1382 0.0107 0.1409 0.0250 0.1526 0.0264
RNT 1.4678 0.0461 -0.1587 0.0057 0.1190 0.0170 0.0297 0.0060
MVP 0.0908 0.0644 -0.0066 0.0080 -0.0084 0.0082 0.1045 0.0180
HAP -0.0575 0.0907 0.0106 0.0112 0.0105 0.0045 0.2713 0.0604
HDU -0.7723 0.0408 0.1005 0.0051 0.0218 0.0171 0.0244 0.0037
TEL 0.0443 0.0140 -0.0037 0.0017 0.0066 0.0016 0.0028 0.0005
GEF -0.0420 0.0809 0.0077 0.0100 0.0186 0.0074 0.1870 0.0347
FRS 0.1288 0.0298 -0.0125 0.0037 0.0028 0.0040 0.0138 0.0023
MVO 0.3723 0.0215 -0.0382 0.0027 0.0532 0.0041 0.0034 0.0008
MED 0.4543 0.0531 -0.0478 0.0066 -0.0099 0.0324 0.0210 0.0050
REC 0.3201 0.0319 -0.0338 0.0040 0.0963 0.0245 0.0059 0.0014
FIN 0.2740 0.0300 -0.0293 0.0037 0.0317 0.0059 0.0061 0.0018
OGD -0.8655 0.0696 0.1158 0.0086 -0.0407 0.0474 0.0261 0.0075
osv 0.4691 0.1042 -0.0466 0.0129 -0.0068 0.0710 0.1344 0.0431
Initial log-likelihood 6063.93 Final log-likelihood 6431.78

Number of iterations 15 Norm of the gradient 2.73x 10
Time to convergence 77.77 seconds Number of observations 95 (quarterly)

T Y.,i=1,...N, arethediagonal elementsof the N x N matrix of price dfects r.
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