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Abstract

This paper compares two alternative models for autocorrelated count time series.
The first model can be viewed as a ‘single source of error’ discrete state space model,
in which a time-varying parameter is specified as a function of lagged counts, with
no additional source of error introduced. The second model is the more conventional
‘dual source of error’ discrete state space model, in which the time-varying parameter is
driven by a random autocorrelated process. Using the nomenclature of the literature,
the two representations can be viewed as observation-driven and parameter-driven
respectively, with the distinction between the two models mimicking that between
analogous models for other non-Gaussian data such as financial returns and trade
durations. The paper demonstrates that when adopting a conditional Poisson spec-
ification, the two models have vastly different dispersion/correlation properties, with
the dual source model having properties that are a much closer match to the empirical
properties of observed count series than are those of the single source model. Sim-
ulation experiments are used to measure the finite sample performance of maximum
likelihood (ML) estimators of the parameters of each model, and ML-based predictors,
with ML estimation implemented for the dual source model via a deterministic hidden
Markov chain approach. Most notably, the numerical results indicate that despite the
very different properties of the two models, predictive accuracy is reasonably robust to
misspecification of the state space form.
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1 INTRODUCTION

Models for time series of counts are typically divided into two broad categories: ‘observation-

driven’ and ‘parameter-driven’ models; see Cox (1981). In the former case, serial correlation

in the counts is modelled directly via lagged values of the dependent variables, with various

strategies adopted to ensure that the positive integer nature of the data is preserved (e.g.

the binomial thinning operation used in the integer-valued autoregressive (INAR) class of

models of Al-Osh and Alzaid, 1987, and McKenzie, 1988). In the case of parameter-driven

models, correlation in the counts is introduced indirectly by specifying the parameter(s)

of the conditional distribution for the counts as a function of a correlated latent stochastic

process. The random parameter approach is, in turn, equivalent to the specification of a non-

Gaussian state-space model for the discrete counts, in which both measurement and state

equation contain a source of randomness. That is, this approach amounts to the specification

of a dual source of error (DSOE) state-space model; see, for example, West, Harrison and

Mignon (1985), Zeger (1988), Harvey and Fernandes (1989), West and Harrison (1997), Davis

(2000), Durbin and Koopman (2000, 2001) and McCabe, Martin and Freeland (2006).1

An intermediate class of models comprises specifications such as the generalized linear

autoregressive moving average (GLARMA) models of Shephard (1995) and Davis et al.

(1999, 2003), the autoregressive conditional Poisson (ACP) model of Heinen (2003) and

the autoregressive conditional ordered probit (ACOP) model of Jung et al. (2005). In

these models the correlation in the counts is modelled indirectly by allowing (functions

of) the parameter(s) of the conditional distribution for the observations to be both serially

correlated and dependent on lagged counts. Such models are thus, in style, parameter-driven.

However, in contrast with a conventional DSOE model, in which the latent parameter(s) are

stochastic, the latent parameters in these models, conditional on lagged values of the counts,

are deterministic, with no additional source of randomness introduced. As a consequence,

such models can be referred to as single source of error (SSOE) models and would typically

be classified as observation-driven.

The contrast between the SSOE and DSOEmodels for count data is analogous to the con-

trast between an (observation-driven) generalized autoregressive conditionally heteroscedas-

tic (GARCH) model and a stochastic volatility (SV) model for financial returns; see Kim,

Shephard and Chib (1998). It also mimics the contrast between the autoregressive condi-

tional duration (ACD) model for trade durations (Engle and Russell, 1998) and the alter-

native stochastic conditional duration (SCD) model for the same data type (e.g. Bauwens

1The term ‘dual’, rather than ‘multiple’ is used here in order to emphasize the fact that randomness
characterizes both the measurement and state equations. These equations could, of course, be defined for
vectors, in which case the dual sources of error encompass multiple scalar error terms.
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and Veradas, 2004; Strickland, Forbes and Martin, 2006). As in these other non-Gaussian

settings, the relative merits of the SSOE and DSOE approaches to modelling counts remains

an open empirical question. Whilst the latter approach may potentially yield more flexibility

than the former approach, via the introduction of the additional source of random error, it

does so at the cost of computational ease, with estimation of the dual source models often

entailing the use of some form of computationally intensive simulation methodology (e.g.

Chan and Ledolter, 1995, Durbin and Koopman, 2001, Fruhwirth-Schnatter and Wagner,

2004, and Jung et al., 2005).2

The aim of this paper is to provide a comparison of the alternative forms of discrete state

space model. To keep the comparison manageable, we adopt a conditional Poisson distribu-

tion for the observations in each case, and allow the single parameter of that distribution to

be (a function of) a latent process with autocorrelation of order one only. The SSOE model

thus corresponds to the ACP(1,1) model considered by Heinen (2003) and Jung (2005), and

the DSOE model to a special case of the model analysed by Chan and Ledolter (1995),

Fruhwirth-Schnatter and Wagner (2004) and Jung et al. (2005), amongst others.

The nature of the comparison is two-fold. First, we use the theoretical properties of

each model to produce a characterisation of the data types for which each model is suitable.

Specifically, we derive a map of the feasible combinations of dispersion (D = variance
mean

) and

first-order autocorrelation (C) for each model. We demonstrate that, as well as there being

no overlap in the feasible regions for the two alternative models, the DSOE model is suitable

for a much wider range of data types than is the SSOE model, for which the feasible set of

(D,C) pairs is very narrowly defined. Analysis of the (estimated) (D,C) characteristics of

13 empirical count time series indicates that for only one series is the SSOE model suitable

(according to this criterion), with the DSOE model being appropriate in ten cases. For two

series neither model is justified.

The second aspect of the comparison focusses on the estimation and predictive perfor-

mance of the two models, with simulation experiments used to measure the finite sample

performance of maximum likelihood (ML) estimators of the parameters of each model, and

ML-based predictors. In order to place the two types of model on a similar computational

footing, we present a deterministic ML estimation method for the DSOEmodel. The method-

ology is an extension of an algorithm suggested in McDonald and Zucchini (1997), and is

based on a discretization of the space for the continuous random state variable. The dis-

cretized state process is treated as a hidden Markov chain, with evaluation of the likelihood

2In the work of West, Harrison and Mignon (1985) and Harvey and Fernandez (1989), natural conjugate
distributions are chosen in order to enable non-simulation based inferential treatment of the discrete DSOE
models adopted therein.
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function occurring via a straightforward application of Markov chain methodology. In order

to mimic an empirical scenario in which the true underlying process is not known, we also

measure the accuracy with which a misspecified model predicts future values of the time

series. The results suggest that there is some robustness to misspecification at the level of

prediction, despite the very different characteristics of the two types of model.

The structure of the remainder of the paper is as follows. In Section 2 we introduce the

proposed models for the integer data, outlining some of their important properties, including

the feasible (D,C) regions. Estimation details are provided in Section 3, including an outline

of the Markov chain approach used to estimate the DSOEmodel. Section 4 reports the results

of simulation experiments, in which the estimation and forecasting performance of the two

models, in a range of relevant scenarios, is documented, including forecasting performance

under model misspecification. Section 5 concludes with some discussion of possible extensions

of the current analysis. Various technical details are included in Appendices A to C.

2 TWO MODELS FOR COUNT TIME SERIES

We begin by defining a Poisson distribution, P(.), for the count time series variable, yt,

with (possibly) time-varying mean (and variance) parameter λt. Clearly, other discrete

distributions could be chosen, with the choice being based on the empirical features of

the data. For simplicity we use the Poisson distribution throughout the paper, as well as

focussing on models without covariates.

The two models to be discussed, SSOE and DSOE, are distinguished one from the other

by the specification of the error source for the state equation which, for the purpose of

illustration, is assumed to contain first-order lags only, although models with higher-order

lags could also be entertained. Specifically, the SSOE model is defined as:

yt ∼ P (λt) (1)

λt = λ+ φλt−1 + α(yt−1 − λt−1), (2)

for t = 2, . . . , T , where the restrictions λ > 0, φ ≥ α ≥ 0 and φ ≤ 1 are imposed. When
φ = α = 0, the model collapses to a Poisson process with constant mean. Denoting by It−1
the information contained in {λ1, y1, y2, . . . , yt−1}, from (2) it follows that, conditional on

It−1, the mean (and variance) of yt is λt. The SSOE model in (1) and (2) is equivalent to
the ACP(1,1) model specified in Heinen (2003) and also investigated in Jung et al. (2005).

Replacing the conditional Poisson specification in (1) with a conditionally Gaussian speci-

fication, with mean λt and fixed variance, and imposing λ = 0 and φ ≤ 1 in (2), produces
a local level model (Ord, Koehler and Snyder, 1997) that underlies the method of simple
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exponential smoothing of Brown (1959) for yt defined on the real line.

The DSOE model is defined as (1), but with

λt = h(xt) (3)

xt = a+ κxt−1 + ηt; ηt ∼ iidN(0, σ2η), (4)

for t = 1, 2, . . . , T , where h(xt) is any function that maps xt into the positive space of λt
and the stationarity restriction |κ| < 1 is imposed. Throughout the paper, for simplicity,

we assume that h(.) defines the exponential function. Conditionally on {λt; t = 1, 2, . . . , T},
{yt} is assumed to be an independent sequence of Poisson counts, with corresponding mean
and variance sequence {λt}. The model in (1), (3) and (4), extended to cater for covariates,
is analysed in Chan and Ledolter (1995) and Jung et al. (2005), amongst other studies.

Replacing the conditional Poisson specification in (1) with a conditionally Gaussian specifi-

cation, with mean λt and fixed variance, and specifying h(.) in (3) as the identity function,

reproduces a standard linear Gaussian state space representation for yt, appropriate when

the random variable is defined on the real line (e.g. Harvey, 1991).

When comparing the alternative models we see two differences. One is the aforementioned

use of a single source of error, {yt−1 − λt−1}, in the SSOE model, versus the use of {ηt} in
the DSOE model. The second difference is the scale for the recursion on λt : in the SSOE

case (2) defines a recursion on λt itself, whereas in the DSOE case, assuming h(·) = exp(·)
as we do, (4) defines a recursion on log(λt). Although it may have been more natural to also

apply the SSOE paradigm to the natural Poisson parameters {log(λt); t = 1, . . . , T}, we
follow the approach of Heinen (2003) and Jung et al. (2005) here and use the formulation

in (2).

In Sections 2.1 and 2.2 we summarize the main properties of the two models. Some more

details are provided in Appendices A and B. Note that although our results refer to the

existence of a (unique) limiting stationary distribution of a process, we will often simply

state that a process is stationary, even if it starts from y1, which is not chosen from the

stationary distribution. Moreover, moment and related calculations are performed under

the stationary regime, even if not stated specifically.

2.1 Properties of the SSOE Model

We denote the (stationary) mean of {λt} by µ = λ
(1−φ) .
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Theorem 1 Given (2), with 0 ≤ α ≤ φ < 1, {λt} is a stationary time series with moments,

E(λt) = µ (5)

var(λt) = µ
α2

(1− φ2)
. (6)

Theorem 2 Given (1) and (2), with 0 ≤ α ≤ φ < 1, the count variable {yt} is a stationary
time series with unconditional stationary moments

M ≡ E(yt) = µ

V ≡ var(yt)

= µ+ var (λt)

=
µ[1− φ2 + α2]

1− φ2
> µ

cov(yt, yt−1) =
µα[1− φ2 + φα]

1− φ2
.

First-order correlation and dispersion are given respectively by

C ≡ cor(yt, yt−1) =
α[1− φ2 + φα]

[1− φ2 + α2]
(7)

D ≡ var(yt)
E(yt)

= 1 +
α2

1− φ2
. (8)

Heinen (2003) provides proofs of the above moment results and refers to the durations

analysis of Engle and Russell (1998) for a demonstration of how the proof of stationarity

would proceed. For completeness, in Appendix A we provide detailed information about the

nature of the stationary distribution of the count model via a characterization of its Laplace

transform. This information could be used to generate observations from the stationary

distribution if one wanted to perform an exact likelihood analysis for this model.

Given Theorems 1 and 2, the following properties can also be derived.

SSOE: Property 1 Given φ < 1 and λ > 0 and the resulting non-degenerate stationary

distribution, the model does not suffer the fixed point problem (yt → 0 a.s. when

λ = 0) highlighted in Grunwald, Hamza and Hyndman (1997).

SSOE: Property 2 Given φ < 1, and conditional on λ1, if α = 0, the λt process is

deterministic with a limiting value of µ, such that the stationary distribution of the

system is λt = µ and yt ∼ P (µ) .

SSOE: Property 3 For fixed 0 ≤ α < 1, C increases from α > 0 to 1 as φ increases from

α to 1. Negative correlation is thus not possible with the SSOE model.
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SSOE: Property 4 Given {(α, φ) : 0 ≤ α ≤ φ < 1}, D ≥ 1. If α = 0 then D = 1 (and yt

is equidispersed as a consequence), for any φ < 1.

The following Corollary also follows from Theorem 2:

Corollary 1 Given {(α, φ) : 0 ≤ α ≤ φ < 1}, the feasible region for the dispersion D, given

0 ≤ C < 1 is

1

1− C2
≤ D <

1

1− C
. (9)

Proof: provided in Appendix B.

As is clear from Figure 1, the feasible region of (D,C) values implied by (9) is very

limited, with there being only a narrow range of quite modest values of D possible for a

given value of C, unless C is quite large (C > 0.9, say).

2.2 Properties of the DSOE Model

We denote the (stationary) mean and variance of xt by µX =
a
1−κ and σ2X =

σ2η
(1−κ2) respec-

tively.

Theorem 3 Given (3) and (4), with |κ| < 1, {λt} is a stationary time series with moments,

E(λt) = e{µX+0.5σ2X} (10)

var(λt) = e2{µX+σ2X} − e2µX+σ
2
X . (11)

Proof : straightforward using the properties of the lognormal distribution.

Theorem 4 Given (1), (3) and (4), with |κ| < 1, the count variable {yt} is a stationary
time series with unconditional stationary moments

M ≡ E(yt)

= E (E [Yt|λt])
= E(λt)

= e{µX+0.5σ2X}

V ≡ var(yt)

= E(var [Yt|λt]) + var(E [Yt|λt])
=M +M2(e{σ2X} − 1)

cov(yt, yt−1) =M2
h
e{κσ2X} − 1

i
,
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Figure 1: Feasible values of dispersion (D) and first-order autocorrelation (C) for the SSOE
and DSOE models.
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and correlation and dispersion given respectively given by

C ≡ cor(yt, yt−1) =
e{κσ2X} − 1

e{σ2X} − 1 + 1/M
(12)

D ≡ var(yt)
E(yt)

= 1 +M(e{σ2X} − 1). (13)

Proof : straightforward using iterated expectations.

Given Theorems 3 and 4, the following properties can also be derived:

DSOE: Property 1 Given κ < 1, and conditional on x0, if ση = 0, the xt process is

deterministic with a limiting value of µX , such that the stationary distribution of the

system is λt = eµX and yt ∼ P (eµX ) .

DSOE: Property 2 C = 0 ⇐⇒ either κ = 0 or ση = 0. C is an increasing function of κ

and ση and is negative for κ < 0.

DSOE: Property 3 Given {(a, κ, ση) : a ∈ R, |κ| < 1, ση > 0}, D ≥ 1. If ση = 0, D = 1,

for any |κ| < 1. As |κ|→ 1, D→∞, for any ση > 0.

The following Corollary also follows from Theorem 4:

Corollary 2 Given {(a, κ, ση) : a ∈ R, |κ| < 1, ση > 0}, the feasible region for the dispersion
D, for 0 ≤ C < 1, is

D >
1

1− C
. (14)

For −1 < C < 0, D > 1.

Proof: provided in Appendix B.

Most notably, in comparison with the feasible region in (9) for the SSOE model, for any

given value of C the possible values of D, beyond the lower bound of 1
1−C , are unrestricted.

Furthermore, in the positive correlation region, in which both models apply, there is no

overlap in the feasible regions for (D,C) for the two alternatives. This result implies that

the two models are suitable for analysing different types of correlated count data, rather

than being alternative models for any given data set. Only the DSOE model is applicable

to the negative correlation case.
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2.3 Empirical Count Time Series

In Table 1 the descriptive properties of 13 empirical count time series are summarized. The

data sets fall into six different categories which span a wide range of empirical settings. In

particular, all data series are low count series, thereby requiring explicit modelling via a

discrete conditional distribution.3

1. Australian monthly road accident deaths and injuries: (i) fatalities in 60km/h zones

in Victoria, Australia from January 1996 to June 2002 (FAT_60); (ii) fatalities in 40-

60km/h zones in Victoria from January 1996 to February 2005 (FAT_4060); (iii) non-

fatal police-car-related injuries in New South Wales from January 1987 to December

2004 (POLICE).

2. Australian monthly deaths by other (non-road-related) causes: (i) medical-related

deaths (MEDICAL); (ii) choking-related deaths (CHOKE); (iii) death inflicted by an-

other but with undetermined intent (UNDETERM); (iv) death inflicted by another

but unintentionally (UNINTENT); (v) deaths by late effects (LATE).

3. Monthly wage loss benefit claims for injuries sustained in the British Columbia (Canada)

logging industry: (i) claims for burn injuries from January 1984 to December 1994

(BURNS); (ii) claims for cut and/or laceration injuries for the same period (CUTS).

4. Annual corporate failures (defaults) of investment grade firms from the U.S., over the

period 1920-2000.

5. One-minute trade counts for the Australian firm Broken Hill Proprietary (BHP) Lim-

ited for 1 August 2001, 10.00am to 4.00pm.

6. Daily admissions for asthma treatment to a Sydney hospital from 1 January 1990 to

31 December 1993.

The claims data sets in 3. have been extensively analysed in the literature using INAR-

type specifications, most notably in Freeland and McCabe (2004a,b), McCabe and Martin

(2005) and Zhu and Joe (2006). The admissions data in 6. have been analysed previously

by Davis et al. (1999) using a GLARMA model and Davis et al. (2000) using a generalized

linear model (with allowance made for an autocorrelated latent process). Jung et al. (2005)

also use the admissions data in an empirical comparison of a range of count time series

models, including SSOE and DSOE models, with the dual source model estimated via a

3This is in contrast to one of the earliest analyses of count times series, Harvey and Durbin (1986), in
which a conditional Gaussian assumption was adopted due to the large count nature of the data.
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simulation-based method. All of the road accident data in 1. and death data in 2. have

been provided to the authors by the Monash University Accident Research Centre.

In Table 1, the term in the superscript indicates which model fits the sample (D,C)

characteristics of the observed data (S = SSOE model; D = DSOE model; N = neither

model). As is clear, only one series (CUTS) falls into the narrow feasible set for the SSOE

model ( 1
1−C2 ≤ D < 1

1−C ), with nine of the series with positive correlation satisfying the

DSOE criterion (D > 1
1−C ). Two of the series are underdispersed; hence neither model is

suitable. The dispersion value of the single series with negative autocorrelation (LATE)

exceeds the lower bound of the DSOE model (D > 1), the only model of the two valid for

the negative correlation case. Overall then, the DSOE model appears to be vastly more

suitable for empirical analysis, according to this particular criterion. In Section 4, however,

we using artificially simulated data to document the fact that despite this mismatch of

the SSOE model with the typical dispersion/correlation characteristics of observed data, its

forecasting performance, even when misspecified for the data, is still competitive with that

of a correctly specified DSOE model.

3 ML ESTIMATION

3.1 SSOE Model

ML estimation of the full set of unknown parameters in (1) and (2), Φ = (λ, φ, α), is based

on maximizing the likelihood function (conditioned on λ1 and y1),

L(Φ) =
TX
t=2

P (yt|It−1;Φ),

where

P (yt|It−1;Φ) =
λytt exp(−λt)

yt!

and It−1 is as defined previously, with I1 = {λ1, y1}. The initial value of λt, λ1, is equated
with µ = λ

(1−φ) and y1 to the observed value at t = 1. Note that one could approximate

the exact likelihood by using the stationary distributions specified in Appendix A for y1
and λ1 to simulate initial values and average with respect to each conditional likelihood so

produced. However, the less computationally intensive conditional ML method is used in

the simulation work in Section 4.
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Table 1:

Summary Statistics for Empirical Count Time Series

Time Freq. Sample Sample Sample Sample Sample SSOE DSOE
Series Size Mean Variance Dispersion ACF(1) lb lb

y
(a)
t (T ) (M) (V ) (D = V/M) (C) 1

1−C2
1

1−C

CUTS(S) MT(b) 120 6.13 11.80 1. 92 0.56 1. 46 2. 27

MEDICAL(D) MT 84 2.08 2.66 1.27 0.08 1.01 1.09
FAT_40-60(D) MT 110 6.97 10.32 1.48 0.14 1.02 1.17
POLICE(D) MT 72 7.22 14.25 1. 97 0.15 1. 02 1. 25
CHOKE(D) MT 84 3.24 7.12 2.20 0.18 1.03 1.22

UNDETERM(D) MT 84 1.73 2.73 1.58 0.22 1.05 1.28
ASTHMA(D) D(c) 1461 1.94 2.70 1. 39 0.25 1. 07 1. 33
TRADES(D) ID(d) 360 4.52 15.07 3.33 0.33 1.13 1.50
UNINTENT(D) MT 84 2.96 10.25 3.46 0.39 1.18 1.65
DEFAULTS(D) A(e) 85 1.74 9.62 5.53 0.52 1.38 2.09

LATE(D) MT 84 1.62 1.97 1.22 -0.14 1.02 0.88

FAT_60(N) MT 78 2.06 2.01 0.97 0.15 1. 02 1.18
BURNS(N) MT 120 0.18 0.16 0.93 0.22 1.05 1.29

(a) Model that fits the sample (D,C) values for yt is denoted by the superscript: S = SSOE model; D =
DSOE model; N = neither model.

(b) MT = monthly frequency

(c) D = daily frequency

(d) ID = intraday frequency

(e) A = annual frequency
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3.2 DSOE Model

In the case of the DSOE model in (1) and (4), the likelihood function for the unknown

parameter vector, Θ = (a, κ, ση), is defined by the T -dimensional integral

L(Θ) = p(y|Θ) =
R
λ

p(y|λ)p(λ|Θ)dλ, (15)

where y = (y1, y2, . . . , yT )
0 and λ = (λ1, λ2, . . . , λT )

0. Typically, the integral in (15) that

defines the (marginal) distribution of y, p(y|Θ), would be approximated via some form of

simulation method; see, for example, Durbin and Koopman (2001), Fruhwirth-Schnatter

and Wagner (2004) and Jung et al. (2005). The alternative approach of adopting conjugate

forms for p(λ|Θ) to enable analytical treatment of the integral has been adopted by Harvey
and Fernandez (1989), amongst others.

We propose a deterministic numerical approach, based on an extension of an algorithm

outlined in McDonald and Zucchini (1997). This approach produces a direct numerical

evaluation of p(y|Θ) via the treatment of the continuous state variable xt in (4) as a dis-
crete hidden Markov chain process.4 Specifically, we approximate the continuous normal

distribution of xt with a discrete mass function, defined over a grid of Nx discrete states

x(1), x(2), ..., x(Nx). Let It−1 again denote the information set up to and including period
t − 1. Given (4), It−1 = {x0, y1, y2, . . . , yt−1} with I0 = {x0}. Transitions between states
over time are governed by an ergodic first-order Markov chain with transition probability

matrix P = [pij] where the elements of P,

pij = Pr
©
xt = x(j)|xt−1 = x(i),It−1

ª
, (16)

are calculated as normal probability increments. Defining the (Nx × 1) state probability
vector in period t by π(t|It−1) = [πj (t|It−1)] , where

πj(t|It−1) = Pr
©
xt = x(j)|It−1

ª
,

successive state probability vectors may be generated via

π(t|It−1) = π(t− 1|It−2)P. (17)

Given |κ| < 1, the chain is ergodic.
The unobserved state variable xt is related to the observed count variable yt by an

(Nx ×Ny) probability matrix Q = [qij] , where the elements of Q,

qij = Pr
©
yt = y(j)|xt = x(i), It−1

ª
, (18)

4See also White et al. (2004) for a similar algorithm developed independently of the algorithm in this
paper, and applied in the context of a stochastic volatility model for continuous returns.
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are determined by the conditional Poisson distribution in (1). The marginal distribution of

yt is in turn defined by

Pr(yt = y(j)|It−1) =
NxX
k=1

qkjπk(t|It−1). (19)

Using this notation, the likelihood function in (15) can be re-written as

L(Θ) = p(y|Θ) =
TY
t=1

P (yt|It−1,Θ). (20)

At any given point in the parameter space, each component of (20) can be numerically

evaluated via application of a Markov chain filter, using the expressions in (16) to (19), with

a standard optimization algorithm then used to produce the ML estimator of Θ. Details of

the filter are given in Appendix C.

4 SIMULATION EXPERIMENTS

In Section 2.3 we documented the fact that the DSOE model matches the (estimated) disper-

sion/correlation characteristics of typical empirical count data much more closely than does

the SSOE model. Nevertheless, in any specific instance, either model may be appropriate

and it is of interest to assess the accuracy with which the parameters of each model are esti-

mated, in finite samples. More importantly, it is of interest to gauge the relative forecasting

accuracy of the correctly specified and misspecified models and, in particular, ascertain the

extent to which any mismatch of the SSOE model with the dispersion/correlation features

of a given data set impinges on its forecasting performance.

Results associated with particular DSOE and SSOE data generating processes (dgps)

are presented. The parameter settings are chosen to resemble, to some extent, the range

of empirical features of the multiple data sets summarized in Section 2.3. Three dgps are

entertained for each model specification, corresponding to the low first-order autocorrelation

(C = 0.1) and medium autocorrelation (C = 0.5) that characterize various of the observed

data sets, and with a high autocorrelation case (C = 0.8) included for completeness. The

three intrinsic parameters are then set so as to produce a corresponding value for D that

is in the feasible region for the model and a value for M which is approximately equal to

5, a mean value that is appropriate for the low count data that is the focus here. For each

dgp, 1000 samples of length T = 100 and T = 500 are generated, with ML estimation of

the DSOE model implemented via the grid-based method described in Section 3.2, with

Nx = 100 grid-points.
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Measures of estimation performance are designed to allow for cases in which extreme

estimates are produced, in particular of the variance parameter of the DSOE model. Specif-

ically, we calculate the median, rather than the mean, of the estimator θ̂ of any unknown

parameter θ, over simulated samples, measuring bias by the difference between this figure

and the true parameter value. In order to allow for comparison across the two different

models, we report accuracy using relative bias – denoted by RBIAS in the tables – i.e.

bias as a proportion of the true value of the parameter. We measure precision via the median

of the relative absolute deviations (|θ̂ − θ|/θ) – denoted by MRAD.

Invoking a mean squared error loss criterion, the optimal prediction of yT+1 is the condi-

tional mean, E(yT+1|IT ) = λT+1.
5 When the DSOE model is used to produce the prediction,

λT+1 itself is a random quantity and is, in turn, predicted by E(λT+1|IT ) = E(exp(xT+1)|IT ).
This expectation is estimated using the discretized distribution π(T + 1|IT ), based on the
ML estimates of the DSOE parameters (see Appendix C). When the SSOE model is used to

produce the prediction, conditional on yT and λT , λT+1 is a deterministic function of the pa-

rameters. As such, λT+1 is estimated from the recursion (2) with ML estimates, bλ, bφ and bα,
of the SSOE parameters replacing λ, φ and α respectively, and λT specified via the recursion,

with λ1 = bλ/(1− bφ). In order to be consistent with the way in which the within-sample re-
sults are reported we use median quantities to summarize the prediction results. Specifically,

as a measure of relative prediction bias we report median value of (bλT+1 − yT+1)/yT+1 in
the 1000 replications. MRAD is calculated as the median of the relative absolute deviations,

(|bλT+1 − yT+1|/yT+1).
Tables 2, 3 and 4 respectively report the results for the low, medium and high correlation

cases, with results relating to the DSOE dgp appearing in the upper panel of each table,

and results for the SSOE dgp appearing in the lower panel. Results for both sample sizes,

T = 100 and T = 500, are recorded in each table, with RBIAS and MRAD reported both for

individual model parameters, and as averages across the three parameters that characterize

each of the two models. In the averaging of the RBIAS results across parameters, the

absolute value of the bias figures is taken before averaging, in order to avoid the cancellation

of negative and positive biases.

The results in Table 2 indicate that for the low correlation setting (C = 0.1) and for

T = 100, the parameters of the SSOE model are estimated with much larger relative bias

than those of the DSOE model, but with similar precision, as measured by MRAD. For

T = 500, however, the SSOE parameters are estimated with less bias and (slightly) more

5We refrain in this paper from discussing the issues associated with using a non-integer forecast of the
integer random variable. See Freeland and McCabe (2004a) and McCabe and Martin (2005) for further
discussion of this point.
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precision than the DSOE parameters. More detailed consideration of the results for the

SSOE dgp highlight the fact that there are particular problems with estimating α near its

lower bound of zero (necessary to ensure the low value for C) when the sample size is only

100.

In the medium correlation case (C = 0.5; Table 3), the DSOEmodel is estimated with less

bias and more precision than the SSOE model, for T = 100, and more precisely, according to

the MRAD measure, for T = 500. For the high correlation setting however (C = 0.8; Table

4), all results unambiguously favour the SSOE model. Considering the average |RBIAS|
and MRAD values for each parameter set, the anticipated reduction in bias and increase in

precision associated with the larger sample size is uniform for the SSOE model, for all three

values of C. For the DSOE model, the MRAD is smaller, as expected, for the larger sample

size (and for all C); however |RBIAS| increases with T in the low and medium correlation

cases, although only very slightly in the latter case.

In summary then, there is variation, over C, in the relative bias and precision with which

the parameters of the two alternative models are estimated. The SSOE model is the easier

of the two to estimate accurately when the data accords with that model and has high

autocorrelation. In the low correlation case, as long as the sample size is not too low, the

SSOE model again appears to be preferable in terms of estimation accuracy. However, in the

medium correlation case, the DSOE model is able to be estimated more accurately, overall,

again when that model matches the true dgp.

In contrast to the inconclusive ranking of estimation performance, the ranking of predic-

tive performance is uniform: across all three values of C, for both sample sizes, and according

to the respective measures of bias and precision (RBIAS and MRAD), the SSOE model pro-

duces more accurate and precise predictions of yT+1, as generated from the SSOE model,

than does the DSOE model of yT+1 generated from the DSOE model. Hence, notwithstand-

ing the fact that the SSOE model appears to be the more restrictive of the two according to

the analysis in Section 2, if it were the correct model for a particular count time series, it

would enable more accurate predictions to be produced than if the DSOE model had been

the appropriate model.

Crucially, the results in Tables 2 to 3 also illustrate that predictions from a misspecified

model - whether a misspecified SSOE model under a DSOE dgp, or vice-versa - produce

MRAD and RBIAS values that are usually quite similar to (sometimes even smaller than)

the corresponding values for the correctly specified model. This result has practical import,

as it suggests that in any empirical situation, in which the investigator does not know the true

model, and may not wish to select a model on the basis of estimated dispersion/correlation

properties alone, predictions are quite robust to misspecification of that model, at least within
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the confines of the dual possibility set considered here. In particular, the fact that an SSOE

model is unlikely to be suitable for many count series, in terms of dispersion/correlation

properties, does not appear to preclude it from producing acceptable forecasts.

5 CONCLUSIONS

In this paper some results have been documented regarding the performance of two alterna-

tive discrete state space models, one of which drives the parameter of the conditional Poisson

distribution via a first-order autoregressive stochastic process, and the other of which ex-

presses that parameter as a function of last period’s observed count. Most notably, it has

been demonstrated that the dispersion/correlation regions over which the two models are

valid do not overlap, with the single source of error model having a feasible region that is

much more narrowly defined than that of the dual source of error model. The empirical

properties of multiple count time series match the theoretical dual source model, with only

one of the 13 series considered matching the dispersion/correlation properties of the single

source model. That said, simulation experiments are used to demonstrate the fact that when

the single source model is appropriate, and for certain correlation settings, its parameters

are estimated more accurately, via maximum likelihood, than the dual source model, at least

when the latter is estimated using a Markov chain-based approximate maximum likelihood

approach. Moreover, the single source model appears able to predict future values from that

model more accurately than the dual source model can predict its own values. Perhaps most

importantly however, the simulation results also indicate that one-step-ahead forecasts are

reasonably robust to misspecification of the state space form.

Obvious extensions to this analysis include the generalization of the conditional distrib-

ution to more flexible distributions than the Poisson, such as the negative binomial and the

double Poisson, that allow for separate dynamic specifications for the mean and variance

(see, for e.g. Heinen, 2003, and McCabe et al., 2006). In particular, a more flexible parame-

terization of the conditional distribution may lead to a larger feasible dispersion/correlation

region for the single source model than is associated with the single parameter Poisson case.

The extension to higher order lags also need to be considered, including the impact of that

extension on the computational efficiency of the grid-based estimation method introduced

here for the dual source model. Certainly, more fine tuning of the latter estimation method

also needs to be conducted, including an investigation of the impact of the number and

distribution of the grid points on estimation accuracy. A comparison of the accuracy of

the deterministic method with the simulation-based methods commonly adopted in the dual

source framework would also be of interest. Finally, although the focus here is on count data,
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Table 2:

Simulation Results: low correlation case (C = 0.1) for both the DSOE and SSOE dgp;
T = 100, 500; No. of replications = 1000

T = 100 T = 500

Estimand True Value RBIAS(a) MRAD(b) RBIAS MRAD

DSOE DGP
a 1.077 -0.102 0.388 -0.207 0.242
κ 0.310 0.226 0.883 0.481 0.540
ση 0.294 -0.099 0.200 -0.058 0.102

0.142(c) 0.490(d) 0.249(c) 0.295(d)

Correct forecast model (DSOE) Correct forecast model (DSOE)
yT+1 5.000(e) 0.070 0.321 0.084 0.325

Misspecified forecast model (SSOE) Misspecified forecast model (SSOE)
yT+1 5.000(e) 0.121 0.368 0.036 0.330

SSOE DGP
λ 0.163 0.288 0.332 0.331 0.541
φ 0.967 -0.010 0.013 -0.011 0.018
α 0.057 -1.000 1.000 -0.035 0.275

0.433(c) 0.448(d) 0.126(c) 0.278(d)

Correct forecast model (SSOE) Correct forecast model (SSOE)
yT+1 5.000(e) -0.023 0.304 -0.028 0.291

Misspecified forecast model (DSOE) Misspecified forecast model (DSOE)
yT+1 5.000(e) 0.007 0.299 0.029 0.289

(a) Difference between the median of the 1000 parameter estimates (or predictions) and the true value, as a

ratio of the true value.

(b) Median of the relative absolute deviations between the estimate (or prediction) and the true value.

(Note this is NOT necessarily what is calculated and reported as yet for the prediction case)

(c) The average of the absolute value of RBIAS over the three individual parameters.

(d) The average of MRAD over the three individual parameters.

(e) Median of the yT+1 values simulated in the 1000 replications of the relevant dgp.
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Table 3:

Simulation Results: medium correlation case (C = 0.5) for both the DSOE and SSOE dgp;
T = 100, 500; No. of replications = 1000

T = 100 T = 500

Estimand True Value RBIAS(a) MRAD(b) RBIAS MRAD

DSOE DGP
a 0.221 0.023 0.230 -0.063 0.123
κ 0.851 -0.006 0.048 0.013 0.024
ση 0.269 -0.108 0.184 -0.093 0.103

0.046(c) 0.154(d) 0.056(c) 0.083(d)

Correct forecast model (DSOE) Correct forecast model (DSOE)
yT+1 4.000(e) 0.118 0.445 0.102 0.422

Misspecified forecast model (SSOE) Misspecified forecast model (SSOE)
yT+1 4.000(e) 0.154 0.394 0.165 0.383

SSOE DGP
λ 0.459 0.468 0.585 0.057 0.205
φ 0.908 -0.046 0.059 -0.007 0.022
α 0.296 -0.045 0.199 -0.013 0.087

0.186(c) 0.281(d) 0.026 (c) 0.105(d)

Correct forecast model (SSOE) Correct forecast model (SSOE)
yT+1 5.000(e) 0.012 0.319 0.052 0.332

Misspecified forecast model (DSOE) Misspecified forecast model (DSOE)
yT+1 5.000(e) -0.021 0.309 0.046 0.310

(a) Difference between the median of the 1000 parameter estimates (or predictions) and the true value, as a

ratio of the true value.

(b) Median of the relative absolute deviations between the estimate (or prediction) and the true value.

(c) The average of the absolute value of RBIAS over the three individual parameters.

(d) The average of MRAD over the three individual parameters.

(e) Median of the yT+1 values simulated in the 1000 replications of the relevant dgp.
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Table 4:

Simulation Results: high correlation case (C = 0.8) for both the DSOE and SSOE dgp;
T = 100, 500; No. of replications = 1000

T = 100 T = 500

Estimand True Value RBIAS(a) MRAD(b) RBIAS MRAD

DSOE DGP
a 0.037 1.027 1.081 0.027 0.236
κ 0.971 -0.036 0.036 0.003 0.012
ση 0.200 -0.045 0.185 -0.065 0.097

0.369(c) 0.434(d) 0.032(c) 0.115(d)

Correct forecast model (DSOE) Correct forecast model (DSOE)
yT+1 3.000(e) 0.227 0.680 0.145 0.606

Misspecified forecast model (SSOE) Misspecified forecast model (SSOE)
yT+1 3.000(e) 0.241 0.479 0.351 0.477

SSOE DGP
λ 0.801 0.128 0.265 0.025 0.118
φ 0.840 -0.036 0.056 -0.007 0.025
α 0.728 -0.030 0.084 -0.005 0.041

0.065(c) 0.135(d) 0.012 (c) 0.061(d)

Correct forecast model (SSOE) Correct forecast model (SSOE)
yT+1 4.000(e) 0.053 0.392 0.066 0.397

Misspecified forecast model (DSOE) Misspecified forecast model (DSOE)
yT+1 4.000(e) 0.003 0.355 0.047 0.332

(a) Difference between the median of the 1000 parameter estimates (or predictions) and the true value, as a

ratio of the true value.

(b) Median of the relative absolute deviations between the estimate (or prediction) and the true value.

(c) The average of the absolute value of RBIAS over the three individual parameters.

(d) The average of MRAD over the three individual parameters.

(e) Median of the yT+1 values simulated in the 1000 replications of the relevant dgp.
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these results suggest that similar results may obtain for any data defined on a restricted do-

main. In particular, an obvious topic for future research is the production of comparable

results for the alternative state space representations of positive durations data.

Appendix A: The Stationary Distribution of {λt} and {yt}

A.1 The SSOE model

We seek to characterize the stationary distribution of yt and λt when φ < 1, and derive an

expression for their Laplace transforms. Note that the pair {yt, λt} form a bivariate Markov
chain. Denote the Laplace transform of yt by Lt(·) and that of λt by Mt(·). Given the
conditional Poisson distribution for yt in (1), and defining It−1 as in the text, it follows that

Lt(u) = E [E(exp(−uyt)|It−1]
= E exp

£
−λt(1− e−u)

¤
=Mt(1− e−u). (21)

If the limit M(·) of Mt(·) exists, then the Laplace transform, L(·), of the stationary distrib-
ution of yt will also exist and satisfy

L(u) =M(1− e−u). (22)

We begin by focussing on the convergence of Mt(·) to M(·). We provide an outline here –
a complete proof can be obtained from the authors.

From (2) we deduce that

Mt(v) = E [E(exp (−vλt) |It−2)]
= exp {−vλ}Mt−1 (g(v; δ, α)) , (23)

where

g(v) = g(v; δ, α)

= vδ + 1− e−vα.

and 1 > δ ≡ φ− α ≥ 0. Define the k-th iterate g(k) of g by

g(k)(v) = g
¡
g(k−1)(v)

¢
; g(0)(v) ≡ v (24)

Applying (23) iteratively we deduce
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Theorem 5 Given 0 ≤ φ < 1, Mt (v) converges to

M (v) = exp

(
−λ

∞X
k=0

g(k) (v)

)
(25)

as t→∞, where
P∞

k=0 g
(k) (v) <∞.

By (22) and (25), the Laplace transform of the stationary distribution of yt satisfies

L(u) = exp

(
−λ

∞X
k=0

g(k)(1− e−u)

)

for u ≥ 0.

A.2 The DSOE model

The existence of a unique limiting stationary distribution for yt follows from the fact that

{yt, λt} is a bivariate Markov chain and that {xt = log(λt)} is a Gaussian autoregressive
process with known stationary distribution under the conditions given (namely, |κ| < 1).

Conditionally on {λt}, the yt are independent Poisson variables with E(ys|{λt}) = λs.

Appendix B: Feasible (D,C) Regions

B.1 The SSOE model

From

M = E(yt) =
λ

1− φ

V = var(yt) =
M [1− φ2 + α2]

1− φ2

C = cor(yt, yt−1) =
α[1− φ2 + φα]

[1− φ2 + α2]
(26)

D =
var(yt)
E(yt)

= 1 +
α2

1− φ2
, (27)

we can deduce the following inversions from (M,V,C) to (λ, φ, α):
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D =
V

M

φ = C +

s
D(1− C2)− 1
D(D − 1) (28)

α = CD − φ(D − 1) (29)

λ = M(1− φ).

The solution (28) for φ in terms of C and D follows by noting that (29) follows from (26)

and (27), with substitution of (29) into (27) yielding

D = 1 +
(CD − φ (D − 1))2

1− φ2
. (30)

Solving the following quadratic equation in φ, given C and D,

φ2 − 2Cφ+ C2D2 −D + 1

D(D − 1) = 0

we obtain (after showing from (26) that C ≤ φ) the solution in (28), as well as the condition

that D(1− C2) ≥ 1; that is,
D ≥ 1

(1− C2)
. (31)

Solving (26) for α we obtain:

(φ− C)α2 + (1− φ2)α− (1− φ2)C = 0,

with (positive) solution

α =
−1 +

q
1 + 4C(φ− C)/(1− φ2)

2(φ− C)/(1− φ2)
.

Thus D from (27) can be written as:

D = 1 +
1 + 2C(φ− C)/(1− φ2)−

q
1 + 4C(φ− C)/(1− φ2)

2(φ− C)2/(1− φ2)
.

Now α ≤ C ≤ φ < 1 follows from (26) – since φ ≥ α so that C/α ≥ 1 – and from (28).

Thus, the range of values of D as a function of given C can be determined by allowing φ to

vary from C through to 1. As φ ↑ 1, D → 1 + C 1−C
(1−C)2 =

1
1−C . Defining U = (φ − C) and

k = 4C/(1− φ2), as φ ↓ C it follows that U = (φ−C) ↓ 0 and k ↓ 4C/(1−C2). Given that

D = 1 +
2 + kU − 2

√
1 + kU

kU2/C
∼ 1 +

2 + kU − 2(1 + 1
2
kU − 1

8
k2U2)

kU2/C
∼ 1 + C2

(1− C2)
,
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it follows that as φ ↓ C, D → 1
1−C2 . From (31) it follows that D approaches 1

1−C2 from

above. Moreover, from (26) one can also show that C−α
φ−C = α2

1−φ2 , so that for each φ there

exists α such that D = 1 + C−α
φ−C ≤ 1 +

C
φ−C . As the latter holds for any 1 > φ ≥ C, we can

conclude that D approaches 1
1−C from below, i.e. that

D <
1

1− C
. (32)

From (31) and (32) it follows that (9) defines the feasible range ofD values for any 0 ≤ C < 1,

with both bounds being tight. Note that when C = 0 then D = 1 (and φ = α = 0).

B.2 The DSOE model

From

M = E(yt) = e{µX+0.5σ2X}

V = var(yt) =M +M2(e{σ2X} − 1)

C = cor(yt, yt−1) =
e{κσ2X} − 1

e{σ2X} − 1 + 1/M
(33)

D =
var(yt)
E(yt)

= 1 +M(e{σ2X} − 1), (34)

we can deduce the following inversions from (M,V,C) to (a, κ, ση):

D =
V

M

κ =
log
£
CD
M
+ 1
¤

log
£
D−1
M
+ 1
¤ (35)

a = (1− κ)

µ
log(M)− 1

2
log

∙
D − 1
M

+ 1

¸¶
σ2η = (1− κ2) log

∙
D − 1
M

+ 1

¸
.

Note that if C = 0 we obtain κ = 0 from (35), but we need not have D = 1 as in the case of

the SSOE model.

From equations (33) and (34), and using the fact that exp{κσ2X} < exp{σ2X} for 0 ≤
κ < 1, we can conclude that for κ ≥ 0 (⇒ C ≥ 0), C < D−1

D
which, in turn, implies that

D > 1
1−C . It also follows from (35) that for fixed C, D can be arbitrarily close to 1

1−C by

choosing κ sufficiently close to 1. Thus this lower bound for D is tight.
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Appendix C: Markov Chain Filter for the DSOE Model

In what follows, we explicitly distinguish between the state probability vector at time

t based on information set It−1, π (t|It−1) , and the revision of that state vector based on
the observed value of yt at time t, π (t|It) . At any given point in the parameter space, each
component of (20) can be calculated via application of the following filter:

Step 1. Define a vector of Nx initial state probabilities, π (0) = (1/Nx, 1/Nx, . . . , 1/Nx)
0

Step 2. Given π (0) , use the inverse cumulative distribution function technique to determine

the initial grid of Nx states, x(1), x(2), ..., x(Nx), from the steady state distribution of xt,

N(µX , σ
2
x), where µX =

a
1−κ and σ2X =

σ2η
1−κ2 .

Step 3. Determine the elements of the transition probability matrix P, as

pij =
ϕ
¡
x(j) − a− κx(i)

¢
NxP
k=1

ϕ
¡
x(k) − a− κx(i)

¢ for i = 1, 2, ..., Nx, j = 1, 2, ..., Nx.

Step 4. Update the state probability vector as π (1|I0) = π (0)P

Step 5. Assume that the observed value of yt at t = 1, is equal to the jth value in the grid of

Ny possible values for yt. Revise the ith component of π (1|I0) to accommodate the
observed value y(j), as

π (1|I1) =
qijπi (1|I0)PNx

k=1 qkjπk (1|I0)
, i = 1, 2, . . . , Nx

where

qij =
exp

£
−λ(i)

¤
λ
y(j)
(i)

y(j)!

and λ(i) = exp(x(i)), assuming an exponential link function in (3).

Step 6 Calculate the first component in the likelihood function in (20) as

P (y1|I0,Θ) =
NxX
k=1

qkjπk (1|I0)

Step 7 Update the state probability vector as π (2|I1) = π (1|I1)P

Step 8 Calculate the second component in the likelihood function in (20) as

P (y2|I1,Θ) =
NxX
k=1

qkjπk (2|I1)
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Step 9 Revise the ith component of π (2|I1) to accommodate the observed value of yt at t = 2,
as

π (2|I2) =
qijπi (2|I1)PNx

k=1 qkjπk (2|I1)
, i = 1, 2, . . . , Nx

Step 10 Repeat steps 7 to 9 for t = 3, 4, . . . , T.
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