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Abstract:

Poskitt and Skeels (2003) provide a new approximation to the sampling
distribution of the IV estimator in a simultaneous equations model. This
approximation is appropriate when the concentration parameter associ-
ated with the reduced form model is small and a basic purpose of this
paper is to provide the practitioner with a method of ascertaining when
the concentration parameter is small, and hence when the use of the
Poskitt and Skeels (2003) approximation is appropriate. Existing proce-
dures tend to focus on the notion of correlation and hypothesis testing.
Approaching the problem from a different perspective leads us to ad-
vocate a different statistic for use in this problem. We provide exact
and approximate distribution theory for the proposed statistic and show
that it satisfies various optimality criteria not satisfied by some of its
competitors. Rather than adopting a testing approach we suggest the
use of p-values as a calibration device.
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1 Introduction

In a recent paper Poskitt and Skeels (2003) present a new approximation to
the exact sampling distribution of the instrumental variables (IV) estimator
of the coefficients on the endogenous regressors in a single equation from
a linear system of simultaneous equations. More specifically, they examine
the properties of the two-stage least squares estimator and show that when
the non-centrality, or concentration, parameter associated with the reduced
form model is small then certain functions of the IV estimator can be closely
approximated by various t-distributions. These distributions are different,
in general, from those that have previously appeared in the literature; see,
for example, Phillips (1980, p. 870). A feature of the approximation is that it
proves to be remarkably accurate for the situations for which it is designed,
despite the simplicity of its functional form. Thus the approximation is easy
for practitioners to implement and potentially useful for empirical work. A
basic purpose of this paper is to provide the practitioner with a method of
ascertaining when the concentration parameter is small and hence when the
use of the Poskitt and Skeels (2003) approximation is appropriate.

An interesting feature of the Poskitt and Skeels (2003) approximation
is its ability to capture many of the stylized facts that have been obtained
under the different paradigms used to analyze weak identification and the
related issue of weak instruments.1 Although there appears to be no univer-
sally agreed definition of what exactly constitutes weakness, the consensus
that emerges from the literature is that weakness manifests itself in the
concentration parameter — or more correctly, some function of the concen-
tration parameter — being small, and that this has a deleterious effect on
many standard techniques of inference that cannot be ignored.

In the case of a single endogenous regressor some find it appealing to
re-scale the concentration parameter by the degree of over-identification,
for when the IV estimate is viewed as a two-stage least squares procedure
such a re-scaling invites analogy to an F-statistic computed from the first
stage regression; see Bound, Jaeger, and Baker (1995). An almost inevitable
consequence of this analogy is that discussions of IV estimation and instru-
ment relevance have focused around the perception that variables used as
instruments should be highly correlated with the variables that they replace.
Two measures that have been developed in this vane, and which have found
common acceptance in the literature, are the partial R2 statistics proposed
by Bound et al. (1995) and Shea (1997), and other statistics that may be
thought of in the same light are those explored by Cragg and Donald (1993)
and Hall, Rudebusch, and Wilcox (1996).

In this paper we adopt a rather different perspective. We are motivated
by two notions: First, the Poskitt and Skeels (2003) approximation to the
distribution of the IV estimator is designed to work well when the concen-
tration parameter is small and hence is applicable under circumstances that
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differ significantly from those for which the standard asymptotic normal ap-
proximation and Edgeworth type expansions of the distribution of the IV
estimator, see Rothenberg (1984). Second, the practitioner will be faced
with given endogenous and exogenous variables, dictated by the underly-
ing economic model, and may have little control over the instrument set
available. Any inference based on the IV estimate that the applied worker
conducts will therefore have to be tailored to the structure of the model and
the data set at hand. Hence we seek a reliable statistical measure that will
characterize the magnitude of the concentration parameter, and that can be
used to guide subsequent inference, and we propose the use of a partial co-

efficient of alienation, denoted A2, a partial version of the vector alienation
coefficient introduced by Hotelling (1936).

The structure of the remainder of the paper is as follows. In the next
section we outline the model and present our basic notation and assump-
tions. In Section 3 we provide the definition of A2 in the context of models
containing arbitrary numbers of endogenous regressors and we also show
that it is possible to provide an analytical exploration of its sampling distri-
bution. This enables us to analyze the relationship of A2 to the magnitude
of the concentration parameter and in Subsection 4.1 we develop appropri-
ate inferential procedures and construct a probabilistic calibration device.
Methods of approximating the sampling distribution of A2 based on stan-
dard distributions that facilitate implementation using commonly available
software are presented in Subsection 4.2. In Section 5 we provide a multi-
variate version of the partial R2 statistics proposed by Bound et al. (1995)
and Shea (1997) which is applicable when there is more than one endoge-
nous regressor in the equation of interest. We denote this measure by R2

and establish the finite sample distribution of R2 under the assumptions of
this paper. Section 6 discusses the relationships between A2, R2 and canon-
ical correlations. It also presents a comparison with the statistics of Cragg
and Donald (1993) and Hall et al. (1996). Section 7 develops a likelihood
ratio interpretation of A2 and shows that A2 possess desirable optimality
properties. Section 8 presents a brief conclusion.

2 The Model, Notation and Assumptions

Consider the classical structural equation model

y = Yβ + Xγ + u , u ∼ N(0, σ2
uIT ) (1)

where the endogenous matrix variables y and Y are T × 1 and T × n,
respectively, the matrix of exogenous variables X is T × k, and u denotes a
T ×1 vector of stochastic disturbances. The vectors of structural coefficients
β and γ are n × 1 and k × 1, respectively. If we define [X Z] to be the
T × K instrument set, where Z denotes a T × ν matrix of instruments —
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exogenous regressors not appearing in equation (1) — and K = k + ν, then
we are interested in making inferences about β using the IV estimator

β̂ = (Y′PY)−1Y′Py, (2)

where P = P[X Z] −PX = RX −R[X Z] and, for any N × q matrix A of full
column rank, PA denotes the idempotent, symmetric matrix A(A′A)−1A′

and RA = IN − PA. PA is the N × N (prediction) operator of rank q
that projects on to the space spanned by the columns of A and RA is
the associated (residual) operator of rank N − q which projects on to the
orthogonal complement of that space. In our case we can assume, without
loss of generality, that the exogenous regressors and the instruments contain
no redundancies, so that [X Z] has full column rank, ρ{[X Z]} = K, almost
surely, and

P = RXZ(Z′RXZ)−1Z′RX

is a T × T matrix of rank ν ≥ n.
The corresponding reduced form model is

[y Y] = [X Z]

[
π1 Π1

π2 Π2

]
+ [v V] . (3)

Here the rows of the T×(n+1) matrix [v V] are independent normal vectors
with zero mean and common (n + 1) × (n + 1) covariance matrix

Ω =

[
ω11 ω12

ω21 Ω22

]
, (4)

ω11 scalar, so that [v V] ∼ N(0,Ω ⊗ IT ), where [v V] is partitioned con-
formably with [y Y].2 The components of the reduced form coefficient ma-
trix Π — namely π1, Π1, π2 and Π2 — are of dimension k× 1, k×n, ν × 1
and ν × n, respectively. Note that, by implication, the structural variance
σ2

u = [1,−β′]Ω[1,−β′]′ and

[y Y] ∼ N([X Z]Π,Ω ⊗ IT ) . (5)

It is easily shown that (5) implies that

S = [y Y]′P[y Y] ∼ Wn+1(ν,Ω, νΩ− 1

2 ∆Ω− 1

2 ) , (6)

where
∆ = ν−1[π′

2 Π2]
′Z′RXZ[π2 Π2] (7)

and Ω = Ω
1

2 Ω
1

2 , with Ω
1

2 the symmetric square root of Ω.3 That is, S has
a non-central Wishart distribution with ν degrees of freedom, covariance
matrix Ω and non-centrality parameter νΩ− 1

2 ∆Ω− 1

2 . Since we are assuming
that the usual compatibility condition

π2 = Π2β
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holds, it follows that

∆ =

[
δ11 δ12

δ21 ∆22

]
= ν−1[β, In]′Π′

2Z
′RXZΠ2[β, In] , (8)

where the partition of ∆ occurs after the first row and column.

Following standard practice we refer to Γ22 = νΩ
− 1

2

22 ∆22(Ω
− 1

2

22 )′ as the
concentration parameter. The importance of the magnitude of Γ22 for the
sampling behaviour of β̂ has been well documented in the literature — see,
inter alia, Mariano (1982, Sections 3 and 4) and Phillips (1983, Section 3.6)
— and, using the result in (6), Poskitt and Skeels (2003) show that if ∆ is
small then the distribution of β̂ can be closely approximated by an n-variate
t-distribution with ν − n + 1 degrees of freedom, mean vector

β + (Ω
− 1

2

22 )′(In + ν−1Γ22)
−1ρσu

and precision

(ν − n − 1)
Ω

1

2

22(In + ν−1Γ22)(Ω
1

2

22)
′

σ2
u(1 − ρ′(In + ν−1Γ22)−1ρ)

,

where ρ = Ω
− 1

2

22 (ω21 − Ω22β)/σu. Clearly this approximation to the dis-
tribution of the IV estimator is no more difficult to implement than is the
Normal approximation that arises in standard asymptotic analysis, but the
practitioner needs to be appraised of the likely value of ∆ before it is em-
ployed. To relate the magnitude of ∆ to the concentration parameter note
from expression (8) that

‖∆‖ ≤ (‖β‖2 + n)‖∆22‖

where, for any matrix A, we have used ‖A‖ =
√

tr{A′A} to denote the
Euclidean norm. If we assume that 0 < Ω < ∞, meaning 0 < λmin(Ω) ≤
λmax(Ω) < ∞, it is clear that small values of Γ22 and ∆22, and hence ∆,
are equivalent.

3 A Formal Measure of Γ22 and Its Distribution

To construct a measure of the magnitude of Γ22, first consider the reduced
form for the endogenous regressors in the equation of interest, namely

Y = XΠ1 + ZΠ2 + V . (9)

Pre-multiplying by RX, taking the Euclidean norm and evaluating the ex-
pectation, gives us the result that

E[‖RXY‖2] = ‖RXZΠ2‖2 + (T − k)trΩ22 .
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Thus ‖RXZΠ2‖2 corresponds to the regression mean square in the regression
of RXY on RXZ. Moreover, the inequalities

‖Π′
2Z

′RXZΠ2‖ ≤ ‖Ω
1

2

22‖2‖Γ22‖

and

‖Γ22‖ ≤ ‖Ω− 1

2

22 ‖2‖RXZΠ2‖2 ,

imply that the proximity of ‖Γ22‖ and ‖RXZΠ2‖ to zero is equivalent and
we therefore begin by seeking a statistical measure of ‖RXZΠ2‖2.

Consider then the ratio of determinants

A2 =
det[Ỹ′ReZ

Ỹ]

det[Ỹ′Ỹ]

where Ỹ = RXY and Z̃ = RXZ. The statistic A2 equals a partial version
of the vector alienation coefficient introduced by Hotelling (1936) in the
context of studying the relationships between two sets of variables, hence
our notation. To interpret A2 observe from the equality

Ỹ′Ỹ = Ỹ′PeZ
Ỹ + Ỹ′ReZ

Ỹ

that A2 = 1 when Ỹ and Z̃ are orthogonal and A2 = 0 if there exists a
matrix D of full column rank such that Ỹ = Z̃D. Thus A2 can be viewed
as a measure of the perpendicularity between Y and Z having adjusted for
the effects of X. From the expression

A2 = det[In − (Y′RXY)−
1

2 (Y′PY)(Y′RXY)−
1

2 ]

we see that A2 is a sample counterpart to the population relative measure

det[In − (Y′RXY)−
1

2 (Π′
2Z

′RXZΠ2)(Y
′RXY)−

1

2 ]

and represents the proportion of the generalized variance of Ỹ that remains
once the regression mean square in the multivariate regression of Ỹ on Z̃

has been accounted for.
In order to derive the distribution of A2, consider once again the reduced

form equation (9). Pre-multiplying by RX we see that

Ỹ = Z̃Π2 + E ,

where E = RXV and E|[X Z] ∼ N(0,Ω22 ⊗ RX). Post-multiplying by the
constant vector α = (α1, . . . , αn)′ we obtain the equation

Ỹα = Z̃γ + η, (10)

where now γ = Π2α and η|[X Z] ∼ N(0, σ2
αRX), a singular normal distri-

bution (see, for example, Rao, 1973, §8a) with σ2
α = α′Ω22α.



Assessing the Concentration Parameter 8

Now PeZ
and ReZ

are idempotent with ranks ρ and T − ρ, respectively,

where ρ = ρ{Z̃}. Since Z̃ = RXZ it is easily shown that PeZ
RXReZ

= 0.
Moreover, given that we have assumed that [X Z] has full column rank,
it follows that Z̃′Z̃ = Z′RXZ > 0 and ρ{Z̃} = ρ{Z} = ν almost surely.
Consequently ρ{Z̃} is known with probability one, it is simply the number
of instruments used in addition to X, supposing that X is employed as its
own instrument.

We can therefore conclude that, for given Z and X, the quadratic forms
α′Ỹ′PeZ

Ỹα and α′Ỹ′ReZ
Ỹα are independently distributed as σ2

α · χ2(ν, µ),

µ = γ ′Z̃′Z̃γ/σ2
α, and σ2

α · χ2(T − ν) random variables, respectively. Since
α is arbitrary we therefore have from Rao (1973, §8b.2 (ii) & (iii)) that the
matrices Ỹ′PeZ

Ỹ and Ỹ′ReZ
Ỹ will have independent Wishart distributions:

Ỹ′PeZ
Ỹ ∼ Wn(ν,Ω22,Γ22) and Ỹ′ReZ

Ỹ ∼ Wn(T − ν,Ω22) .

In directions θ = α/‖α‖ such that θ′Π′
2Z̃

′Z̃Π2θ = 0 the non-centrality
parameter µ = 0 and both Ỹ′PeZ

Ỹ and Ỹ′ReZ
Ỹ will have central Wishart

distributions. Writing A2 as the ratio of det[Ỹ′ReZ
Ỹ] to det[Ỹ′(ReZ

+PeZ
)Ỹ]

it follows that in any direction such that µ = 0 the statistic A2 will possess
Wilks’-Λ distribution

Λ(n, T − ν, ν) ∼
{∏n

i=1 B(T−ν+1−i
2 , ν

2 ) ν ≥ n,
∏ν

i=1 B(T−ν−n+i
2 , n

2 ) otherwise,

the product of independent Beta random variables, see Wilks (1962, §18.5.1).

4 Probabilistic Calibration and Calculations

4.1 Probabilistic Calibration

We are now interested in determining the influence of Γ22 on the properties
of A2 with a view to using A2 to assess the likely size of Γ22 on an appropriate
(probabilistic) scale. By way of background, note that if θ is a given unit
vector and we adopt a hypothesis testing perspective, then under the null
hypothesis H0 : Π2θ = 0 the distribution of

Fθ =

(
T − ν

ν

) (
1 − A2

θ

A2
θ

)

where

A2
θ =

θ′Ỹ′ReZ
Ỹθ

θ′Ỹ′Ỹθ
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will be central F with degrees of freedom ν and T − ν, whilst under the
alternative hypothesis H1 : Π2θ 6= 0 the distribution of Fθ will be non-
central F with degrees of freedom ν and T −ν, and non-centrality parameter

λθ =
θ′Π′

2Z̃
′Z̃Π2θ

θ′Ω22θ
=

‖Z̃Π2θ‖2

θ′Ω22θ
. (11)

If P(limT→∞ T−1Z̃′Z̃ > 0) = 1 then it follows via a standard argument that

CR{A2
θ, α} = {A2

θ : Fθ > F(1−α){ν, T − ν}} ,

where F(1−α){ν, T − ν} denotes the (1 − α)100% percentile point of the
F{ν, T − ν} distribution, defines a strongly consistent critical region of size
α for testing H0 against H1.

Now consider calculating A2
θ and then computing the associated p-value

pθ = P(F{ν, T−ν} > Fθ) as a means of assessing whether λθ is small or large.
Equation (11) indicates that when λθ is large the signal-to-noise ratio in the
implied model is high and we can expect θ′Ỹ′PeZ

Ỹθ to be close to its upper

bound of θ′Ỹ′Ỹθ. Thus large values of λθ will correspond to situations
where we can expect that A2

θ ≈ 0 and pθ ¿ α. Similarly, the case where λθ

is close to zero corresponds to situations where A2
θ will approximately equal

one with high probability and pθ À α. We are not directly concerned with
drawing sharp distinctions between data sets where pθ ¿ α and pθ À α
in order to make explicit decisions about the acceptance or rejection of H0

vis-a-vis H1. Nevertheless, it is clear that pθ yields a probability scale that
differentiates realizations that are indicative of directions in which λθ is large
from those that suggest that λθ is small.

To relate the previous argument to A2 note from the implicit model
(10) that the presumption that H0 obtains for all θ is equivalent to the
statement that Ỹ ⊥ Z̃, wherein we have employed the notation Ỹ ⊥ Z̃

as a ‘shorthand’ for P(limT→∞ ‖T−1Ỹ′Z̃‖ > 0) = 0, meaning that Ỹ and
Z̃ are (asymptotically) orthogonal. This follows since E[Ỹ′Z̃] = 0 implies
γ = Π2α = ‖α‖Π2θ = 0 and, conversely, E[Ỹ′Z̃] = E[η′Z̃] when γ = 0 and
E[η′Z̃] = 0. Thus Wilks’-Λ distribution can be used to assess the significance
of departures of the measure A2 from unity under the presumption that
Ỹ ⊥ Z̃, significantly small values of A2 being taken as being indicative of
statistically significant departures from (asymptotic) orthogonality.

Now let ui, i = 1, . . . , n, denote a set of orthonormal characteristic
vectors of (Ỹ′Ỹ)−

1

2 Ỹ′PeZ
Ỹ(Ỹ′Ỹ)−

1

2 . Then it is a relatively simple exercise
in linear algebra to show that

A2 =
n∏

i=1

A2
ui

. (12)

Applying the Rayleigh-Ritz theorem to Γ22 we can also deduce that

λmin(Γ22) ≤
θ′Π′

2Z̃
′Z̃Π2θ

θ′Ω22θ
≤ λmax(Γ22) . (13)
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Suppose then that λmax(Γ22) is small. Then it is obvious from the inequality
‖Γ22‖ ≤ √

n ·λmax(Γ22) that Γ22 is small and (13) implies that λθ must also
be small in all possible directions θ. It follows that we can expect that
A2

ui
≈ 1 for all i = 1, . . . , n and hence that A2 ≈ 1. On the other hand, if

λmin(Γ22) is large then Γ22 is large, λθ will be large in all possible directions
θ, A2

ui
≈ 0 for all i = 1, . . . , n with high probability and hence A2 ≈ 0.

The previous analysis suggests that we consider calculating A2 and then
computing the p -value

p = P(Λ(n, T − ν, ν) < A2)

as a means of assessing whether Γ22 is small or large. We can anticipate
that small values of p will be indicative of situations where the concentration
parameter Γ22 is bounded away from zero and significantly large, indicating
that the use of the Poskitt and Skeels (2003) approximation is likely to be
inappropriate, whereas large values of p will provide evidence that Γ22 is near
zero and use of the Poskitt and Skeels (2003) approximation is legitimate.

In order to use p to calibrate subsequent inferential statements note that
the Poskitt and Skeels (2003) approximation may be viewed as providing the
(approximate) probability distribution of β̂ conditional on Γ22 being small,
whilst p may be interpreted as giving the probability that Γ22 is small. To
construct a (1−α)100% confidence interval or test a hypothesis about β at
the (1 − α)100% level of significance, therefore, the practitioner should use
the (1 − α′)100% percentile points where α′ = α × p. This will have the
effect, for example, of widening the confidence interval at any given level
of significance in order to reflect the uncertainty as to the size of Γ22. As
p gets smaller and the appropriateness of the approximation is called into
question, the confidence interval at any pre-assigned level of significance
becomes wider.

4.2 Probability Calculations

To implement the above calibration the practitioner will need to calculate
p = P(Λ(n, T − ν, ν) < A2). Box (1949) provides a series expansion for
Wilks’-Λ distribution in terms of Chi-squared distributions and Banerjee
(1958) uses Mellin transforms to construct an exact expression for the dis-
tribution of Λ(n, T − ν, ν), involving sums, products and ratios of Gamma
functions, that depends on whether n and ν are even or odd. Schatzoff
(1966a) gives exact closed form representations applicable when n or ν is
even and supplies tables of correction factors that can be used to convert
Chi-squared percentile points to percentile points of Λ(n, T −ν, ν) for n or ν
even and nν ≤ 70. In the current situation n ≥ 1 and ν ≥ n. In the special
case where n = 1 we have

(
T − ν

ν

) (
1 − Λ(1, T − ν, ν)

Λ(1, T − ν, ν)

)
∼ F{ν, T − ν} ,
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and when n = 2 we can use the exact result that

F =

(
T − ν − 1

ν

) (
1 −A
A

)
∼ F{2ν, 2(T − ν − 1)}

for any ν to calculate p. In general, however, Wilks’-Λ distribution is suf-
ficiently complicated to make an appropriate approximation that can be
easily implemented using standard software worth pursuing.

One such approximation is due to Bartlett (1947). Bartlett’s results
imply that

−m ln(A2),

where

m = T − n + ν + 1

2
,

will converge in distribution to χ2(nν) as T → ∞. A closer asymptotic
approximation correct up to terms of order O(T−3) can be constructed using
a second order version of Box’s expansion and Box (1949) also presents an
F approximation for −m ln(A2) that has a remainder term O(T−3). Box
found that the latter gives close agreement with the exact distribution even
when the sample size is small, 10 ≤ T ≤ 20 say.

An even more precise F approximation is given by Rao (1951). Rao’s
approximation implies that

FA =

(
ms − 2q

nν

) (
1 −A2/s

A2/s

)
,

where

s =

√
(nν)2 − 4

n2 + ν2 − 5
and q =

nν − 2

4
,

may be treated as an F{nν, ms−2q} random variate. For practical purposes
the integer part of ms − 2q may be taken as the denominator degrees of
freedom. Not only does this approximation yield an error of order O(T−4)
but the structure of the approximation also has a certain appeal in the
current circumstances since the statistic FA can be employed to evaluate p
via F{nν, ms−2q} and thereby calibrate A2 in much the same way that the
F distribution is used in simple regression and analysis of variance models.

5 Multivariate Partial R2

The arguments presented in Hotelling (1936) suggest that an appropriate
generalization of the univariate partial R2 of Bound et al. (1995) to the
case where we are interested in studying the relationships between all the
endogenous regressors in Y and the instruments Z is given by

R2 =
det[Ỹ′PeZ

Ỹ]

det[Ỹ′Ỹ]
, (14)
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a partial version of Hotelling’s coefficient of vector correlation. Writing R2

as the ratio of det[Ỹ′PeZ
Ỹ] to det[Ỹ′(ReZ

+ PeZ
)Ỹ] and recalling that the

derivation surrounding equation (10) shows that when the non-centrality
parameter µ = α′Π′Z̃′Z̃Πα is zero Ỹ′PeZ

Ỹ and Ỹ′ReZ
Ỹ are independently

distributed as Wn(ν,Ω) and Wn(T − ν,Ω) random variables, respectively,
leads to the conclusion that the statistic R2 will possess Wilks’-Λ(n, ν, T−ν)
distribution.

Wilks’-Λ distribution can therefore be used to calibrate the measure R2

in much the same way it is used to calibrate A2. If we employ Rao’s F
approximation to Λ(n, ν, T − ν) then it will be large values of the statistic

FR =

(
ms − 2q

n(T − ν)

) (
1 −R2/s

R2/s

)
,

where

m =
T − n + ν − 1

2
, s =

√
(n(T − ν))2 − 4

n2 + (T − ν)2 − 5
and q =

n(T − ν) − 2

4
,

that will lend support to the hypothesis that Ỹ and Z̃ are orthogonal. Large
values of P(F{n(T − ν), ms − 2q} ≥ FR) will suggest that the regressors in
Z̃ contain components that are sufficiently correlated with Ỹ to make R2

close to one, indicating that the regression mean square ‖Z̃Π2‖2 is in some
sense large.

It is important to observe that in general R2 6= 1−A2 and so probability
calculations based on A2 and R2 will not be identical. This raises the
question of which measure is most appropriate for our current needs, an
issue to which we will return in the following section. First we wish to
consider the relationship of the statistic proposed by Shea (1997) to those
considered here.

Shea (1997) motivates his statistic as being proportional to the ratio of
the variance of the OLS estimate to that of the IV estimate. Let us therefore
define the multivariate version of Shea’s measure, which we will denote by
S2, as the ratio of the generalized variances of the OLS and IV estimators
of β. This gives us the analogous expression

S2 =
det[Ŷ′RbX

Ŷ]

det[Ỹ′Ỹ]
, (15)

where Ŷ = P[X Z]Y and X̂ = P[X Z]X. In this guise the numerator of S2 has
a form that corresponds to that of the statistic A2 in that it is structured
in terms of the residual operator R. The numerator of S2 is based on
the projection of Y and X on to the space spanned by the instruments,
however, rather than the residual from the projection of Y and Z onto the
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space spanned by X, as is the case with A2. In the light of Shea’s claim
(Shea, 1997, §II) that his statistic is equivalent to partial R2, it is natural
at this point to enquire into the relationship between A2, R2 and S2.

From the decomposition P[X Z] = PX + RXZ(Z′RXZ)−1Z′RX it follows

that X̂ = X and hence that Ŷ′RbX
Ŷ = Ŷ′RXŶ. We can also deduce from

the equality RXPX = PXRX = 0 that

P[X Z]RXP[X Z] = RXZ(Z′RXZ)−1Z′RX,

giving us the result that Ŷ′RXŶ = Ỹ′PeZ
Ỹ. We are therefore lead to the

conclusion that Ŷ′RbX
Ŷ = Ỹ′PeZ

Ỹ. Thus although at first it might appear
that S2 will behave in a manner similar to that of an alienation coefficient,
the opposite will in fact be the case because S2 = R2.

6 Alienation, Partial R2 and Canonical Correla-

tion

In the light of the interpretation of A2 as a partial version of Hotelling’s
vector alienation coefficient and given that Hotelling (1936) was also the
father of canonical correlation analysis it is not surprising to observe that
factorizing det[Ỹ′ReZ

Ỹ] = det[Ỹ′Ỹ− Ỹ′PeZ
Ỹ] into the product of det[Ỹ′Ỹ]

and det[In − (Ỹ′Ỹ)−
1

2 Ỹ′PeZ
Ỹ(Ỹ′Ỹ)−

1

2 ] shows that

A2 =
n∏

i=1

(1 − r2
i ) , (16)

where r2
1 ≥ . . . ≥ r2

n lists in descending order the partial canonical correla-
tions between Y and Z having adjusted for the effects of X.

Let us now address the question of which multivariate measure, A2 or
R2, appears to be best suited our needs. Assume, for the sake of argument,
that exact correlation between Ỹ on Z̃ is characterised by all the partial
canonical correlations being equal to one, whereas orthogonality between Ỹ

on Z̃ implies that r2
1 = . . . = r2

n = 0. From the expression in (16) and the
corresponding representation of R2, namely

R2 =
n∏

i=1

r2
i ,

it follows that it is only necessary for the largest (smallest) partial canonical
correlation to deviate substantially from zero (one) for A2 (R2) to deviate
significantly from unity. Thus, whereas A2 will be sensitive to departures
from orthogonality R2 is designed to detect exact correlation. Now recall
that the use of Wilks’-Λ distribution as a calibration device is contingent
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on the non-centrality parameter being equal to zero, which we have already
observed is equivalent to the hypothesis that Ỹ ⊥ Z̃ and hence that r2

1 =
. . . = r2

n = 0. It appears therefore that A2 is more in accord with the basic
assumption underlying the application of Wilks’-Λ distribution than is R2.
Given this feature, and given that we are not seeking to detect exact or
perfect correlation but rather in assessing the proximity of Γ22 to zero, the
measure A2 appears to be far more suited to our purpose.

The use of canonical correlations in the context of IV estimation and
simultaneous equations has, of course, a long history dating back to the
seminal works of Sargan (1958) and Hooper (1959). To relate the canonical
correlations to the concepts underlying the developments in this paper let
us form the linear combinations Ỹα and Z̃γ from the adjusted variables
RXY and RXZ. Given α and γ, the squared partial correlation

R2(α, γ) =
(α′Ỹ′Z̃γ)2

(α′Ỹ′Ỹα)(γ ′Z̃′Z̃γ)

estimates the corresponding population partial correlation coefficient and
the region {

R2(α, γ) > R2
c

}
, (17)

where R2
c is an appropriate critical value, denotes those values of R2(α, γ)

indicating the presence of components in Y and Z that induce a significant
partial correlation. The intersection

RR =
⋂

α γ

{
R2(α, γ) > R2

c

}

of all regions of the type given in (17) across all non-null vectors α and γ

corresponds to the statement that all partial correlations between Ỹα and
Z̃γ are in some sense significant.

Using the Union-Intersection principle of Roy (1957) we see that RR
can serve as a critical region for testing the hypothesis that there is at least
one pair of non-null vectors α and γ for which Ỹα ⊥ Z̃γ. But the region
RR is equivalent to that specified by

min
α,γ 6=0

R2(α, γ) > R2
c ,

for if the smallest partial correlation between Ỹα and Z̃γ lies in (17) then
all partial correlations of such linear combinations must do so. Similarly,
the region

max
α,γ

R2(α, γ) ≤ R2
c ,

provides evidence against the hypothesis that there is at least one pair of
non-null vectors α and γ for which the partial correlation between Ỹα and
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Z̃γ is non-zero and in favour of the hypothesis that Ỹα ⊥ Z̃γ. It is a stan-
dard exercise to show that maxαγ R2(α, γ) = r2

1 and minαγ R2(α, γ) = r2
n.

It is now natural to consider handling the intermediate extremes of R2
p(α, γ)

in a similar manner. From the Courant-Fischer theorem the extremes are
equal to r2

1 ≥ r2
2 ≥ . . . ≥ r2

n−1 ≥ r2
n.

In their discussion of identification tests Cragg and Donald (1993) point
out that the coefficients in the equation of interest will be identified if and
only if the rank of the coefficient matrix in the reduced form Ỹ = Z̃Π2 + E

equals n. A version of their procedure for testing the rank of Π2 that is
“concerned with whether X2(Z) can serve as instruments for Y2(Y) in the
sense that there is enough correlation” is given by (in the notation of this
paper) the smallest eigenvalue of Ỹ′PeZ

Ỹ in the metric of Ỹ′ReZ
Ỹ. See

hypothesis H0
I and Theorem 3 of Cragg and Donald (1993). Using the

relationship Ỹ′Ỹ = Ỹ′ReZ
Ỹ + Ỹ′PeZ

Ỹ gives us the expression

det[Ỹ′PeZ
Ỹ − λỸ′ReZ

Ỹ] =

det[(1 + λ)Ỹ′Ỹ]×det[(Ỹ′Ỹ)−
1

2 Ỹ′PeZ
Ỹ(Ỹ′Ỹ)−

1

2 − λ

1 + λ
In] .

(18)

From (18) we can conclude that λ/(1+λ) = r2 and hence that this version of
Cragg and Donald (1993)’s statistic is equivalent to testing the significance
of the smallest canonical correlation.

Hall et al. (1996) have also advocated using the smallest canonical cor-
relations between Ỹ and Z̃ to assess the relevance of the instruments for
the estimation of β. They argue that if the smallest canonical correlations
are not significantly different from zero then the first stage estimates are
likely to be ill-conditioned (rank deficient) and IV estimation will perform
poorly, see also Bowden and Turkington (1984, §2.3). In particular Hall
et al. (1996) suggest testing the smallest canonical correlations using an hy-
pothesis testing procedure based on an application of the likelihood principle
and asymptotic distribution theory.

If we are interested in looking for evidence that Γ22 is small then our pre-
vious discussion suggests that we should examine those linear combinations
Ỹα and Z̃γ that yield evidence in favour of the hypothesis that Ỹ ⊥ Z̃.
Roy’s Union-Intersection principle indicates that this would ultimately lead
to a procedure akin to those considered by Cragg and Donald (1993) and
Hall et al. (1996), except that we would examine the size of the largest rather
than the smallest partial canonical correlation. It is of interest to note that
Theorem 8.10. 4 of Anderson (2003) implies that whereas Roy’s maximum
root test with an acceptance region of the form {r2

1 : r2
1 ≤ κα} is admissible,

in the sense that it cannot be improved upon by reducing the probability
of Type I and/or Type II errors, the minimum root test with acceptance
region {r2

n : r2
n ≤ κ′

α} is not.
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7 Optimality Properties

From the previous analysis it is apparent that although A2 has been derived
from a rather different perspective it uses some of the same building blocks
as the partial R2 statistics of Bound et al. (1995) and Shea (1997), and the
asymptotic test procedures considered by Cragg and Donald (1993) and Hall
et al. (1996). Continuing the analogy, we therefore wish to ascertain if the
constructions proposed in this paper exhibit any desirable properties.

We have already noted that if IV estimation is thought of as a two-stage
procedure then some of the statistics discussed above can be interpreted as
arising from an examination of the properties of the first stage regression.
In the same vane, let us consider the augmented reduced form equation

[Y Z] = X[(Π1 + Π3Π2) Π3] + [U1 U2] (19)

where the conditional distribution of U = [U1 U2] = [(V + U2Π2) U2]
given X is Gaussian with mean zero and variance-covariance Σ⊗IT , U|X ∼
N(0,Σ ⊗ IT ). If we regard (19) as a specification for the joint distribution
of [Y Z] conditional on X we can contemplate testing that the instruments
are orthogonal to the endogenous regressors by testing the hypothesis that
U1 ⊥ U2, i.e. that Σ12 = 0.

To construct the likelihood ratio statistic, LRT , we first concentrate the
likelihood with respect to the parameters in Σ to give a maximized value
for the log likelihood of

−T

2
ln det

[
[Y Z]′RX[Y Z]

]
− T

2
(n + ν − k)(1 + ln 2π)

in the unrestricted parameter space and

−T

2
(ln det[Y′RXY] + ln det[Z′RXZ]) − T

2
(n + ν − k)(1 + ln 2π)

when subjected to the restriction that Σ12 = 0. Hence we find that

−2 lnLRT = T{ln det[Ỹ′Ỹ] + ln det[Z̃′Z̃] − ln det
[
[Ỹ Z̃]′[Ỹ Z̃]

]

and

LR
2/T
T = det

[
Ỹ′Ỹ Ỹ′Z̃

Z̃′Ỹ Z̃′Z̃

]
÷

{
det[Ỹ′Ỹ] · det[Z̃′Z̃]

}
. (20)

From (20) we can readily deduce that LR
2/T
T = A2.

Thus A2 may be interpreted as arising out of a likelihood ratio test of
multivariate orthogonality between the instruments and the endogenous re-
gressors. That A2 depends on the relative magnitudes of the generalized
variances of these two sets of variables is obvious. It seems reasonable to
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suppose therefore that A2 will reflect the internal variance-covariance struc-
ture of the instruments and the endogenous regressors and will provide a
precise measure of the orthogonality between Z and Y, after having ad-
justed for the effects of X. Indeed, A2 yields an admissible, invariant test
that possesses a power function that is monotonically increasing in each
ρ2

i , i = 1, . . . , n, where ρ2
i are the (population) canonical correlations, the

characteristic roots of Σ
− 1

2

11 Σ12Σ
−1
22 Σ21Σ

− 1

2

11 .
To prove the last statement, first note that the problem of testing the

hypothesis that Σ12 = 0 or, equivalently, ρ2
i = 0, i = 1, . . . , n, is invariant

under the group of non-singular linear transformations. It is well known
that the canonical correlations are maximal invariants under this group of
transformations and so A2 is an invariant test statistic. Admissibility follows
by writing the acceptance region of the test as

AR{A2, α} = {A2 :

n∏

i=1

(1 − r2
i )

−1 ≤ κα}

= {A2 :
n∏

i=1

(1 + λi) ≤ κα} , (21)

where the λi = r2
i /(1− r2

i ) coincide with the non-zero characteristic roots of

PeZ
Ỹ(Ỹ′ReZ

Ỹ)−1Ỹ′PeZ
, and applying Corollary 8.10.2 of Anderson (2003).

Now, since RX is idempotent of rank T − k there exists a T × (T − k)
column orthonormal matrix QX, Q′

XQX = IT−k, such that RX = QXQ′
X

and Q′
X[Y Z] = Q′

X[U1 U2]. There also exists two non-singular matrices A

and G that map U1 and U2, respectively, to the canonical variates so that
[V1 V2] = Q′

X[U1A U2G] is distributed

N

(
[0 0],

[
In [Λ 0]

[Λ 0]′ Iν

]
⊗ IT−k

)

where Λ = diag[ρ1, . . . , ρn]. Given the instruments, the conditional distri-

bution of V1 is N(V2[Λ 0]′, (In −Λ2)⊗ IT−k) and W1 = V1(In −Λ2)−
1

2 ∼
N(V2M

′, In ⊗ IT−k) where M = [diag[δ1, . . . , δn] 0], δi = ρi/(1 − ρ2
i )

1

2 .
Define H as the (T − k) × (T − k) orthogonal matrix

H =




(V′
2V2)

− 1

2 V′
2

(W′
1RV2

W1)
− 1

2 W′
1RV2

H3




where H3 is a (T − k − ν − n) × (T − k) matrix that makes H orthogonal.
Then

HW1 =




(V′
2V2)

− 1

2 V′
2W1

(W′
1RV2

W1)
1

2

H3W1


 =



W11

W12

0
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and W11 ∼ N((V′
2V2)

1

2 M′, In ⊗ Iν) is distributed independently of W12 ∼
N(0, In ⊗ In). Moreover, by construction, the λi, i = 1, . . . , n, of expression
(21) are the non-zero characteristic roots of W11(W

′
12W12)

−1W′
11. Ap-

plying the same argument as that used by Anderson (2003, pp. 368–369)
it follows that AR{A2, α} is convex in each row of W11 given W12 and
the other rows of W11 and hence by Theorem 8.10.6 of Anderson (2003)
the conditional power of A2, given the instruments, is monotonically in-
creasing in the characteristic roots of MV′

2V2M
′. But the characteristic

roots of MV′
2V2M

′ are all monotonically increasing in ρi, i = 1, . . . , n,
by Lemma 9.10.2 of Anderson (2003). Taking the unconditional power,
recognizing that the marginal distributions of W′

12W12 ∼ Wn(n, In) and
V′

2V2 ∼ Wν(T − k, Iν) do not depend on the ρi, i = 1, . . . , n, gives us
the result that for all possible sets of the instruments the power of A2 is
monotonically increasing in each ρi, i = 1, . . . , n.

Returning briefly to Roy’s maximum root test, note that it is easily
shown that

uiỸ
′ReZ

Ỹui

u′
iỸ

′Ỹui

= 1 − r2
i , i = 1, . . . , n,

and hence that

max
‖θ‖=1

Fθ =

(
T − ν

ν

) (
r2
1

1 − r2
1

)
.

This prompts consideration of a test based on the largest canonical correla-
tion with acceptance region

AR{r2
1, α} =

{
r2
1 : r2

1 ≤ κα =
(T − ν)F(1−α){ν, T − ν}

ν + (T − ν)F(1−α){ν, T − ν}

}
.

Such a test is invariant and, as we have already seen, admissible. The fact
that in the model induced by θ it can be shown that CR{A2

θ, α} determines
a uniformly most powerful critical region of size α suggests that a test based
on AR{r2

1, α} might have reasonable power properties. Results presented in
Schatzoff (1966b) indicate, however, that although Roy’s maximum root test
will have good power in alternative directions where ρ2

1 > 0, ρ2
2 = 0, . . . , ρ2

n =
0, its performance will be inferior to that of A2 more generally. An obvious
advantage of using A2 is that it does not focus on a particular canonical
correlation but summarizes the simultaneous impact of all ρ2

i , i = 1, . . . , n,
suggesting that A2 will be sensitive to deviations of Γ22 from zero in all
possible directions.

8 Conclusion

The main contribution of this paper has been to introduce a new multivariate
measure of the magnitude of the concentration parameter in a simultaneous
equations model. The underlying motivation is to provide the practitioner
with a method of ascertaining when the concentration parameter Γ22 is small



Assessing the Concentration Parameter 19

and hence when the use of the Poskitt and Skeels (2003) approximation to
the exact sampling distribution of the IV estimator is appropriate. This
is achieved by adopting a perspective very different from that employed in
the existing literature on weak identification and weak instruments, using
notions of alienation rather than correlation. As A2 is a measure of the
magnitude of Γ22 it is clearly applicable to models with weak instruments,
but it was not designed to detect instrument weakness per se and is by no
means limited to that case.

The second contribution of this paper was to develop the exact finite
sample distribution theory for A2. That said, we are somewhat uncom-
fortable about the use of traditional inferential techniques associated with
hypothesis testing for assessing the magnitude of Γ22 and favour an approach
based on the use of p-values as a calibration devise.

The third contribution of the paper was to generalize the partial R2

measures proposed by Bound et al. (1995) and Shea (1997) to a multivari-
ate measure R2 and to develop the exact finite sample distribution theory
for this generalization. Unfortunately the lack of complementarity between
alienation and correlation in multivariate settings results in potentially dif-
ferent inferences when using the multivariate measures A2 and R2. Only
A2, however, is in accord with the basic desideratum of being sensitive to
departures from asymptotic orthogonality and hence of being able to detect
the proximity of Γ22 to zero. The paper also explores the relationships that
exist between the measures considered here and other statistics that have
been advanced elsewhere in the literature.

Our fourth contribution has been to show that A2 admits an interpre-
tation as a likelihood ratio statistic and that it inherits several desirable
properties of that statistic. Indeed, the optimality properties of A2 suggest
that it can be expected to yield a reliable guide to the magnitude of the
concentration parameter.

Notes

1. For a comprehensive survey see Stock, Wright, and Yogo (2002).

2. The notation V ∼ N(M,Ω) should be read as vec(V) ∼ N(vec(M),Ω).
The assumption of normality is simply one of convenience. What is of fun-
damental importance here is the sampling distribution of the quadratic form
S defined in (6). To the extent that Wishartness holds only approximately,
which it will under reasonably general conditions, the subsequent results will
also hold approximately. As such matters are not germane to the ideas that
we are seeking to convey, we will not pursue them further.
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3. If the spectral decomposition of Ω is H′ΩH = D, where H is an orthogo-
nal matrix of characteristic vectors of Ω and D = diag[λ1(Ω), . . . , λn+1(Ω)]

is the diagonal matrix of characteristic roots, then Ω
1

2 = HD
1

2 H′ where
D

1

2 = diag[λ1(Ω)
1

2 , . . . , λn+1(Ω)
1

2 ]; see, for example, Searle (1982, Section
11.6).
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